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Abstract: Preterm birth is a neurodevelopmental risk condition often associated with cognitive control
(CC) impairment. Recent evidence showed that CC can be implicitly adapted through associative
learning. In the present study we investigated the ability to flexibly adjust CC as a function of implicit
stimulus-response temporal regularities in preterm (PT; N = 21; mean age 8 ± 1.3 years; gestational
age 30 ± 18.5 weeks) and full-term (FT; N = 20; mean age 8 ± 1.3 years) school-age children. All
children underwent an HD-EEG recording while undergoing the Dynamic Temporal Prediction
(DTP) task, a simple S1–S2 detection task purposely designed to generate local-global temporal
predictability of imperative stimuli. The Wisconsin card sorting test (WCST) was administered to
measure explicit CC. The PT group showed more premature and slower (DTP) as well as perseverative
(WCST) responses than the FT group. Moreover, pre-terms showed poor adaptive CC as revealed by
less efficient global response-speed adjustment. This behavioral pattern was mirrored by a reduced
and less sensitive to global manipulation anticipatory Contingent Negative Variation (CNV) and
by different cortical source recruitment. These findings suggest that implicit CC may be a reliable
endophenotypic marker of atypical cognitive development associated with preterm birth.

Keywords: premature birth; adaptive cognitive control; dynamic temporal prediction task; Wisconsin
card sorting test; event-related potentials; contingent negative variation; brain source analysis

1. Introduction

It is estimated that between 30% and 40% of children born before term are at heightened
risk of developing neurodevelopmental disorders, including autism spectrum disorders
(ASD), attention deficit and hyperactivity disorders (ADHD), specific language impairment
(SLI), learning disorders (LD) or clinically relevant problems in general [1]. Notably, even
in the absence of diagnosed neurodevelopmental disorders, premature birth is statistically
associated with multi-domain cognitive problems, involving sensory-perceptual, amnestic,
verbal, visuospatial, learning and attentional-executive aspects [2]. These difficulties can
often take a subclinical form that, nevertheless, may functionally limit the children’s
proficiency not only in academic performance but also in social, relational and affective
skills, ultimately impacting their quality of life [3]. Despite the large amount of work on
the topic, it is still not clear which neurocognitive mechanisms may subtend an altered
developmental trajectory in premature birth.

Most studies have traditionally focused on sensory and perceptual processing in
the perinatal period or in the first months of life (see Mento & Bisiacchi, 2012 [4] for
a review). However, in the last decade a lot of research has focused on tracing both
neurobiological correlates and cognitive outcome associated with premature birth in the
medium (childhood) and long (adulthood) term [5–7]. This developmental perspective is
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fundamental considering that several cognitive dysfunctions may be silent in the first years
of life, but may emerge later, i.e., when environmental demands for controlled behaviour
grow after the beginning of formal instruction in primary school. In particular, a disruption
of cognitive control (CC) seems to be a core neuropsychological characteristic of prematurely
born children [8]. CC, also known as executive function, is generally defined as the ability
to regulate thoughts and emotions as a function of environmental demands, with the aim of
overcoming automatism through volitional and goal-directed behaviour [9–12]. Due to the
need to actively operate on sensory information to override automatic behaviour, CC has
traditionally been considered a top-down function requiring an intentional effort to regulate
behaviour based on explicit internal goals and external context [13,14]. However, a recent
theoretical perspective supports a more ecological approach positing that CC can also be
shaped by bottom-up processes, such as associative learning instantiated by both previous
experience and contextual factors [15,16]. In this view, the ability to capitalize bottom-up
resources becomes foundational for generating adaptive cognitive control (ACC).

Both simple associative and statistical learning have been advocated as two implicit
mechanisms at the basis of ACC, as they allow the individual to extract and learn regu-
larities from the surrounding environment since birth [17,18]. For example, a repeated
stimulus-response (S–R) association can easily induce ACC, prompting participants to
shift from a reactive to a proactive mode of control [19]. A repeated exposure to a biased
environmental context also provides a rich source of predictive information that can be
used to prepare for (and respond to) future stimuli in order to optimize cognitive process-
ing at multiple levels, including visual perception [20,21], auditory perception [22], motor
control [23–25], memory [26], interoception and emotion [27–30].

As a key point, whether acquired through implicit contextual information and/or
prior experience, predictive knowledge can be proactively used as a proxy to up- or down-
regulate attention and action preparation. This process aims to cope with upcoming events
requiring controlled behaviour, for example speeding up expected responses or inhibiting
prepotent but inappropriate ones, managing interference from distractors, or preparing
for shifting tasks [31]. In other words, CC has been theoretically re-framed as an emergent
property of prediction construction [32] rather than a supra-ordinate, static cognitive trait
characterizing individual psychological profiles.

Crucially, while interest in ACC in healthy adults has generally increased in the last
decade (see [16] for a review), the developmental evidence is still scarce. Yet a thorough un-
derstanding of ACC developmental trajectories would provide an exceptional opportunity
to identify a fine-grained endophenotypic marker for all those risk conditions potentially
impacting long-term neurodevelopmental outcome, including preterm birth. Some studies
using contextual cueing paradigms showed that the encoding of stimulus regularities such
as identity and location can guide selective attention in school-aged children [33,34], sug-
gesting that CC can be easily driven by implicit contextual information encoded in memory.
More recently, an emerging research line went a step further by proving that 5-year-old
children succeed in engaging CC reactively in response to events, but they struggle to
proactively prepare for them unless explicitly cued to use CC [35]. Instead, proactive CC
seems to be spontaneously used from around 7 years of age [36–38]. In line with this,
Gonthier and colleagues [39,40] investigated implicit CC in young children (5-year-old),
older children (9-year-old) and adults by using a flanker task. Crucially, they manipulated
the contextual information at both trial- (i.e., item-specific) and block-level (i.e., list-wide
proportion congruency) in order to bias participants to expect mostly congruent or mostly
incongruent trials. The results clearly showed that even preschoolers are able to learn
to manage changing conflict levels and adjust their behaviour accordingly, without any
explicit instructions to do so or awareness of it. Remarkably, they found no differences be-
tween older children and adults, showing that implicit CC stabilizes during childhood. By
contrast, explicit CC knowingly continues to mature into young adulthood [10], suggesting
a developmental dissociation between implicit and explicit CC. These findings aligned with
a previous study of our laboratory [41], which used the Dynamic Temporal Prediction (DTP)
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task to investigate the ability of typically-developing children to adjust motor behaviour
on the basis of either local (within-trial expectancy) or global (between-block expectancy)
S–R temporal regularities. The findings clearly showed that, although in place at 5 years
of age, the capability to implicitly and proactively adapt response speed as a function of
global predictability becomes developmentally stable only after the age of 7, supporting
the dissociation between explicit and implicit CC.

