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Exosomes in Cancer: Circulating Immune-Related Biomarkers
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Exosomes, the smallest vesicles (30–100 nm) among multivesicular bodies, are released by all body cells including tumor cells. �e 
cargo they transfer plays an important role in intercellular communication. Tumor-derived exosomes (TEXs) maintain interactions 
between cancer cells and the microenvironment. Emerging evidence suggests that tumor cells release a large number of exosomes, 
which may not only influence proximal tumor cells and stromal cells in the local microenvironment but can also exert systemic 
effects as they are circulating in the blood. TEXs have been shown to boost tumor growth promote progression and metastatic 
spread via suppression or modification of the immune response towards cancer cells, regulation of tumor neo-angiogenesis, pre-
metastatic niche formation, and therapy resistance. In addition, recent studies in patients with cancer suggest that TEXs could 
serve as tumor biomarker reflecting partially the genetic and molecular content of the parent cancer cell (i.e., as a so-called “liquid 
biopsy”). Furthermore, recent studies have demonstrated that exosomes may have immunotherapeutic applications, or can act as 
a drug delivery system for targeted therapies with drugs and biomolecules.

1. Introduction

Exosomes, which are a subset of extracellular vesicles (EV) are 
small, lipid bilayer membrane vesicles (30–100 nm) derived 
from the luminal membrane of multivesicular bodies (MVBs), 
which are constitutively released by fusion with the cell 
membrane (Figure 1) [1–3]. Exosomes carry a complex 
biomolecular cargo which includes proteins, peptides, lipids, 
and nucleic acids. Interestingly, the genetic cargo of exosomes, 
such as mRNA and miRNA can be translated or can regulate 
gene expression in the recipient or target cells [4]. Exosomes 
are discharged from many cell types including red blood cells, 
platelets, lymphocytes, dendritic cells, and cancer cells [5]. A 
growing body of evidence emphasizes their role in 
pathophysiological processes including malignancies, 
infectious diseases, autoimmune diseases, metabolic diseases, 
cardiovascular diseases, and neurodegenerative disorders. 
Current research focusses on the tumor-promoting roles of 
exosomes. Tumor growth, angiogenesis, extracellular matrix 

remodeling, metastasis, and immune surveillance have been 
shown to be promoted by exosomes [6, 7]. Studies of plasma-
derived exosomes in patients with malignancies indicate that 
tumor-derived exosomes (TEXs) reflect in part the molecular 
and genetic content of the parent tumor cells. In addition, the 
molecular cargo of immune cell-derived exosomes (IEX) 
might serve as biomarkers of immune dysfunction, which 
facilitates tumor escape. �e individual analysis of plasma-
derived TEX and IEX by fractionation is expected to identify 
biomarkers relevant to the tumor as well as determine the 
immune competence of the cancer patient [8].

2. Biogenesis of Exosomes

In contrast to microvesicles, which are secreted by budding 
from the cell membrane, exosomes show a complex multistep 
biogenesis, which can be dependent on or independent of the 
endosomal sorting complex required for transport (ESCRT). 
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ESCRT is a multimolecular machinery, which is recruited to 
the endosomal membrane for the orchestration of the indi-
vidual steps of exosome biogenesis [9]. Alternatively, an 
ESCRT-independent pathway has been described. For this 
pathway, the specific lipid composition of the endosomal 
membrane was considered to be of relevance for the exosome 
biogenesis. Following the formation of MVBs, which is a cru-
cial step in exosome biogenesis, Rab GTPases govern their 
degradation as well as their secretion [10, 11]. �e final release 
of exosomes occurs upon the fusion of MVBs with the cellular 
plasma membrane, a process which is probably mediated, at 
least in part, by soluble N-ethylmaleimide-sensitive factor 
attachment protein receptors (SNAREs) [12]. Exosome secre-
tion is regulated by various factors, which include mainly 
environmental changes [13]. Furthermore, the release of 
exosomes is an effective mechanism, by which cells regulate 
their internal stress states and modulate the extracellular envi-
ronment [14]. In the tumor microenvironment, cancer cells 
are exposed to stressful conditions, such as hypoxia, chemo-
therapeutics, irradiation, starvation, or other patient-specific 
factors. One reaction to this microenvironment is the accel-
erated release of exosomes by cancer cells. Especially hypoxia 
is an important environmental factor for the secretion of 
exosomes, since cells produce higher levels of exosomes under 
hypoxia and the oxygenation status of the parent cells is 
reflected in the cargo composition of the released exosomes 
[15]. Exosome-mediated signaling in cancers is thus influ-
enced by various stressful situations [16], and can promote 
cancer development through interaction between the cancer 
cells and the neighboring stroma, the stimulation of prolifer-
ative and angiogenic signaling, the progression of immune 

repression, and the initiation of premetastatic niches [17, 18]. 
Exosomes bind at the cell surface of the recipient cells through 
specific receptors or undergo internalization by endocytosis 
or micropinocytosis, following fusion with internal sections 
[19, 20]. �ey play crucial roles in most physiological pro-
cesses in tissues and organs [21].

