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ABSTRACT 
The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable 
subject to investigation.  Protein interaction networks are useful because of making basic scientific abstraction and 
improving biological and biomedical applications.   Based on principle roles of proteins in biological function, their 
interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. 
Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset 
and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic 
strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks 
are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel 
paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment 
of complex multi-genic diseases rather than individual molecules with disrespect the network. 
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Introduction  
  0F

1 Early biological experiments revealed that 
proteins, as the main agents of biological function, 
determine the phenotype of all organisms. By the 
advent of molecular biology, it has been assumed 
that proteins are not naturally functional in 
isolated forms; instead, they have interactions with 
one another and also with other molecules (e.g. 
DNA, RNA) that mediate metabolic and signaling 
pathways, cellular processes, and organismal 
systems (1). Thus, studies of proteins' interactions 
are fundamental to perceive their role within the 
cell. The term ‘protein interaction’ encompasses a 
variety of events, such as transient and stable 
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complexes, as well as physical and functional 
interactions (2). Protein-protein interaction (PPI) 
data can be used in a larger scale to map networks 
of interactions depend on their physical or 
functional association (3, 4). Protein interaction 
networks are practical means to abstract basic 
knowledge and to improve biological and 
biomedical applications. Although protein 
interaction networks are incomplete (5) and error-
prone (6), systematic studies of them have been 
confirmed  to be especially important for deciphering 
the relationships between network structure and 
function (7), discovering novel protein function (8), 
identifying functionally coherent modules (9, 10), 
and conserved molecular interaction patterns (11, 
12). Since proteins have principle role in 
biological function, their interactions determine 
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molecular and cellular mechanisms which control 
healthy and diseased states in organisms.  Diseases 
are often caused by mutations affecting the 
binding interface or leading to biochemically 
dysfunctional allosteric changes in proteins (13). 
Therefore, the molecular basis of diseases can be 
enlightened through protein interaction networks, 
which in turn can appraise methods for prevention, 
diagnosis, and treatment. Generally, traditional 
analyses exploit a univariate approach to study 
gene expression and identify genes with 
meaningful individual differential expression in 
the phenotype of interest (14). However, the 
underlying mechanisms of complex diseases, 
which arise from the interplay among multiple 
genetic and environmental factors, cannot be 
explicated by such univariate approaches Hence, 
since there are remarkable increase in an 
availability of human protein interaction data, the 
focus of bioinformatics development has shifted 
from understanding networks encoded by model 
species to understand the networks underlying 
human disease (15). 

Network analysis of complex systems 
The concept of network graph theory was first 
developed in the 18th century by Leonard Euler, 
but it was not used in real complex networks (such 
as Biological networks) until the advent of the 
computer systems (16). There are three main 
progressions in graph theory at 20th century, 
random graph theory, small world networks and 
scale free networks. These developments have 
framed our understanding of how networks behave 
as a whole. Random graph theory was developed 
by Gilbert, Erdosh and Rényi in 1959. This model 
uses a given probability to locate an edge between 
two nodes, regardless of the probability of where 
other edges are placed in the graph (16). Since 
random graph theory had the weak fit with real 
world data, two related findings were discovered, 
regarding the structure of real world networks: 
small-world networks and scale-free networks. 

The two properties (shorter than expected path 
length and high clustering coefficient) which 
demonstrate small-world networks have been 
represented many real world networks including 
power grids, social networks and telephone call 
graphs (17). Because the small world network is 
limited by their transient and spatio-temporal 
dynamics, they may not be an appropriate model 
for most complex protein networks. Therefore, 
small world network without the dimensional 
constraints may be more suitable for the study of 
biological systems. 
Small world networks can also be characterized by 
related scale-free networks. Scale-free networks 
were first formally introduced by Albert and 
Barabasi (3). Their main feature is that the degree 
distribution (i.e. the number of connections or 
edges a node possesses) follows the power-law 
rule in which the vast majority of nodes have a 
low degree, while a smaller than expected 
numbers of nodes, known as hubs, have a very 
high degree of connectivity. It was later suggested 
that protein–protein interaction networks obey 
such power-law distribution (18).   