Albeit limited, the extant evidence on typical development suggested the possibility
of assessing ACC as a marker of potential clinical relevance for atypical development,
which has been scarcely investigated. In two studies using the DTP task we were able to
show that the ability to implement ACC on the basis of global predictability is disrupted in
Down syndrome [42] and focal epilepsy of childhood [43]. Conversely, deaf children with
cochlear implants (a condition of neurodevelopmental risk for academic outcomes; [44])
showed comparable ACC performance as typically hearing children, suggesting that
implicit learning might be resilient to early adverse experiences such as a lack of auditory
stimulation [45]. This encourages investigation of the mechanisms underlying ACC in
populations presenting a condition of major risk for neuropsychological development and
academic outcome, such as the case of preterm birth. Yet, as far as we know, it is still an
unaddressed question as to whether ACC is impaired in preterm children.

In the present study, we used the DTP and the Wisconsin Card Sorting Test (WCST; [46])
as two sensitive tools to respectively investigate implicit and explicit ACC in a sample of
preterm (PT) school-aged children compared to a full-term (FT) age-matched control group.
Noteworthy, unlike traditional cognitive control tasks (i.e., Stroop, flanker or Simon) the
DTP task does not include a conflict condition, ruling out any potential confound deriving
from excessive working memory load or complex instructions, as the only instruction is
to press a button when the target occurs. This makes it suitable for investigating ACC in
young typically [41] and atypically [42,43,45] developing children, including PT children.
Nonetheless, in the context of the DTP, task ACC is crucial for the efficient adaptation to both
local and global patterns. Indeed, optimal behavioral adaptation should reflect not only
the generation of adequate predictive models of events’ sensory structure, but also optimal
flexibility in updating and implementing these predictions to proactively prepare for action
by balancing excitatory and inhibitory neural mechanisms. To unravel the neural activity
underpinning this cognitive function, the high spatial resolution electroencephalographic
activity (HD-EEG) was recorded and compared between-groups while participants were
performing the DTP.

In line with previous literature [8] the general hypothesis of the study was to observe
a less efficient CC in PT than FT children both at the behavioral and neurofunctional level.
More specifically, as a first hypothesis (H1), we expected the PT group to show an overall
poorer behavioral performance than the FT group, with slower, more premature responses
in the DTP task (implicit CC), as well as more perseverative errors in the WCST (explicit
CC). As a second hypothesis (H2), we expected the DTP task to succeed in inducing ACC
in all children. Specifically, we expected behavioral responses to conform to both trial-wise
(local) and block-wise (global) stimulus predictability, respectively [23,41,43,47]. We also
hypothesized (H3) between-group differences only in the ability to use global, rather than
local, predictability to adjust behaviour. Specifically, in line with previous evidence showing
suboptimal global ACC in children with atypical development (Down Syndrome, [42] and
suffering neurological disorders [43], we expect PT children to show a less efficient global
behavioral adaptation than FT peers even in the absence of diagnosed neurodevelopmental
disorders. Finally, in line with our previous findings [23,25], we hypothesized (H4) that
the group-level behavioral differences would be supported by a less efficient neural en-
gagement in PT children. Specifically, we targeted both pre-stimulus (Contingent Negative
Variation or CNV) and post-stimulus (P1, N1, P2, N2, P3) ERP components as specific
electrophysiological markers sensitive to expectancy/response preparation and stimulus
processing/response implementation, respectively. The scalp-level analyses were comple-
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mented with a source-level exploration, with the aim of unraveling the spatiotemporal
neuro-dynamics of distinct neurocomputational stages underlying CC.

2. Materials and Methods
2.1. Participants

Data were collected from 21 prematurely born children (PT group; mean age =
8.4 ± 1.3 years, range = 6–11 years; 7 boys; 16 right-handed) and 21 age- and gender-
matched children born at term (FT group; mean age = 8.2 ± 1.4 years, range = 6–11; 8 boys;
16 right-handed). Two children were excluded from the PT group and one from the FT
group due to excessive noise during EEG recording. Therefore, the final sample was N
= 39 (19 PT and 20 FT; see Table 1 for the demographic characteristics). PT participants
were recruited from the association “Pulcino” in Padua, a center that provides support for
premature infants and their families from the earliest stages of development since later
childhood. Participants in the FT group were recruited from the local community. Visual
acuity was normal or corrected to normal. Inclusion criteria in the PT group were birth
before 35 gestational weeks and acceptance of the study protocol by the parents. Exclusion
criteria were major risk conditions for neurocognitive development, including craniofacial
malformations, genetic syndromes, major neurological diseases, ultrasound evidence of
severe intra-ventricular hemorrhage at birth or during the permanence in the Neonatal
Intensive Care Unit (III–IV grade by Volpe, 2000), abnormal brainstem auditory-evoked
potentials (BAEPs) at birth, or diagnosis of neuropsychiatric or neurodevelopmental disor-
ders at testing time. Participants’ characteristics are summarized in Table 1. All children’s
parents signed a written consent form. All experimental procedures were approved by the
Ethics Committee of the School of Psychology at the University of Padua (protocol n◦ 2536)
and were conducted according to the principles expressed in the Declaration of Helsinki.

Table 1. Demographic characteristics of the participants. PT = Preterm; FT = Full-term.