3. Exosome Protein Cargo Secretion and Uptake

Exosomes are defined by a complex cargo consisting out of 
proteins, lipids, and nucleic acids. Since many different cell 
types secrete exosomes (e.g., immune cells, epithelial cells, 
endothelial cells, and cancer cells) and the cargo composition 
highly varies dependent on the cell of origin, exosomes can 
be involved in diverse physiological and pathological pro-
cesses, such as antigen presentation, tissue repair, intercellular 
cross-talk, and tumor progression [22–24]. �e protein con-
tent of exosomes can be used for the characterization of 
exosomes. Some proteins can be found in exosomes regardless 
of their origin and are considered as “exosome markers”. �ese 
include TSG101, Alix, Rab GTPases, heat shock proteins 
(HSP70, HSP90), integrins, tetraspanins (CD9, CD63, CD81), 
and MHC class II proteins. Additionally, exosomes can contain 
genetic material such as mRNA, long noncoding RNA 
(lncRNA), and microRNA (miRNA) [25] (Figures 2 and  3). 
�e cargo of exosomes mostly reflects the parent cells; how-
ever, the composition of exosomes can be different from the 
cells of their origin due to the selective sorting of cargo into 
exosomes [26–28]. Exosomes bind at the cell surface of the 
recipient cells through specific receptors or undergo 
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Figure 1: An illustration presents the differences in extracellular vesicles (EV) differentiated on the basis of size, released by donor cells, both 
normal as well as tumor cells (2, 3, modif.).
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internalization by various different pathways [19, 20]. �e 
basic mechanism is endocytosis, whereby the extracellular 
vesicle is engulfed by the recipient cell [29]. �ere are several 
mechanisms of endocytosis, such as clathrin-dependent or 
-independent, caveolin-mediated, macropinocytosis, phago-
cytosis, and lipid ra�-mediated endocytosis. �e utilization 
of those pathways highly depends on the exosomal cargo, the 
type of recipient cell, and the composition of the cell surface. 
Additionally, the microenvironment plays a crucial role in 
exosome internalization [30]. Another mechanism for 
exosomes uptake is fusion, whereby the exosomes fuse with 
the membranes of the recipient cell and the content of the 
vesicle is released into the cell. Fusion efficiency is enhanced 
in an acidic microenvironment [15, 31].

4. The Biological Function of Exosomes in 
Cancer

4.1. Tumorigenesis and Promotion of Tumor Growth. Exosomes 
are key mediators of intercellular communications between 
local and distant parts of the body; in cancer, they provide 
a means to sustain tumor growth and aggressiveness [32]. 
Numerous results have established tumor-derived exosomes 
and their specific cargo as key regulators of tumor neo-
angiogenesis [33], therapy resistance [34], and pre-metastatic 
niche formation [35]. In addition, TEXs are important 
mediators of tumor immune escape and regulation of T cell 
homeostasis [36–41]. Exosomes released by tumor cells 
express immunosuppressive molecules such as Fas-ligand 
(FasL) [42], tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL), programmed death-ligand 1 (PD-L1), and 