Protein interactions networks 
The structure and nature of protein interaction 
networks as one of the best appreciated in 
biological networks is a considerable subject in 
system biology, particularly due to the rich 
datasets of protein interactions that are available 
for study. Systematic analysis of physical protein 
interaction networks initiated in the mid- 1990s 
with several studies implying to complex 
relationships between large macromolecular 
protein complexes such as DNA-polymerase or 
components of the transcription splicing 
complexes (19, 20). Furthermore, the growing 
evidence of mutual interactions between multiple 
cell-signaling pathways have revealed signal 
transduction as a network of interconnected 
pathways rather than a series of insulated linear 
pathways (21, 22). Therefore, understanding of 
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protein interactions in the context of large 
networks is dramatically in attention, and the large 
datasets of protein interactions are being 
developed concomitantly. For instance, protein 
interactions could be gathered from the literature 
through systematic mining of detailed literature 
sources (23) and unbiased, high-throughput 
strategies such a yeast two-hybrid screens which 
are efficient to map all the interactions of a given 
organism’s proteome (24). 

The structure of protein networks 
 The structure of protein interaction networks have 
been examined by recent studies in several 
species. These studies have discovered that 
regardless of species, the known protein networks 
are scale-free. It means that some hub proteins 
have a huge proportion of the interactions while 
most proteins (are not hub and) only contain a 
small fraction of ones (25). It is an obvious fact 
that understanding the structure of a species’ 
protein interaction network only provides one 
dimension of the biochemical machinery 
controlling a cell’s behavior. Thus, several groups 
have integrated dynamics of gene expression with 
protein interaction networks in order to uncover 
how these networks change in different biological 
states. For example, the network of proteins 
involved in the yeast cell cycle was merged with 
their expression across the cell cycle. The results 
showed that although most elements of interacting 
complexes are expressed in a coherent way across 
the stages of the cell cycle, only a single or a small 
number of key proteins interacting with these 
complexes are expressed in a single phase (26). A 
“just in time” model was suggested by these data 
describing dynamic protein complexes where most 
of the proteins involved in a dynamic process were 
co-expressed regardless of stage, while they are 
not active. It is because of missing key elements of 
the given complex. Thus, the complexes are 
dynamically activated by expressing key elements 
at a specific period; thereby completing the 

complex for its stage is a particular purpose. The 
dynamic modular structure is another component 
of the protein network that it has also been 
observed in the human protein interaction network 
(27). This phenomenon represents that modular 
structure is not species specific or an artifact of the 
analysis of expression and interactome of yeast 
(28). 
Network topology is also introduced to 
characterize a network structure. There are four 
higher-level topological indices including average 
degree (K), clustering coefficient(C), average path 
length (L), and diameter (D). It is possible to 
calculate four topological distributions such as 
degree distribution P (k), degree distribution of 
cluster coefficients C (k), shortest path distribution 
SP (i), and topological coefficient distribution TC 
(k), which take more attentions (29–31) and are 
comprehensively used in cellular networks, such 
as PPI networks (32, 7), MNs (Metabolic 
Networks) (33), gene co-expression networks 
(GCEN) (34), and domain interaction networks 
(35). To get more, some basic definitions of 
topological terms are described in table1.The 
topological features of cellular networks are 
efficiently explained by these criteria which also 
provide vast insights into cellular evolution, 
molecular function, network stability, and 
dynamic responses (31, 33–35).  

Approaches for discovering protein-protein 
interactions networks 
To know more about protein interactions in 
systemic screen, two basics methods can be 
utilized; Experimental technologies tend to 
identify of PPI, and Computational methods are an 
excellent candidate for prediction of protein 
interactions.  
 

A-Experimental identification of PPI 
1- Biophysically Methods 
The main source of knowledge about protein 
interactions has resulted from biophysical 
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methods, particularly from those based on 
structural information (e.g. X-ray crystallography, 
NMR spectroscopy, fluorescence, atomic force 
microscopy). Interacting partners are identified by 
biophysical methods and they also provide 
detailed information about the biochemical 
features of the interactions (e.g. binding 
mechanism, allosteric changes involved) (1).  
 