PT FT

N Tot (% Males) 21 (52%) 21 (42%)
Age in Years M (SD) 8.42 (1.3) 8.19 (1.4)

Gestational Age in Days M (SD, Range) 213 (20.9; range 168–252) >270
Birth Weight in Grams M (SD) 1448 (623) >2500

2.2. Experimental Procedures

All families were invited to join the interdepartmental University’s HD-EEG laboratory.
All participants’ parents signed a written informed consent. After familiarizing themselves
with the HD-EEG lab setting, children comfortably sat down in front of a monitor and the
HD-EEG net was applied. Each child undertook a six-minute resting state recording and
then started the Dynamic Temporal Prediction (DTP) task [41]. The DTP is a warned, simple
response time (RT) task purposely designed to investigate how behavioral performance
and neurophysiological activity are implicitly shaped by stimulus occurrence probability
over time. In this task, the way individuals prepare to respond to the imperative stimulus
depends on both local and global prediction. For local prediction we mean how long
participants wait for the imperative stimulus within each single trial (hazard rate), whereas
for global prediction we mean how likely is the imperative stimulus occurrence after a
short or long preparatory interval on the basis of contextual information. Specifically,
as detailed below, the proportion of short, medium and long stimulus onset asynchrony
(SOA) intervals between the warning and the imperative stimulus is manipulated list-
wide and covertly. The manipulation generates “fast” (short-expectancy biased) or “slow”
(long-expectancy biased) experimental blocks with respect to a “medium” speed baseline
condition (uniform distribution). In this way it is possible to test the participants’ ability to
adjust their motor control (speed response) on the basis of bottom-up implicit task demand.
The DTP task has proven to be useful at unraveling the neural bases [23] as well as at
tracking both typical [41] and atypical [42,45] developmental trajectories of ACC.
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After completing the experimental task, all participants underwent a cognitive as-
sessment as a part of a wider research project. Non-verbal intelligence was measured
through the Raven’s Colored Progressive Matrices (CPM) test [48]. The raw score obtained
through the Raven’s CPM test was used to exclude participants whose mental age was
below 2 standard deviations (SD), in consideration of their age average. For this purpose,
the Italian normative data [49] were used. Explicit cognitive flexibility was tested by using
a computer-based version of the Wisconsin Card Sorting Test (WCST) [46]. Specifically,
we used a custom computerized version with a rule-switch every 10 trials for a total of
128 cards.

2.3. Experimental Task

We used a laptop with a 17-inch monitor at a resolution of 1280 × 1024 pixels to present
the stimuli. Participants were seated comfortably in a chair at a viewing distance of around
60 cm from the monitor. The trial structure is shown in Figure 1. In each trial the first event
was the display of a warning visual stimulus (S1), which was followed by an imperative visual
stimulus (S2) lasting on the screen for a maximum of 3000 ms. S1 consisted of a picture of a
black camera lens surrounded by a circle (total size of the stimulus: 840 × 840 pixels, 144 dpi,
10.62◦ × 10.54◦ of visual angle). S2 was a picture of a cartoon character, displayed centrally
within the camera lens. The inter-trial-interval was random between 600 and 1500 ms.
Participants were asked to make speeded target detection by pressing the spacebar with
the index finger of the dominant hand as quickly as possible at target onset.
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Figure 1. Representation of the DTP task. (a) Trial structure. The circle (S1) warned children on
the forthcoming presentation of the imperative S2 stimulus (an animal cartoon; here represented
with colored disks for illustrative purposes). Participants had to make speeded reaction times at S2
onset by pressing the space button on the keyboard. The effect of local prediction was assessed by
manipulating S1–S2 stimulus onset asynchrony (SOA) within each experimental block, generating
three fixed intervals of 500 ms, 1000 ms and 1500 ms. (b) Experimental Design. The effect of global
prediction was assessed by manipulating the between-block a priori percentage of each SOA to
create three probabilistic distributions in which the SOAs were skewed toward the short (fast block),
equally distributed (uniform block) or long (slow block) SOA. (c) Task design. A total of 9 blocks were
delivered. Each block included 30 trials, for a total of 270 trials. The block order was randomized
between-subjects. The picture shows an example of possible order randomization.

2.3.1. Local Predictive Context

The local stimulus predictability was investigated by manipulating the S1–S2 SOA
trial by trial within each experimental block, leading to three possible fixes. These included
a short (500 ms), a medium (1000 ms), or a long (1500 ms) SOA (Figure 1a). In this way we
were able to generate in each block three levels of local temporal preparation to S2 onset.
This in turn is expected to change the subjective temporal expectancy of target onset [50–55].
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Specifically, in line with previous literature (see [51] for a review), we expected participants
to be fastest at detecting the targets occurring at the longest SOA and slowest at those
appearing at the shortest SOA.

2.3.2. Global Predictive Context

To investigate the global predictability, different frequency distributions per each SOA
length were introduced and manipulated list-wide in order to create three different block
types. See also Figure 2 for a description.
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Figure 2. Behavioral data. The figure shows the single-subject values (dots), the box plots and
the rainclouds clustered by group. The four upper panels refer to the DTP task and represent the
global mean response accuracy (a), the global mean response speed (b), the mean response speed
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Brain Sci. 2022, 12, 1074 7 of 22

Uniform (U) Blocks

In the uniform block the three SOA intervals had the same probability of occur-
ring (33,3% each). This type of distribution has been traditionally employed in both
adult [51,56–58] and developmental [25,57,59,60] literature and is known to translate into a
biased a posteriori temporal preparation. Indeed, as time elapses, the conditional proba-
bility of S2 onset increases exponentially since it has not occurred yet [47]. Hence, motor
preparedness will be lowest at the shortest SOA and highest at the longest SOA.

Fast Blocks (Short-Biased)

In this case, most of the SOA intervals were short. In particular, the relative frequency
distribution was 50%, 33.33%, and 16.67% for the short, medium, and long SOA, respec-
tively. This manipulation turned out into a speeding up of the global task speed, as the
stimuli were mostly interspersed with short waiting intervals.

Slow Blocks (Long-Biased)

In this block we used an aging distribution [47,61], which is known to enhance the
hazard-based increment of temporal expectancy as a function of SOA length. Specifically,
the relative percentage was 16.7%, 33.3%, and 50% for the short, medium, and long SOA,
respectively. In this case we obtained a general slowing down of the stimulus presentation
rate as most of the waiting intervals between stimuli were long.

2.4. Experimental Design

The experimental design is shown in Figure 2. The manipulations yielded a factorial
design with SOA length (short vs. medium vs. long) and block type (fast vs. uniform vs.
slow) as two factors orthogonally contrasted to investigate how behavioral performance is
independently affected by local and global stimulus predictability.

