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Abstract
1.	 Spatial capture–recapture (SCR) models have increasingly been used as a basis for 

combining capture–recapture data types with variable levels of individual identity 
information to estimate population density and other demographic parameters. 
Recent examples are the unmarked SCR (or spatial count model), where no in-
dividual identities are available and spatial mark–resight (SMR) where individual 
identities are available for only a marked subset of the population. Currently lack-
ing, though, is a model that allows unidentified samples to be combined with iden-
tified samples when there are no separate classes of “marked” and “unmarked” 
individuals and when the two sample types cannot be considered as arising from 
two independent observation models. This is a common scenario when using non-
invasive sampling methods, for example, when analyzing data on identified and 
unidentified photographs or scats from the same sites.

2.	 Here we describe a “random thinning” SCR model that utilizes encounters of both 
known and unknown identity samples using a natural mechanistic dependence 
between samples arising from a single observation model. Our model was fitted in 
a Bayesian framework using NIMBLE.

3.	 We investigate the improvement in parameter estimates by including the unknown 
identity samples, which was notable (up to 79% more precise) in low-density pop-
ulations with a low rate of identified encounters. We then applied the random 
thinning SCR model to a noninvasive genetic sampling study of brown bear (Ursus 
arctos) density in Oriental Cantabrian Mountains (North Spain).

4.	 Our model can improve density estimation for noninvasive sampling studies for 
low-density populations with low rates of individual identification, by making use 
of available data that might otherwise be discarded.
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1  | INTRODUC TION

The estimation of population size using capture–recapture models 
is a standard approach in wildlife research and provides a rigorous 
quantitative method for informing species conservation and man-
agement (Williams et  al.,  2002). Traditional sampling requires the 
physical capture and artificial marking of individuals over multiple 
surveys to create encounter histories. Capture–recapture models 
then use the encounter histories to estimate the probability of cap-
ture and, by extension, the proportion of the total population that 
was captured (Otis et al., 1978). A key requirement of this approach 
is the individual identification associated with each capture event. 
More recently, noninvasive sampling methods have made use of nat-
urally occurring marks, whether in the form of distinguishing physical 
features that can be photographed (e.g., spot patterns) or DNA sam-
ples that can be passively collected and used to identify individuals. 
The increased application of noninvasive sampling can be attributed 
to many factors, including logistical conveniences of data collection, 
improvements in technology, and animal welfare concerns (Long 
et  al.,  2008). Noninvasive sampling has been a particularly useful 
approach for monitoring wide-ranging mammals (e.g., carnivores), 
which occur at low densities and are otherwise difficult to physically 
capture over the large extents necessary for useful inferences.

One challenge associated with noninvasive sampling in the con-
text of capture–recapture models is that natural marks, including 
genotypes, are often imperfectly observed. Photographs, especially 
from camera traps, may not provide a sufficiently clear and complete 
view of natural marks to verify individual identification for each en-
counter (Burton et al., 2015). Further, most wildlife species do not 
have individually unique features to allow for photo-identification 
methods, limiting more widespread application of capture–recap-
ture models to camera trapping. Noninvasive genetic techniques 
can be applied to any species that deposits genetic material (e.g., 
hair or scat), which can be collected to extract DNA and identify 
individual genotypes (Waits & Paetkau,  2005); however, genetic 
sampling has its own challenges for establishing the individual iden-
tity associated with each sample (Augustine et al., 2020; Augustine 
et al., 2019). The quantity and quality of DNA from noninvasive sam-
ples is typically very low, and extraction procedures often require 
extensive replication to improve genotyping accuracy (Taberlet 
et al., 1999). Environmental degradation can render any sample un-
usable for determining identity, either through a lack of DNA ampli-
fication or errors caused by contamination or random chance (Waits 
& Paetkau,  2005). Samples whose individual identities cannot be 
established with high confidence are typically discarded, which can 
often comprise a large portion of all samples collected. This data re-
duction has the effect of reducing the precision of population pa-
rameter estimates; thus, statistical methods that can utilize these 
discarded samples are desirable.

Substantial progress has been made using spatial capture–recap-
ture (SCR) as the basis for jointly analyzing samples with known and 
unknown individual identities. Chandler and Royle (2013) first intro-
duced an SCR model with fully latent individual identities that can be 

applied to a collection of samples with no individual identities at all, 
demonstrating that there is information about the individual identi-
ties of samples contained in their spatial location of capture that can 
be utilized to estimate population parameters. While the estimates 
from this model are frequently of very low precision, Chandler and 
Royle (2013) demonstrated that this method produced much bet-
ter estimates when the set of unmarked samples is combined with a 
set of samples from marked individuals with known individual iden-
tities. This approach combining data from marked and unmarked 
individuals was later termed “spatial mark–resight” (SMR; Sollmann 
et al. (2013)), which has been quite successful for estimating popula-
tion parameters for partially marked populations where a subset of 
individuals is either manually or naturally marked.