2- High-Throughput methods 
2-1- Direct high-throughput methods 
Yeast two-hybrid (Y2H) is one of the prevalent 
straight high-throughput methods. The Y2H 
system examines the interaction of two given 
proteins by fusing each of them to a transcription 
binding domain. If the transcription complex is 
activated, it means that the proteins interact.  In 
this situation a reporter gene is transcribed that its 
product can be detected (36). 

2-2- Indirect high-throughput methods 
Protein interactions have been deduced by several 
high-throughput methods via looking at 
characteristics of the genes encoding the putative 
interacting partners. For instance, gene co-
expression is based on the assumption that the 
genes of interacting proteins must be co-expressed 

to provide the products for protein interaction. 
Synthetic lethality, on the other hand, introduces 
mutations on two separate genes, which are viable 
alone but lethal when combined, as a way to 
deduce physically interacting proteins (37). 

 
B-Computational predictions of 
PPIs 
Although experimental biophysics approaches can 
provide specific interaction details, they have 
some deficiencies; they are expensive, extremely 
laborious, and can only be implemented for a few 
complexes at a time. The prediction of PPIs can be 
done by computational approaches as a fast and an 
inexpensive alternative to complete experimental 
efforts. Furthermore, computational interaction 
studies are useful to confirm experimental data 
and are effective to select potential targets for 
further experimental screening (38-40). More 
importantly, such invaluable methods prepare 
great chance to follow proteins within the context 
of their interaction networks at different functional 
levels (i.e. at the complex, pathway, cell, or 
organismal level). Therefore, they give us a great 
chance to convert lists of pair-wise relationships 

Table 1. Basic definitions in PPI network 
Term Definition 
Node or (Vertices) Each protein in network 
Edge or (link) Physical or functional interactions between proteins 
Hub Each “high-degree” node of a network 
Modules Group of sub networks in which each sub network includes a high number of inside-sub 

network links and a low number of between- sub network links 
Degree (k) The number of adjacent links 
Average degree (<k>) The mean of all degree values of nodes in a network. 
Clustering Coefficient 
(<C>) 

The proportion of links between the nodes within the i-neighborhood divided by the number 
of links that could possibly exist between them 

Shortest Path Length The steps (number of links) needed to connect every pair of nodes through their shortest 
path. 

Diameter The minimum number of links that separate the two most distant nodes in a network. 

Betweenness 
centrality 

Measures how often nodes occur on the shortest paths between other nodes 

Heterogeneity of a 
network 

the coefficient of variation of the degree distribution 
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into complete network maps. Since computational 
techniques are based on different principles, they 
can also reveal functional relationships. Besides, 
such approaches even provide information about 
interaction details (e.g. domain interactions), which 
may avoid some experimental methods. 
Computational interaction prediction methods can 
be classified into two types: methods predicting 
protein domain interactions from existing empirical 
data about PPI, and methods relying entirely on 
theoretical information to predict protein-protein or 
domain-domain interactions (41). 

1- Empirical predictions  
The computational techniques based on 
experimental data exploit the relative frequency of 
interacting domains (42), maximum likelihood 
estimation of domain interaction probability 
(43,44), co-expression (45), or network properties 
(46–48) to predict protein and domain 
interactions. Since empirical computations rely on 
an existing protein network to infer new nodes, 
they disseminate the inaccuracies of the 
experimental methods, which is the main 
disadvantage of such computational predictions. 

2- Theoretical predictions 
Theoretical techniques regard a great range of 
biological considerations; they use an accepted 
assumption that interacting proteins coevolve to 
preserve their function (e.g. mirror tree, 
phylogenetic profiling (49–51), happen in the 
same organisms (e.g. (52, 53)), conserve gene 
order (e.g. gene neighbors method (54,55)) or are 
fused in some organisms (e.g. the Rosetta Stone 
method (56,57)). 

 
Protein networks and diseases 
 Protein networks are useful resources to identify 
novel pathways to gain basic knowledge of 
diseases. Protein interaction sub networks are 
group of the proteins that are interacting with each 
other's in functional complexes and pathways (58). 