For each block we delivered 30 trials and each block was presented three times, leading
to nine experimental blocks and 270 trials. Specifically, we delivered a total of 45, 30 and
15 trials respectively for short, medium and long SOA in the fast block; 30 trials for each
SOA in the Uniform block; and 15, 30 and 45 trials respectively for short, medium and long
SOA in the slow block. Each block required the same sensorimotor engagement, as the
visual stimuli and the motor response were always the same regardless of SOA length or
block type. The experiment lasted about 15 min. It is important to notice that participants
were not aware of either local or global manipulations since these parameters were not
made explicit by the researchers. Furthermore, the blocks were delivered continuously.
Resting pauses were blank slides inserted at the middle of each block in order to avoid
cueing participants about between-block shifts. The block-type order was randomly sorted
between subjects in order to avoid any potential implicit predictive bias due to fixed SOA
or block-type order. After completing the task all participants were asked if they had
become aware about any change in speed across the task. They only reported a general
change in local stimulus predictability (i.e., that they could wait shorter or longer to see the
target) but did not realize any specific global pattern. A block of 20 training trials for each
condition was delivered before the experimental session to ensure if they understood task
instructions. In this practice block, a yellow smile with a neutral expression was displayed
when either premature (<150 ms from target onset) responses were provided. A yellow
smile with a happy expression was displayed if the RT was between 1000 and 1500 ms from
target onset. Finally, a green smile with a happy expression was displayed if the RT was
between 150 and 1000 ms. E-prime 2 software (Psychology Software Tools, Pittsburgh, PA,
USA) was used to create and administer the stimuli.

2.5. Behavioural Data Analysis

Both mean accuracy (percentage of not premature responses) and RTs to targets were
collected and analyzed separately for each group. Specifically, in order to obtain a general
measure of the ability to accomplish the task, the mean number of errors (i.e., premature
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responses < 150 ms from S2 onset) across all experimental conditions was calculated for
each participant. All children showed high accuracy (>90% of corrected responses) and
were included in the analyses. With regard to RTs, only responses between 150 ms and
1500 ms from target onset were considered correct and included in the analyses. We fitted
separate analyses of variance (ANOVA) on both the DTP (mean error percentage and RTs)
and the WCST. In the latter case we considered two measures, i.e., the mean percentage
of perseverative response (i.e., when the participant continues with the same response
strategy following a rule switch) and of total error (including both perseverative error, and
non-perseverative/random error).

We considered the group (PT vs. FT) as a between-subject factor. To reduce the number
of multiple comparisons, only the two extreme SOA intervals (short vs. long) and block-
type (fast vs. slow) were entered in the GLMs as within-subject factors indicating local and
global prediction, respectively. This choice was also justified by previous findings showing
that in the DTP task these conditions yielded the maximum experimental effects on RTs [41].
Chronological age was also added as a covariate to partial out any potential maturational
age effects, given the wide age range included in the study. To directly compare the effect
of different hierarchical levels of predictability on task performance, we also calculated the
delta (∆) scores as the mean RT difference between short and long SOA (∆ local prediction)
and between fast and slow blocks (∆ global prediction). More specifically, the ∆ global
index was calculated only for short-SOA trials as previous studies clearly showed that
behavioral adaptation in terms of response speed is negligible for long-SOA trials, due to
the hazard-function [24,53,54,56].

Both the individual ∆ DTP values and the mean WCST scores (i.e., the individual mean
percentage of both total and perseverative errors) were entered in a univariate ANOVA
to test for between-group effects. Finally, we applied partial, age-mediated Pearson’s
correlations among demographic variables (i.e., both gestational age and birthweight) and
behavioral scores, including the individual local and global ∆ prediction indexes in the
DTP task and both the total and perseverative individual percentage of errors in the WCST.
This helped us to better unravel the relationship between maturational factors on the one
side and implicit-explicit CC on the other side.

2.6. EEG Recording and Preprocessing

The high-spatial resolution EEG signal was recorded trough a 128-channel Geodesic
high-density EEG System (EGI® GES-300), with electrical reference to the vertex. We used
a sampling rate of 500 Hz and kept the impedance below 60 kΩ for each electrode. Signal
preprocessing was performed through EEGLAB 14.1.2b [62]. The continuous EEG signal
was first down-sampled at 250 Hz and then bandpass-filtered (0.1–45 Hz) using a Hamming
windowed sync finite impulse response filter. After filtering, the continuous signal was
epoched between 500 and 1996 ms from S1 onset and between −100 and 900 ms from
S2 onset to target pre- and post-stimulus windows, respectively. Epochs related to trials
containing premature responses were rejected. Epoched data were entered to an automated
bad-channel and artifact detection algorithm including the TBT plugin implemented in
EEGLAB. This algorithm identified the channels exceeding a differential average amplitude
of ±250 µV. These channels are then marked for rejection. Channels that were marked as
bad on more than 30% of all epochs were excluded. Epochs including more than 10 bad
channels were also excluded. Data cleaning was performed by means of an independent
component analysis [63], using the Infomax algorithm [64] implemented in EEGLAB. The
resulting independent components were visually inspected in topography and time-series,
and those clearly related to eye blinks, eye movements, muscle artifacts and heartbeat
were discarded. The remaining components were then projected back to the electrode
space to obtain cleaner EEG epochs. Finally, bad channels were reconstructed with the
spherical spline interpolation method [65]. The data were then re-referenced to the average
of all electrodes, and baseline correction was applied by subtracting the mean signal
amplitude in the pre-stimulus interval. Epoched data were imported in Brainstorm [66]
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to generate the individual average for each electrode site and experimental condition. We
applied a weighted average in order to control for the unbalanced number of epochs per
condition [67].

2.7. EEG Statistical Analysis

We applied a whole-scalp analysis approach at all electrode sites using a paired t-test
(α < 0.05) permutation approach to control the family-wise error rate [68]. To control for
the 1-type error we performed 2000 Monte-Carlo permutations and applied cluster-based
correction over all 128 electrode locations using the Fieldtrip functions [69], accessible via
Brainstorm.

The ERP analysis focused on specific ERP components that proved to be sensitive
markers of the different cognitive mechanisms underlying implicit cognitive control [23,25].
Specifically, to investigate the expectancy implementation stage, which consists in the ability
to prepare for detecting targets, the late Contingent Negative Variation (CNV; [70,71]) was
targeted and measured during response preparation (pre-stimulus interval). Namely, we
considered the mean voltage amplitude over a 200-ms period immediately before S2 onset.
This extended over a window of 300 to 500 and 1300 to 1500 ms from S1 onset for short
and long SOA trials, respectively. To investigate the response implementation stage, which
consists in the ability to translate temporal expectancy into optimized stimulus processing
and motor responses, the main post-stimulus ERP components were targeted and measured.
Namely, in line with both previous studies (Mento and Vallesi, 2016) and with the grand
average visual inspection, we targeted the P1 (80–140 ms), N1 (140–200 ms), P2 (200–300 ms),
N2 (300–400 ms) and P3 (300–500 ms) components.