interleukin 10 (IL-10), neo-angiogenesis factors, as well as 
microenvironment conditioning factors, e.g., transforming 
growth factor β1 (TGF-β1), prostaglandin E2 (PGE2), and 
ectoenzymes engaged in the adenosine pathway (CD39 and 
CD73) [43–45]. TEXs carry a variety of molecules within 
their cargo Figure 2 [26]. Among the most characterized, are 
small (17–24 nucleotides), one-stranded, noncoding fragments 
of RNA called microRNA (miRNA), which regulate many 
biological cell functions such as proliferation, differentiation, 
migration, angiogenesis, apoptosis, or tumorigenesis [46–53]. 
Regulating gene transcription, exosomal miRNA trigger 
mostly pro-cancerous alterations, which we can observe as 
decreased expression of suppressor genes and intensification 
of inflammatory processes or drug resistance. �is role 
assigned them the name oncomiRNAs [51, 54–56]. Correlated 
with tumorigenesis, oncomiRNAs include miR-21, miR-223, 
miR-210, miR-92a, miR-105, miR- 23b, miR-224, miR-921, 
and miR29 [57]. Studies of TEX in patients with a variety of 
cancers attempt to correlate the levels of these exosomes and 
tumor progression. �e data show that the promotion of tumor 
growth is accompanied by an increased expression level of genes 
encoding miR-21, necessary for proliferation of tumor cells, their 
migration, and enhanced invasiveness [58]. Other oncomiRNAs 
involved in the process of invading noncancerous cells within 
the tumor microenvironment include miR-223 and miR-105, 
which were observed in breast cancer cell lines SKBR3, MDA-
MB-231 and MCF-10A, MDA-MB-231, respectively. MiR-105 
decreased expression of ZO-1 gene encoding Tight Junction 
Protein-1 in endothelial cells providing increased permeability 
and as a consequence, facilitated metastasis [59, 60]. Mi-RNAs 
from the family of let-7 regulate expression of proto-oncogenes 
RAS and HMGA2, which gives them, likewise miR-23b, miR-
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Figure 2: An illustration presents the profiles of exosomes derived from dendritic cells (DEXs). �ese exosomes may be immunostimulatory. 
DEXs were found to possess a variety of surface membrane proteins, which could potentially stimulate CD8+ and CD4+ T cells; allow for 
effective targeting and docking to recipient cells; which are postulated to participate in exosome/acceptor cell interactions, or activate NK 
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ICAM-1 (intercellular adhesion molecule-1) and VCAM 
(vascular adhesion molecule), carried also by TEXs [69]. 
Moreover, some TEXs influence angiogenesis directly by 
VEGF/VEGFR—vascular endothelial growth factor/receptor 
cargo or pro-angiogenic lipids like S1P [70, 71]. �e invasive 
and migrative potential of tumor cells, apart from adhesive 
proteins, presence and pro-angiogenic factors, also depends 
on their ability to degrade extracellular matrix proteins. 
Studies showed that some TEXs carry metalloproteinases 
like MMP2, MMP9, MT1-MMP, their inductor EMMPRIN 
(extracellular matrix metalloprotease inducer), or inactive 
zymogenes as well as urokinase-type plasminogen activator 
(uPA), which activates zymogenes, and finally, Cathepsin β, 
which is activated at low pH, characteristic for the tumor 
environment. �ese factors are responsible for the degradation 
of collagen, fibrinolysis, and destruction of the extracellular 
matrix, respectively [71–74].

4.3. Tumor Immune Escape. Tumor development can 
take place unrepressed, because immune surveillance is 
diminished, as a result of modulation by TEXs [75]. Lack 
of aberration recognition is possible by different pathways, 
such as immune cell modulation by exosomal miRNAs. In a 
variety of cancer types overexpression of miR-9 is observed, 
which inhibits MHC I (Major Histocompatibility Complex) 
protein expression on tumor cells; or miR-222 and miR-

224, and miR-921, invasive potential [61, 62]. Promotion of 
tumor growth and metastasis may also follow stimulation of 
proinflammatory cytokine release, through pathways other than 
regulation of gene expression. In this scheme, miR-21 and miR-
29 play the role of toll-like-receptor ligands. Activation of TLR 
receptors present on immune cells stimulates NF-κB (Nuclear 
Factor kappa-light-chain-enhancer of activated B cells), and as 
a consequence generates an inflammatory state in the tumor 
microenvironment [63].

4.2. Tumor Angiogenesis and Metastasis. Angiogenesis is 
another component of tumor formation, that the TEX’s 
miRNAs are involved in. Studies on different cancer cell 
lines demonstrates that the release of TEXs carrying miR-
210, miR17-92, and especially miR92a, (which provide a 
pro-angiogenic effect), is elevated. It was illustrated that  
miR-92a inhibits the synthesis of integrin α5 in endothelial 
cells, which increased cell junctions and migration potential 
[64, 65]. TEXs can modify normal cells pheno- and genotype, 
not only by microRNA, but also oncogene EGFRvIII transfer 
or by enhancing mRNA expression for pro-angiogenic factors 
such as VEGF (vascular endothelial growth factor), HGF 
(hepatocyte growth factor), and IL-8, thereby enabling tumor 
cell adhesion to endothelium, resulting in metastasis [66–68]. 
Adherence and simultaneous stimulation of fibroblastic 
stroma to release pro-angiogenic factors are supported by 
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TCD4+ and TCD8+ in melanoma and nonsmall cell lung 
cancer patients and present safety and feasibility of application 
[97–99]. It has also been reported that ascites-derived 
exosomes (ADE) and granulocyte-macrophage colony-
stimulating factor (GM-CSF) induced strong anti-cancer T 
cell response in patients with advanced stages of colorectal 
cancer [100]. DEXs may also present their cargo to antigen 
presenting cells (APC), enhancing immune response and 
triggering NKG2D ligands, in turn stimulating NK cells, which 
is reflected in increased NK levels in melanoma patients in a 
clinical trial [97, 101–103]. At present, current research results 
support us with promising data regarding vaccination utilizing 
DEX. �e advantages of DEX anti-cancer therapy include 
feasibility, safety, stability, and effectiveness [104, 105].