Now, new methods are being developed to 
accurately extract interaction sub networks to 
yield pathway hypotheses that can be used to 
understand different aspects of disease progression 
(59, 60). 
Some of the findings that have been revealed by 
combining PPI and pathway analysis are here: (a) 
over 39,000 protein interactions have been 
recognized in the human cell (61), (b) although, in 
a few diseases like cancer, disease genes tend to 
encode highly-connected proteins (hubs), disease 
genes are generally nonessential and occupy 
peripheral positions in the human interactome (62-
64), (c) disease genes tend to cluster together and 
co-occur in central network locations (65). (d) 
Proteins involved in similar phenotypes (e.g. all 
cancer proteins) are highly interconnected (62). (e) 
Viral networks differ significantly from cellular 
networks, which raise the hypothesis that other 
intracellular pathogens might also have 
distinguishing topologies (66). (f) Etiologically 
unrelated diseases often present similar symptoms 
because separate biological processes often use 
common molecular pathways (67). 
  It is noticeable that PPI networks can be used to 
explore the differences between healthy and 
diseased states (68, 69). Since the identification of 
disease-associated interacting proteins can give us 
the ability of recognizing potentially interesting 
disease-associated gene candidates (i.e. the genes 
coding for the interacting proteins are putative 
disease causing genes), Protein interaction studies 
play a major role in the prediction of genotype-
phenotype associations. Therefore, it is suggested 
that one of the best ways to know more about 
novel disease genes is to study the interaction 
partners of known disease associated proteins 
(70). Gandhi et al. (71) found that mutations on 
the genes of interacting proteins lead to similar 
disease phenotypes, presumably because of their 
functional relationship. Therefore, protein 
interactions can be used to prioritize gene 
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candidates in studies investigating the genetic 
basis of disease (72). 
It is possible to introduce markers to create new 
prognostic tools by identifying disease sub 
networks, and determining activated pathways in 
diseased states. For instance, Chuang et al. (59) 
identified a set of sub network markers via using a 
protein-network- based approach by which they 
were able to classify metastatic vs. non metastatic 
tumors in individual patients accurately. 
Disease networks can improve drug design by 
determining key nodes as potential drug targets. If, 
for example, the target is a hub (a highly 
connected protein), its inhibition may affect many 
activities that are critical for the suitable function 
of the cell and might thus be unsuitable as a drug 
target. On the other hand, less connected nodes 
(e.g. nodes affecting a single disease pathway) 
could constitute sensitive points of the disease 
related network, which are more proper candidates 
for drug targets (73, 74). 

 
Understanding of complex 
diseases through protein 
interactions network 
Many complex diseases are resulted from a 
complex interplay of multiple genes, and 
heterogeneity. It means that such diseases do not 
comply the standard Mendelian patterns of 
inheritance. Besides, environmental factors 
connected to the risk allele immensely determine 
the development of diseases phenotype (75). Since 
several factors play critical role in complex 
diseases phenotype, Genotype-Phenotype 
correlation is complicated; thus building suitable 
protein network with the genetically associated 
genes in complex diseases would provide 
excellent hypotheses for further experimentations 
to follow the molecular pathways of developing 
diseases phenotypes. Analysis of protein-protein 
interaction (PPI) networks is being increasingly 