To investigate between-group differences in CC we applied a first-level analysis
by collapsing all block-type conditions and comparing the neural activity in FT vs. PT
children, separately by SOA length. In this way we were able to directly compare both
pre- and post-stimulus ERP activity for different levels of local predictability, regardless
of the effect of block-wise global changes in stimulus temporal predictability. Then, to
specifically investigate ACC we run a second-level, within-group analysis by comparing
the neural activity in fast vs. slow blocks separately by SOA (short vs. long). In this way
we directly addressed how the neural pre- and post-stimulus activity was shaped by global
predictability within each group.

2.8. Cortical Source Modelling

To investigate the neural generators underlying both expectancy and response im-
plementation we applied a cortical source estimation. To this purpose baseline-corrected
epochs were imported in Brainstorm [66] to model their cortical generators. We used
the ICBM152 anatomical template to approximate the individual anatomy of each partici-
pant [72]. Co-registration of EEG electrodes position was performed via Brainstorm, by
projecting the digitized EEG sensor positions GSN Hydrocel 128 E1 available in Brainstorm
on the head surface. We then derived an EEG forward model using the three-layer bound-
ary element method (BEM) from OpenMEEG implemented as a Brainstorm routine [73,74].
The source space was constrained to the cortex and modeled as a grid of 15.002 orthogonal
current dipole triplets. We used sLORETA as a source model, with Brainstorm’s default
parameter settings. The empirical noise covariance model was obtained from the average
of ERP baseline signals. The sources were projected to the standard anatomical template
(MNI) and their activity was transformed in Z scores relative to the baseline. Finally, a
spatial smooth with a FWHM of 3 mm was applied to each source. The cortical activations
were located according to the anatomical Desikan-Killiany atlas [75] adapted for cortical
space solution.
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3. Results
3.1. Behavioural Results
3.1.1. Dynamic Temporal Prediction Task

The mean accuracy scores and RTs per group and condition are reported in Tables 2
and 3, respectively. Overall, accuracy scores were very high with all children showing on
average correct (i.e., not premature) responses in more than 95% of trials. The ANOVA
revealed a significant group effect (F(1, 39) = 6.9; p < 0.02; η2p = 0.15) with PT children
committing more premature responses (93.3 ± 5.2%) than FT children (96.9 ± 2.53%).
As expected, the mean accuracy was also dependent on age (F(1, 39) = 6.56; p < 0.02;
η2p = 0.14), as the percentage of premature responses decreased with increasing age. No
other main or interaction effects were found.

Table 2. Accuracy Mean and standard deviation (in parentheses) measures of accuracy (percentage
of premature responses) for preterm (PT) and full-term (FT) children for each experimental condition.

BLOCK FAST UNIFORM SLOW

SOA Short Medium Long Short Medium Long Short Medium Long

PT 94.3 (6.1) 93.1 (7.1) 93.8 (9.4) 92.3 (5.6) 95.7 (4.6) 93.8 (5.3) 92.2 (7.4) 93.7 (7.1) 92.9 (6.4)
FT 97.7 (2.2) 96.8 (3.7) 91.8 (5.7) 97.6 (4) 96.9 (4.1) 96.7 (4.4) 98.6 (4.9) 96.8 (4) 97 (2.9)

Table 3. Response speed. Mean and standard deviation (in parentheses) measures of response speed
(reaction times) for preterm (PT) and full-term (FT) children for each experimental condition.

BLOCK FAST UNIFORM SLOW

SOA Short Medium Long Short Medium Long Short Medium Long

PT 477 (84) 418 (88) 402 (90) 508 (88) 441 (99) 402 (70) 521 (86) 444 (92) 420 (79)
FT 507 (76) 444 (80) 438 (86) 570 (68) 492 (86) 457 (68) 602 (92) 510 (86) 475 (86)

The behavioral benefits conferred by the experimental manipulation were observed
mainly in response times (RTs; Table 3). The ANOVA revealed a significant group difference
(F(1, 39) = 4.14; p < 0.02; η2p = 0.1), with PT children showing on average slower responses
(499 ± 77 ms) than FTs (448 ± 72 ms). We also found an expected main effect of age (F(1, 39)
= 3.87; p < 0.05 η2p = 0.09), as RTs speeded up with increasing age. Moreover, the ANOVA
revealed a main within-subject effect, as the response speed significantly depended on
trial-type (SOA effect: F(1, 39) = 12.22; p < 0.01; η2p = 0.24). Specifically, all children were
faster at detecting targets when these were locally preceded by long as compared to short
SOA preparatory intervals (mean speed advantage = 93 ms; t = 17.1; p < 0.01; Cohen’s
d = 1.12), although this effect interacted neither with group nor age (all Fs(1,39) < 1; all
ps > 0.36; all η2ps < 0.01). In other words, both FT and PT children were comparably
good at exploiting the local temporal predictability to generate temporal prediction and
consequently proactively adapt CC to speed up their responses.

Noteworthy, we found a significant block-type × group interaction (F(1, 39) = 3.78;
p < 0.05; η2p = 0.9). From the post-hoc tests it emerged that, while all children showed
overall faster RTs in fast than slow blocks (mean difference = −48 ms; t = −5.16; p < 0.01;
Cohen’s d = −59), this advantage was relatively larger in PT (mean speed advantage =
−65 ms; t = −5.33; p < 0.001; Cohen’s d = 0.79) as compared to FT children (mean speed
advantage = −31 ms; t = −2.58; p < 0.05; Cohen’s d = −38). This interaction was further
addressed by directly comparing between-group the ∆ local and global prediction indexes
(calculated only for short-SOA trials) as two behavioral markers reflecting different hierar-
chical levels of adaptive cognitive control. The univariate ANOVAs revealed significantly
larger global (F(1, 40) = 5.7; p < 0.03; η2p = 0.12) but not local (F(1, 40) = 1; p < 0.32;
η2p = 0.02) ∆ values in PT than FT children. The single-subject data are shown in
Figure 2c,d.
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3.1.2. Wisconsin Card Sorting Test

The univariate ANOVA revealed a significant between-group difference in the WCST
performance. Specifically, PT children reported a higher percentage of both total errors
(F(1, 40) = 76.4; p < 0.001; η2p = 0.66) and perseverative responses (F(1, 40) = 29.4; p < 0.001;
η2p = 0.42) than FT children, as shown in Figures 2e and 2f, respectively.