6. Conclusion

�e research on exosomes is at its naissance. It is already 
apparent, that we have to acknowledge the new intercellular 
communication and the cell function regulation systems, 
which are established by these nanovesicles. �e process of 
their biogenesis, secretion, and uptake grants them an impor-
tant physiological function, greatly diversified by the variety 
of transported molecules on their surface or as cargo. �e 
characterization of the molecula composition of exosomes, 
particularly those that are tumor-derived, needs to be 
extended following the advancement of technologies for their 
isolation and precise separation methods from normal 
cell-derived exosomes, in order to achieve the foundation for 
a new diagnostic tool. Exosome-mediated bioactive molecules 
transfer, including nucleic acids, proteins, and lipids, influ-
encing homeostatic changes within pheno-, genotypic adap-
tation and immune evasion, represent an undoubtedly huge 
potential for clinical and therapeutic advances. Extensive 
research is needed to fully understand and incorporate the 
application of this powerful source of new data provided by 
the exosomes.
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339, thus decreasing gene expression encoding ICAM-1 
adhesive protein, leading to the dysfunctional recognition 
of tumor cells by the immune system [75–77]. Moreover, 
among suppressor miRNAs released by TEXs in the tumor 
microenvironment, we can list miR-23b, miR-224, miR-921, 
and the let-7 family [57]. Another strategy of tumor immune 
escape is through the defective recognition of tumor cells by 
Tc lymphocytes and NK cells, caused by a loss of antigens as 
a consequence of increased TEXs excretion [78]. In the same 
way, tumor cells can lose caspase 3, the executive enzyme of 
apoptosis, probably leading to enhanced tumor cell survival 
[79]. TEXs also affect effector and regulatory lymphocytes 
in contrasting methods. Studies showed TEX can inhibit the 
proliferation of Tc cells by decreasing IL-2 level, essential to 
this process. On the other hand, TEX carrying FasL, TRAIL, 
or galectin 9 molecules, can stimulate apoptosis of Tc [80, 
81]. In contrast, TEXs promote the expansion and activity 
of inhibitors of the immune response (Treg and MDSC) [68, 
82]. It was observed that melanoma- and colorectal cancer-
derived exosomes, a�er incubation with monocytes, promote 
their differentiation into MDSC, and moreover stimulate them 
to release transforming growth factor β (TGF-β), inhibiting 
proliferation of T lymphocytes, and as a result negatively 
influence differentiation into dendritic cells [83, 84].

4.4. Drug Resistance. �e TEXs role is assigned not only to 
tumor growth promotion, but also to participation in drug 
resistance. It is summarized, that TEXs can act directly by 
effluxing chemotherapeutic drugs from tumor cells or indirectly 
by carrying glycoprotein P, essential in the multidrug resistance 
process, to cells that are sensitive to cancer therapies [75, 85]. 
Some studies demonstrate TEXs take part in doxorubicin 
or cisplatin elimination from ovarian tumor resistant cells 
[82, 86]. Disturbance of immunotherapies against cancer 
is maintained by recognizing and binding tumor-reactive 
antibodies by TEXs, and carrying tumor antigens instead of 
antigens present on tumor cells, which dramatically reduces 
Ab-dependent anticancer mechanisms [87, 88].

5. Exosomes as Cancer Therapeutic Targets

Exosomes present in plasma, represent a slight percent of its 
total proteins composition, but contain diversified molecular 
profiles, strictly depending on the cell they originated from. 
It correlates with the type of cancer and even with the 
progression stage, which gives rise to the potential use for 
them as biomarkers [89–92]. As exosomes can be used in 
cancer therapies, their properties have to be taken into 
consideration. Namely, it was observed, that exosomes derived 
from immune cells are resistant to lysis dependent on 
complement factor activation and their cargo of mRNA and 
microRNA is protected from degradation by RNAases, which 
makes them good candidates for use as a vaccine [93, 94]. 
Moreover, an abundance of dendritic cell-derived exosomes, 
(DEXs) surface proteins such as tetraspanin family, ICAM-1, 
MFG-E8, facilitates their interaction with target cells [95, 96]. 
Preclinical studies showed DEXs have the potential to activate 
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