recognized as an momentous mean, which help us 
characterize the underlying biology of genes 
associated to complex diseases, in particular 
immune-mediated ones (76,77). 
It is logical to hypothesize that those genes which are 
truly associated with the same trait will be involved 
in similar biological processes. Identification of 
candidate genes by which the pathogenesis of 
complex diseases will be further elucidated is a great 
challenge of biomedical research. By recent 
assembling of dependable molecular interaction data, 
progress has been expanding in the discovery of 
novel susceptibility genes. Concomitantly, 
expectations are increasing about opportunities of 
computational approaches for distinguishing disease-
related genes from non-disease ones. The results of 
the latest studies on the prediction of candidate genes 
dependent upon PPI networks alone or in addition to 
gene expression profiles (78-80) could reflect 
potential candidate genes. This approach also 
promotes a better understanding of the role of PPI 
topological features in the prediction of susceptible 
genes. There are some invaluable points that have 
been resulted in previous studies (81-83); for 
instance, direct interacting partners of a protein likely 
tend to share similar functions with it, and causative 
genes of some complex disease tends to reside in the 
same network groups such as biological modules, 
protein complexes, pathways or sub networks of a 
given biological network. Some further graph-
theoretical analyses of molecular interaction 
networks (84-86) have succeeded in identifying 
biological network modules and deciphering the 
association between genes and diseases. 
Consequently, a unified basic assumption mentions 
that genes sharing similar network topological 
features with known disease genes may result in the 
same phenotype. These relationships suggest a novel 
paradigm for treatment of complex mutagenic 
diseases where the protein interaction network is the 
target of therapy more than individual molecules 
within the network. 
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The application of PPIs in 
surveying of a couple serious 
complex diseases 
Cancer 
 Cancer is a complex disease, and many genes 
have been reported to involve in the development 
of cancers. A systematic investigation of cancer 
proteins in the human protein-protein interaction 
network may provide important biological 
information for uncovering the molecular 
mechanisms of cancer and, potentially, other 
complex diseases while traditional approach are 
not so promising because of their focusing on 
studying individual genes or loci. In this set of 
materials, Ergun et al., 2007, integrated known 
genetic modifiers of prostate cancer with 
expression dynamics and protein interaction 
networks. Their efforts were lead to the 
development of methods which were suitable 
enough to reveal molecular network differences 
between aggressive and non–aggressive prostate 
cancers (87). Equally, Chuang et al 2007 used 
protein networks as well as ~8000 gene expression 
panels in order to discover an effective approach 
for the classification of metastatic versus non-
metastatic tumors (59). Another study was 
investigated by Taylor et al 2009, for finding the 
indicator of breast cancer prognosis. By merging 
expression data from 250 breast cancer tumors 
with the human protein interaction network, they 
discovered that there is a significant change in the 
modular structure of the network in patients with 
good outcome breast cancer (disease free survival 
greater than 5 years) versus those with poor 
outcome (27). There are some invaluable findings 
which come from exploring of topological features 
of PPIs. For instance, in 2006, Pall and et al 
published a paper in which they showed that 
topological features of  human proteins translated 
from known cancer genes isn't the samefor 
proteins which not documented as being mutated 

in cancer. Cancer proteins particularly tend to 
interact with more number of proteins, and they 
also prefer to participate in central hubs rather 
than peripheral ones; therefore, it is reflecting their 
greater centrality and participation in networks as 
backbone of the proteome. Moreover, their results 
indicated that cancer proteins contain a high 
proportion of structural domains which comprised 
a high propensity to mediate protein interactions. 
An underlying evolutionary distinction between 
the two groups of proteins was uncovered by such 
observations in which the central roles of proteins, 
whose mutations lead to cancer, were reflected 
(64). Moreover, in 2009 Jingchun et al., explored 
global and local network characteristics of the 
proteins encoded by cancer genes (cancer 
proteins) in the human interactome. This study 
confirmed earlier results in which they implied 
that the network topology of the cancer proteins 
was much different from non-cancer ones. By the 
investigation of topological features of the 
proteins encoded by essential genes (essential 
proteins) or control genes (control proteins) versus 
cancer proteins, they concluded that cancer 
proteins tended to have higher degrees, higher 
betweenness, shorter shortest-path distance, and 
weaker clustering coefficient in the human 
interactome than two other proteins.  Finally, they 
achieved to this fact that cancer proteins have non- 
randomly distribution in the human interactome 
and their strongly connected with each other (88). 
Concurrently, Li and his colleagues in 2009 also 
discovered that Topological features of PPI 
networks, protein domain compositions and GO 
annotations promote the identification of cancer 
genes. They introduced the SVM classifier which 
was able to merge multiple characteristics, and it 
was useful for prioritizing candidate cancer genes 
for experimental validations (89).With the intense 
investigation, Tijana et al. in 2010 also provided 
clear evidence to substantiate that PPI network has 
different structure around cancer genes than from 
the structure around non-cancer genes. It seems 