3.1.3. Correlational Analyses

We also found that in the PT group the gestational age was inversely correlated with
the percentage of total errors in the WCST (r = −0.47; p < 0.05), with more premature
children committing more errors. Yet, no significant correlations between maturational
variables (gestational and birthweight) and DTP adaptive local or global ∆ indexes emerged
(all rs = 0.12; all ps > 0.6). Most interestingly, we found that the ∆ global index correlated
with both the individual percentage of total (r = 0.37; p < 0.02) and of perseverative errors
(r = 0.32; p < 0.05) in the WCST. By contrast, no significant correlations were found for the
∆ local index and the WCST scores (r < 0.22; p > 0.1). These findings are shown in Figure 3
and suggest that explicit and implicit CC are moderately related.
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3.2. EEG Results
3.2.1. Between-Group Comparison

As shown in Figure 4 the visual inspection of the grand-averaged ERP waveforms
clearly shows larger pre- and post-stimulus amplitude voltages in FT as compared to
PT children, suggesting greater recruitment of neural resources during both stimulus
expectancy and response implementation stages. This effect was confirmed by the first-level
statistical analysis aimed at identifying group-level differences after collapsing block-types.
Indeed, the permutation analyses in the pre-stimulus time window identified a left-central
cluster of electrodes which consistently showed more negative activity in FT children for
all SOA conditions. More specifically, in the short-SOA trials we identified an early effect
in the window between 300 and 500 ms from S1 onset (p < 0.02, cluster statistic (c) = −56,
cluster size (s) = 38), which presumably incorporated both S1-locked (N2) and anticipatory
(CNV) activity (Figure 4a). Indeed, due to the narrow preparatory window it was not
possible in this case to temporally disentangle these two computational stages in a reliable
way. This hypothesis is further confirmed by the fact that in long-SOA trials, which allow
for a longer motor preparation, we still found an early effect between 300 and 500 ms (FT
vs. PT p < 0.02, cluster statistic (c) = −59, cluster size (s) = 44), which was nevertheless
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followed by a much later CNV modulation between 1300 and 1500 ms (p < 0.02, cluster
statistic (c) = −61, cluster size (s) = 50). Noteworthy, regardless of their timing, all these
effects were spatially localized over a cluster of left-central electrodes, in line with the
traditional CNV scalp distribution [70,71]. Nonetheless, this cluster extended over more
posterior sites in long-SOA trials, suggesting at least partially different neural generators on
the basis of the available preparatory interval. When applied in the post-stimulus window
the permutative analysis also yielded a larger negativity in the FT group both in the N1
(140–200 ms) and N2 (200–300 ms) range. As observed for the CNV, these effects were
localized over a left-central cluster of electrodes and extended over posterior areas for long
SOA trials (Figure 4b).

The cortical source reconstruction applied over the pre-stimulus ERP window showed
that during the stimulus expectancy stage FT children recruited a distributed frontal cortical
network including the left precentral (l-Precentral), left middle-frontal gyrus (l-MFG) and
the bilateral anterior cingulate cortex (a-CC). In addition, only in short-SOA trials did
this network extend further posteriorly, involving the superior parietal cortex (SPC) areas
bilaterally. By contrast, PT children showed a lower degree of cortical activity, which was
mainly focused over the SPC with a very small activity extending over frontal cortical
regions. This different pattern of cortical activity during the pre-stimulus window is clearly
shown in Figure 5a, which depicts the differential activity obtained by subtracting the
cortical reconstructed maps (i.e., FT minus PT). Specifically, for both short and long SOA
conditions the FT group showed a greater recruitment of neural resources over the bilateral
a-CC and the l-Precentral gyrus. In addition, only in short SOA trials was an additional
fronto-parietal involvement found, including the l-MFG and the bilateral SPC. As observed
for the pre-stimulus window, the reconstructed maps obtained from the post-stimulus ERP
activity also showed higher cortical activity in FT than PT children over bilateral occipital,
temporal and parietal areas. The differential map relative to the N2 range (300 to 500 ms
from S2 onset; Figure 5b) further narrowed this differential pattern over the parietal areas
(SPC) for both short and long SOA trials. In the latter case we also observed a stronger
bilateral activation of the precentral gyrus.
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Figure 4. Between-group ERP comparison. The upper panel (a) represents the statistically significant
electrodes exceeding the critical t-score threshold for statistical significance over the pre-stimulus
window (stimulus expectancy/response preparation). The negative cluster indicates that ERP mean
amplitude is significantly larger (i.e., more negative) in the FT than in the PT group for both short and
long SOA intervals over left-central electrodes. These effects extended over a 300 ms window before
S2 onset, including a N2/CNV modulation for the short SOA condition and a CNV modulation for
the long SOA condition. The ERP waveforms below the scalp maps show the time series derived by
averaging the electrodes included in the negative cluster. The S1 at 0 ms indicates the ERP time locking,
while S2 indicates the onset of the imperative stimulus. The lower panel (b) represents the same
analysis performed over the post-stimulus window (stimulus processing/response implementation).
The negative cluster indicates that ERP mean amplitude is significantly larger (i.e., more negative)
in the FT than in the PT group for both short and long SOA intervals over left-central electrodes in
two distinct windows, covering the N1 and N2 temporal range. The ERP waveforms below the scalp
maps show the time series derived by averaging the electrodes included in the negative cluster. The
S2 at 0 ms indicates the ERP time locking. For all comparisons the colored horizontal bars represent
the timing of significant ERP effects.
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Figure 5. Between-group differential cortical map reconstruction. The pictures display the differential
(FT minus PT) cortical map reconstruction relative to each significant ERP effect for pre-stimulus
(a) and post-stimulus (b) temporal windows. Data were adjusted using a threshold of 50% of the
maximum amplitude and a size of at least 10 vertices and they were reported on a template cortex
smoothed at 40%.

3.2.2. Within-Group Comparison

To investigate the neural correlates of ACC, we run two second-level permutative
analyses which targeted ERP modulations as a function of global stimulus predictability.
In particular, we compared the ERP activity elicited in fast vs. slow blocks, separately
by group and only for short-SOA trials. In this way we were able to investigate whether
the block-level group differences in speed adjustment were supported by a different re-
cruitment of neural resources. The fine temporal resolution of ERPs allowed us to unveil
the temporal dynamics of ACC, targeting both pre- and post-stimulus windows as two
computational stages reflecting stimulus expectancy and response implementation, re-
spectively. According to H2b, and in line with behavioral findings, we expected to find
a larger neural modulation in FT than PT children. As shown in Figure 6a, FT children
showed significantly higher pre-stimulus ERP activity in fast than slow blocks, which was
expressed by a more negative CNV (p = 0.034, cluster statistic (c) = −64, cluster size (s) = 56).
This effect involved a large cluster of posterior electrodes, covering occipito-parietal sites.
By contrast, no significant ERP modulations induced by global stimulus predictability were
observed in the PT group. Likewise, in the post-stimulus window (Figure 6b) FT children
allocated larger neural activity following S2 when this occurred in fast as compared to slow
blocks (p = 0.028, cluster statistic (c) = 60, cluster size (s) = 50). This effect was expressed
by a larger P3 over posterior electrodes. By contrast, no significant post-stimulus ERP
modulations were found in PT children.
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Figure 6. Within-group ERP comparison. The upper panel (a) represents the statistically significant
electrodes exceeding the critical t-score threshold for statistical significance over the pre-stimulus
window (stimulus expectancy/response preparation). The negative cluster indicates that ERP mean
amplitude is significantly larger (i.e., more negative) in the fast than slow blocks over posterior
electrodes in the FT group. This effect extended over a 300 ms window before S2 onset and was
expressed by a CNV modulation (left panel). However, no significant block-dependent modulations
were found in the PT group. The ERP waveforms below the scalp maps show the time series derived
by averaging the electrodes included in the negative cluster. For visual comparison purposes, the
time series derived from the same cluster of electrodes was shown for the PT group (right panel). The
S1 at 0 ms indicates the ERP time locking, while S2 indicates the onset of the imperative stimulus. The
lower panel (b) represents the same analysis performed over the post-stimulus window (stimulus
processing/response implementation). The negative cluster indicates that ERP mean amplitude is
significantly larger (i.e., more positive) over posterior electrodes in the fast than slow blocks for the
FT but not PT group. The ERP waveforms below the scalp maps show the time series derived by
averaging the electrodes included in the positive cluster. These clearly showed a larger P3 amplitude
in fast than slow blocks only for FT (left panel). For visual comparison purposes, the time series
derived from the same cluster of electrodes was shown also for the PT group (right panel). The S2 at
0 ms indicates the ERP time locking. For all comparisons the colored horizontal bars represent the
timing of significant ERP effects.

The visual inspection of the source map reconstruction revealed high cortical activity in
FT than PT children during the fast blocks, over both pre- and post-stimulus time windows.
More specifically, as shown in Figure 7, during the pre-stimulus window the FT exhibited
larger neural activity when engaged in fast vs. slow blocks over a distributed pattern
of cortical areas. These included the precentral gyrus, the MFG and the aCC bilaterally
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together with the l-SPC. By contrast, the PT group showed a reduced cortical pattern,
mainly involving the bilateral aCC and the r-MFG.
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cortex smoothed at 40%.

When looking at the post-stimulus time window we still observed a much larger
activity in FTs spreading over posterior (occipital, parietal and temporal) and central (left
precentral gyrus) areas.

4. Discussion

In this study we investigated ACC in preterm children, addressing the specific question
of whether they succeed in extracting and using local and global S-R temporal regularities
to generate, implement and update temporal prediction and, consequently, adapt CC for
optimal action preparation. We used the DTP, a task originally created by our labora-
tory [41] in which S-R temporal contingency is manipulated unbeknownst to participants to
generate either local (trial-wise expectancy) or global (block-wise expectancy bias) stimulus
prediction.

Our findings show that preterm (PT) children are overall less efficient in using CC
than full-term (FT) children both at the behavioral and neurofunctional level, confirm-
ing our first hypothesis (H1). Indeed, they showed overall slower and more premature
responses in the DTP task as compared to FT peers. Moreover, we also documented a
reduced amplitude of both pre-stimulus (CNV) and post-stimulus (N1–N2) electrophys-
iological activity in PTs, clearly indicating that premature birth negatively impacts both
response preparation and stimulus processing. These findings are in line with previous
studies consistently reported slow processing speed [76–78], inhibitory control [79–81]
and suboptimal neural recruitment underlying attentional control and motor resource
allocation during response preparation [76,77]. This altered neuropsychological pattern
has been related to the presence of both gray and white matter abnormalities typically
observed as a consequence of premature birth [82], potentially implying a disruption of
cortical and subcortical functional connectivity. Even though our data do not allow direct
address of this hypothesis, the differential cortical activation observed during both response
preparation and stimulus processing is in line with this interpretation. Indeed, we report
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that PT children show lower recruitment of frontal (precentral gyrus), prefrontal (anterior
cingulate cortex, middle frontal gyrus) and parietal (superior parietal cortex) areas. More
precisely, as we previously suggested [56], the engagement of posterior areas in S1–S2
tasks may probably reflect the allocation of attentional resources on S1 processing by itself.
Differently, the frontal and prefrontal areas have been traditionally associated with action
preparation/control (anterior cingulate cortex) and execution (precentral gyrus) before S2.
This pattern has been consistently reported in previous studies employing experimental
tasks inducing proactive control on the basis of both explicit [24,25,56] and implicit [56,83]
temporal prediction. From a systemic viewpoint, neuroimaging investigations further
demonstrated that these areas are highly functionally connected each-other to form distinct
circuits underlying CC, including the cingulo-opercular and the fronto-parietal networks.
Moreover, recent studies showed that the subtle white and gray matter abnormalities
resulting from preterm birth may underlie the documented altered functional connectivity
in both these networks [84,84,85]. However, further research is needed to better under-
stand the relationship between altered structural and functional brain connectivity and
ACC. Interestingly, previous evidence of suboptimal cognitive flexibility in PT is further
corroborated by our results also at the behavioral level showing that PT children committed
more perseverative errors in the WCST, as evidence of suboptimal cognitive flexibility in
this population [1,8]. Taken together, the between-group comparison supported H1 both
at the neural and behavioral levels, clearly showing a less efficient CC in children born
prematurely, with regard to speed processing, response inhibition, response preparation
and cognitive flexibility. It is noteworthy to consider that our sample was undiagnosed and
did not present academic skill problems. Hence, the CC weakness here documented could
represent a sub-clinical endophenotypic marker characterizing the neurocognitive profile
of children born preterm, even when they do not meet the criteria for clinical diagnosis.