24 Protein-protein interaction networks and complex diseases 
 

Gastroenterol Hepatol Bed Bench 2014;7(1):17-31 
 

that by following of such underlying principles of 
this phenomenon, they achieve quite promising 
results, which increase the understanding of 
complex diseases (90). As an important epigenetic 
modification; DNA methylation has a central role 
in the development of mammals and in the event 
of complex diseases. Genes that interact directly 
or indirectly may have the same or similar 
functions in the biological processes in which they 
are involved and together contribute to the related 
disease phenotypes. Network theory appears to 
have a potential for uncovering the complex 
relations between genes. A protein-protein 
interaction (PPI) network represents a platform by 
which we have this chance to systematically 
identify disease-related genes from the relations 
between genes with similar functions.  To prove 
this hypothesis, the network theory was combined 
with epigenetic characteristics by Hui and et al. in 
2011. 154 potential cancer-related genes with 
abnormal methylation were prioritized that might 
contribute to the further understanding of cancers 
(91). After a while in 2012, based on combined 
network topological features, Zhang et al., 
introduced a novel computational method that 
enable them to construct a combined classifier. 
They used this method to predict candidate genes 
for coronary artery diseases (CAD). As a result, 
276 novel candidate genes were predicted by such 
machine, and were shown to share similar 
functions to known disease genes (92). Along the 
same vein, Wu et al. in 2012 proved this fact that 
combining of gene expression and network data is 
a promising approach to prioritize disease-
associated genes. In this paper, they developed a 
method, Networked Gene Prioritizer (NGP). 
Several breast cancer and lung cancer datasets 
were used to demonstrate that NGP performs 
better than the existing methods. The top-ranked 
genes by NGP-PLK1, MCM2, MCM3, MCM7, 
MCM10 and SKP2 might arrange to promote cell 
cycle related processes in cancer but not normal 
cells (93). Furthermore, recently, Network 

topological characteristics (including degree, 
betweenness, clustering coefficient and shortest-
path distance) of cancer proteins of the human 
nuclear and tyrosine kinases receptors network 
(NR-RTK) were also explored by Choura which 
constructed in their earlier work. Their results had 
so similarity to earlier ones in this area as they 
delineated the network topology of cancer proteins 
in this network. They discovered that relative to 
the non-cancer proteins, the cancer proteins have 
likely higher degree, higher betweenness, similar 
clustering coefficient and similar shortest-path 
distance. Finally, they found that the cancer 
proteins were occupied mainly in signaling 
pathways which their dysfunction is directly 
related to cancer arrival. These findings are useful 
for cancer candidate protein prioritization and 
confirmation, and identification of key pathways 
involved in cancer diseases (94). 