Noteworthy, despite slower response speed and lower response preparation, prema-
ture children succeeded in adapting their performance as a function of implicit stimulus
temporal predictability. However, as expected (H2), we found that the efficiency of this
mechanism depended on the type of implicit knowledge they used. More specifically, both
groups were able to speed up their response times (although these differed in absolute
terms) as a function of local stimulus predictability, showing longer RTs for shorter SOA
trials and shorter RTs for longer SOA ones. This SOA-related behavioral advantage can be
explained by the increase in the conditional probability of stimulus presentation as a func-
tion of time (hazard rate) [51] (p. 20), [53,57]. Previous studies demonstrated that the local
prediction effect is already present from early childhood in typical [57,60], atypical (Down
syndrome; [42,86]), neurological [43] and at-risk [45] developmental population. Here we
further extend previous evidence that ACC can be shaped by local temporal prediction also
in PT children. It has been proposed that hazard-related local prediction is an automatic
mechanism, which does not require effortful control. As such, it is not surprising that it
emerges early across typical development, is preserved in atypical development and does
not show sensitivity in children showing neurodevelopmental vulnerability, as PT children
do.

However, differently from local prediction, when looking at the effect of global stim-
ulus predictability we found a different pattern for FT and PT groups. Indeed, while
all children adapted their response speed to task changes, showing faster RTs when the
stimulus presentation rate increased (i.e., fast blocks), the mean behavioral advantage (∆
global) obtained was significantly larger in PT than FT children. At a first sight this could
appear controversial, as one should expect that larger behavioral gain may represent a
better CC adaptation. However, in the context of the DTP task a more efficient behavioral
adaptation is reflected by a smaller relative speed modulation. Previous studies from our
laboratory indeed clearly showed (1) smaller ∆ values with increasing age in typically
developing children, suggesting an age-dependent refinement of the capacity to flexibly
adapt behaviour to complex statistical patterns [41,87] and (2) larger delta values in children
with neurodevelopmental risk related to neurological disorders [43]. Hence, in line with
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previous studies, here we confirm that the DTP task is able to sensitively discriminate PT
from FT not only with regard to the overall CC performance (response speed, inhibition
and flexibility) but also in terms of response speed adaptation to contextual factors (implicit
global prediction), proving a reliable tool for measuring ACC. As an additional noteworthy
finding, the mean speed adaptation in the DTP (∆ global) was positively related to WCST
performance, with higher values predicting higher percentages of perseverative responses.
This effect was independent from the child’s age and suggests that explicit CC (top-down
cognitive flexibility upon explicit instruction) is associated with implicit CC (behavioral
adaptation based on implicit bottom-up information). This further suggests that CC can
be conceived as a transversal, endophenotypic individual characteristic that operates re-
gardless of either the representational level of the information to be controlled or one’s
awareness of having to use control. Whether explicit and implicit CC represent two sides
of the same coin remains to be understood, as recent studies using other tasks showed a
developmental dissociation between them [39].

Besides any theoretical implication, from an educational and clinical perspective, these
findings suggest the potential benefit of helping PT children with low ACC, providing
them some hints to strategically and deliberately pay attention to contextual environmental
changes, as they may struggle to automatically exploit the environmental changes when
controlling behaviour, thoughts and emotions.

Furthermore, in line with hypothesis H3, we found that the differences in speed
adaptation as a function of global changes are supported by a different within-group neural
modulation. Specifically, the request of increased CC during fast blocks induced a larger
recruitment of neural activity in FT but not PT children. At the scalp-level, this was observed
by a larger electrophysiological activity during fast than slow blocks. Indeed, we clearly
observed that the RT speeding up induced by the increased stimulus rate presentation in
fast blocks was supported by a larger anticipatory CNV. Noteworthy, the within-group
CNV modulation was expressed over posterior scalp sites. This posterior modulation
was already observed in a previous study by our laboratory (Mento and Vallesi, 2016). In
this study we presented healthy children with explicit cues providing either predictive or
neutral information about the timing of imperative stimuli. When allowed to use proactive
CC based on predictive cues children were overall faster and showed a larger posterior
CNV amplitude as compared to when they could only use reactive CC (neutral cues). Here
we replicate this finding with a different task exclusively tapping on implicit information
to adapt CC from reactive to proactive mode.

At the source-level, we found that the cortical areas underlying response preparation
and stimulus processing exhibited larger activity in fast blocks. Interestingly, during
response preparation the activity of prefrontal (MFG) and frontal (precentral gyrus) areas
extended bilaterally over both hemispheres, suggesting that ACC operates by engaging a
wider fronto-parietal network. Remarkably, in PT we only found a bilateral involvement
of the anterior cingulate cortex. A possible explanation for this different cortical pattern
is that PT children are actually able to instantiate CC as a function of global prediction,
recruiting medial prefrontal cortex to sustain the request for an enhanced effort. However,
they do not succeed in proactively translating this enhanced cognitive effort into motor
control, failing to efficiently adapt response speed up to task demand in a prompt way.
These findings complemented behavioral and electrophysiological evidence by providing a
possible neurofunctional explanation about the less efficient global response adjustments
observed in the PT group.

Taken together, the findings we report in the current study provided new insights into
the mental functioning of preterm children. On the one hand, we corroborated previous
findings showing a poor CC when PT children are required to produce speeded responses to
warned visual stimuli and to flexibly adapt their response choices to abstract rule changes.
On the other hand, we extended previous knowledge by providing novel evidence of poor
ability of PTs to flexibly adapt CC as a function of contextual environmental information,
namely, implicit global changes in stimulus prediction. The use of HD-EEG further allowed
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us to depict the spatiotemporal neuro-dynamics underlying between (CC) and within-
group (ACC) effects, advancing some tentative hypotheses about the neurofunctional
locus of the different behavioral patterns observed in prematurely born children. It is
nevertheless crucial to highlight that, as far as we know, this is the first study purposely
using the DTP task to investigate ACC in this population, and that the inference we can
draw from brain source reconstruction must be considered carefully due to the sub-optimal
spatial resolution of EEG. Hence, further investigation using different tasks and high-
spatial resolution neuroimaging tools will be needed for a better understanding of ACC
functioning in preterm children.
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