Autoimmune diseases 
Autoimmunity is the breakdown of an organism to 
recognize its own parts as itself, which results in 
an immune response against its own cells and 
tissues. Any disease that results from such an 
abnormal immune response is named as an 
autoimmune disease. There are some points about 
these diseases: 1) Today, more than 80 clinically 
separated diseases are classified as autoimmune 
diseases.2) They happen in 3–5% of the 
population, usually as a result of a numerous of 
genetic and environmental parameters, which lead 
to an alteration in immune reactivity (95,96). The 
genetic architecture of autoimmune diseases as 
complex ones may be repercussions of 
heterogeneity, incomplete penetrance, polygenic 
inheritance, and environmental factors. Thus, it 
seems that constructing meaningful biological 
pathways via protein-protein interaction network 
can provide invaluable information about 
molecular mechanism of autoimmune diseases. 
For this purpose, Tuller et al. in 2013 sought to 
identify intracellular regulatory mechanisms in 
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peripheral blood mononuclear cells (PBMCs), 
which are either common in numerous 
autoimmune diseases or just in some of them. 
They integrated large-scale data such as protein–
protein interactions, gene expression and 
demographical information of hundreds of patients 
and healthy subjects, related to six autoimmune 
diseases with available large-scale gene expression 
measurements: multiple sclerosis (MS), systemic 
lupus erythematosus (SLE), juvenile rheumatoid 
arthritis (JRA), Crohn’s disease (CD), ulcerative 
colitis (UC) and type1 diabetes (T1D).This study 
cleared that the most of the cellular processes have 
been shared in most of the analyzed autoimmune 
diseases. These processes especially were 
involved cell proliferation (epidermal growth 
factor, platelet-derived growth factor, nuclear 
factor-kB, Wnt/b-catenin signaling, stress-
activated protein kinase c-Jun NH2-terminal 
kinase), inflammatory response (for example, 
interleukins IL-2 and IL-6, the cytokine 
granulocyte–macrophage colony-stimulating 
factor and the B-cell receptor), general signaling 
cascades (such as mitogen-activated protein 
kinase, extracellular signal-regulated kinase, TRK 
and p38) and apoptosis. However, apoptosis and 
chemotaxis are two ones which activated via 
different sub signaling pathways in each of 
aforementioned diseases (97). At that time, Amit 
et al., also identified some new genes/SNPs 
leading to share some autoimmune diseases 
phenotype through genome-wide association 
studies (GWAS) and protein interaction network. 
Interaction of some autoimmune diseases 
associated genes with numerous environmental 
and endogenous factors indicates their crucial role 
in autoimmunity. Furthermore, interaction of 
newly associated genes has been reported with 
existing drugs which have been used long before 
the reorganization of these associated genes. Thus, 
progressive therapeutic strategies could be 
designed with grouping patients according to their 
risk allele(s) in specific genes that directly or 

narrowly have interaction with the specified drugs.  
Hence, it is not only the further efficient molecular 
basis against these diseases which will be 
recognized by this drug-susceptible gene network 
but also it will be determined which drug could be 
more promising for those patients carrying risk 
allele(s) in that gene(98). Earlier results in this 
field are also noticeable. To begin with, Berghold 
et al. in 2007 developed an integrative analysis 
method for analysis, combining genetic 
interactions, and a high-confidence human protein 
interaction network to discover novel genes in 
type 1 diabetes as one of the uncured autoimmune 
diseases. Consequential networks were ranked by 
the outstanding of the enrichment of proteins from 
interacting regions. They identified a number of 
new protein network modules and novel candidate 
genes/proteins for type 1 diabetes (99). Along the 
same lines, Gao and Wang in 2009 investigated 
the proteins interactions efficacy in type 1 diabetes 
(T1D).Their study illustrates the potential of the 
PPI information in prioritizing positional 
candidate genes for T1D. Based on their results, it 
was brought out that the use of protein–protein 
interactions can immensely increase the possibility 
of finding positional candidate disease genes when 
applied on a large scale. Such invaluable systemic 
approaches can lead to novel candidate gene 
predictions (100). 
Three years later, Bergholdt et al. also integrated 
type 1 diabetes GWAS (genome-wide association 
studies) data with protein-protein interactions to 
construct biological networks for type 1 diabetes. 
In this study, they were successful to identify 17 
protein interaction networks which help them 
elucidate the mechanisms behind type 1diabetes 
pathogenesis and, thus, may provide the basis for 
the design of novel treatment strategies (101). 
Multiple sclerosis (MS) is an idiopathic 
autoimmune neurodegenerative disease. To survey 
Multiple Sclerosis (MS) molecular mechanism 
through PPIs, Baranzini et al. in 2009 recognized 
several pathways according on network-based 
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analysis of genome-wide association studies in 
multiple sclerosis. Identification of sub-networks 
of genes from several immunological pathways 
including cell adhesion, communication and 
signaling was the main results of their studies. 
Remarkably, neural pathways, namely axon-
guidance and synaptic potentiation, were also 
over-represented in MS. The potential 
involvement of neural pathways in MS 
susceptibility was the novelty of their woks as 
they discovered it for the first time (102). Later, 
Ragnedda et al. in 2012 conducted a protein-
protein interaction (PPI) analysis of gene products 
coded in loci recently reported to be MS 
associated at the genome-wide significance level 
and in loci suggestive of MS association. They 
showed that the halves of genes identified by 
network analysis located in loci currently are 
suggestive in MS association. These are included 
some genes such as SYK, IL-6, CSF2RB, FCLR3, 
EIF4EBP2 and CHST12 which have immune-
related functions. They conclude the fact that more 
common variants remain to be found as MS 
associated (103).Recently, in 2013, International 
Multiple Sclerosis Genetics Consortium identified 
several high-confidence candidates' genes by 
using a protein-interaction-network-based 
pathway analysis (PINBPA) on two large genetic 
MS studies comprising a total of15,317 cases and 
29,529 controls. They believed that PINBPA is a 
powerful approach to gaining further insights into 
the biology of associated genes and to prioritizing 
candidates for subsequent genetic studies of 
complex traits (104). 
Rheumatoid arthritis (RA) is another chronic 
autoimmune disease that primarily attacks 
synovial joints. Despite the advances in diagnosis 
and treatment of RA, novel molecular targets are 
still needed to improve the accuracy of diagnosis 
and the therapeutic outcomes. By integrating 
Rheumatoid Arthritis's gene expression data and 
protein interactions, You et al. in 2012 was able to 
reconstruct associated sub networks which  

delineate key RA associated cellular processes and 
transcriptional regulation. They concluded that 
exploiting such network models are capable of 
recognizing potential targets that will serve for 
some momentous clinical goals. For instance, they 
can be useful resources for the discovery of 
therapeutic targets and diagnostic markers, as well 
as providing novel insights into RA pathogenesis 
(105).Systemic lupus erythematosus (SLE) is a 
prototype systemic autoimmune disease 
characterized by flares of high morbidity. 
According to former studies, systems approach 
will enable us to discover myriad of facts about 
this lethal diseases. To achieve this purpose, 
Genome-wide pathway analysis of genome-wide 
association studies on Systemic Lupus 
Erythematosus (SLE) and Rheumatoid Arthritis 
(RA) was done by Young Ho Lee et al in 2012. 
They identified five candidate SNPs and thirteen 
pathways, involving bystander cytokine network, 
B cell activation and collagen metabolic 
processing, which may contribute to SLE 
susceptibility. Additionally, they revealed 
candidate causal non-HLA SNPs, genes, and 
pathways of RA (106). 
One of the important autoimmune diseases in GI 
track is celiac disease. Celiac disease (CD) is 
autoimmune disorder which differentiated by an 
intestinal inflammation triggered by gluten (107). 
Similar to other autoimmune diseases mentioned 
before, CD is the result of an immune response to 
self-antigens leading to tissue damage and creation 
of autoantibodies such as tissue transglutaminase. 
The results of previous studies indicated that, 
gene’s expression in the small intestine of patients 
with celiac disease is different from control 
patients. For this purpose, recently, Genome Wide 
Association Studies (GWAS) have been 
successful in finding genetic risk variants behind 
CD (108). These genes and GWAS pathway, 
together expose a new potential biological 
mechanism that could influence the genesis of 
celiac disease. On the other hands, the 
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development of GWAS technologies has lead to 
the discovery of more than 100 IBD loci which 
some genes are shared between Crohn's disease 
(CD) and ulcerative colitis (UC), and other are 
IBD subtype-specific  like autophagy genes, 
epithelial barrier gene (109). 

 
Conclusion 
It has been described in this review that protein 
interaction networks can elucidate the molecular 
basis of diseases, which in turn can appraise 
methods for prevention, diagnosis, and treatment. 
When the properties of these protein networks 
have been analyzed, novel higher order structures 
have been revealed. Therefore, it can provide an 
opportunity to interpret complex biological 
behaviors and alterations (in network dynamics) 
associated with complex diseases such as cancer 
and autoimmune diseases. These network 
relationships suggest a novel means of developing 
molecular therapies where the network is the 
target of therapy rather than individual molecules 
within the network. Hence, we expect that such 
systemic vantage of view should be applicable to 
complex diseases such as cancers and autoimmune 
diseases which are needed new efficient diagnosis 
and therapies, and offers new opportunities for 
enhancing our understanding of complex diseases. 
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