While SMR provides a framework for combining known and un-
known identity samples, it is limited to the case where individuals 
can be separated into “marked” and “unmarked” classes and where 
“unmarked” individuals can never provide an individual identity. 
However, for noninvasive sampling and natural marks, it is often the 
case that although all individuals are identifiable, any individual can 
produce either individually identified or unidentified samples. Thus, 
all samples could theoretically be identifiable, but not all end up so. 
For example, individual identities in genetic capture–recapture are 
lost due to features of the individual DNA sample and the process 
of DNA amplification, not due to features of the individual. Further, 
when camera trapping a species where individuals are nearly equally 
identifiable (e.g., using flank patterns), identities are lost at the 
sample level due to poor animal orientation or photograph quality. 
For both remote cameras and genetic sampling, the level of result-
ing data loss can be substantial. For example, Kendall et al.  (2016) 
identified 382 samples as grizzly bear (Ursus arctos), among which 
127 (33.2%) were identified at individual level. Hooker et al. (2015) 
identified 9%–13% of hair samples from American black bear (Ursus 
americanus); Murphy et  al.  (2018) identified ca. 7.8% of hair sam-
ples and ca. 16.1% of scat samples from coyote (Canis latrans); Aziz 
et al. (2017) identified 24% for hair and scat samples—jointly—from 
tiger (Panthera tigris); Sun et al.  (2017) identified 36% for hair from 
American black bears; and Murphy et al. (2016) identified 43.6% for 
hair from American black bears. In camera trap studies, the identifi-
cation rate is rarely reported (Johansson et al., 2020), but Ngoprasert 
et  al.  (2012) described 2% of raw images that were identifiable in 
Asiatic black bears (Ursus thibetanus) and sun bears (Helarctos malay-
anus); Molina et al. (2017) identified 2.3% in Andean bear (Tremarctos 
ornatus), and Somers et al. (2018) identified 54% in leopard (Panthera 
pardus). This loss of information can be translated into lower preci-
sion in the estimates.

With the hypothesis that the use of all data could improve the 
precision of the estimates, we describe an SCR model that combines 
identified and unidentified samples from a single class of individu-
als (as opposed to “marked” and “unmarked” classification in SMR) 
using modified methods from Chandler & Royle (2013). The model 
allows for inference on abundance and distribution while account-
ing for uncertainty about the partially observed encounter histories. 
We demonstrate the performance of this model relative to using 



     |  1189JIMÉNEZ et al.

the identified encounter histories alone via simulation and apply it 
to a large-scale noninvasive genetic sampling effort of brown bear 
(Ursus arctos) across a 2,624 km2 region of the Eastern Cantabrian 
Mountains, North Spain, where only 60% of the DNA samples pro-
vided an individual identity. We illustrate how noninvasive sampling 
studies can maximize the information used to provide population 
inferences from capture–recapture designs despite difficulties in 
determining individual identity.

2  | METHODS

2.1 | Model formulation

Our model is a standard SCR model, with an additional random thin-
ning process that determines which samples' individual identities are 
observed. The standard SCR model assumes that individual activ-
ity centers i = 1, 2,⋯,N are distributed over a region or state space 
(S) and individuals are exposed to sampling by some trap or detec-
tor array within S. The distribution of individuals activity centers 
si =

(
si1 , si2

)
 is typically described by a homogeneous point process, 

such that si ∼ Uniform (S), which we will adopt here. Inhomogeneous 
point processes can also be used to model variation in the distribu-
tion of individuals (Borchers & Efford, 2008; Royle et al., 2014). The 
activity centers are latent variables to be estimated by the model 
given the trap-specific encounters for the n observed individuals at 
traps j = 1, 2,⋯J with locations xj =

(
xj1 , xj2

)
. Assuming that encoun-

ter frequencies are Poisson-distributed and a decreasing function of 
the distance dij between individual activity center si and trap location 
xj, the expected encounter rate can be specified as:

Here, �0 is the expected encounter rate when dij = 0, indicating 
direct overlap of an activity center with a trap, and � is the scale 
parameter of the half-normal detection function. The expected en-
counter rate can covary as a function of trap- and individual-specific 
attributes, or by trapping occasion for sampling efforts with multiple 
occasions (e.g., �ijk for K > 1).

We assume the encounter histories for the N observed individ-
uals arise following ytrueijk

∼ Poisson
(
�ijk

)
, though other count distri-

butions could also be used. The true encounter frequencies ytrue
ijk

 for 
the n individuals with at least one detection are what would be ob-
served if all samples were individually identifiable. Under a Bayesian 
approach to capture–recapture with unknown N, data augmenta-
tion can be used to estimate the number of unobserved individuals 
(Royle et al., 2007). We augment the n observed encounter histories 
with M − n “all- zero” histories, choosing a value such that M ≫ N. 
The likelihood for the zero-inflated true encounter frequencies ytrue

ijk
 

is then modified by a partially latent binary indicator variable zi that 
describes the membership of individual i in the population:

Under this specification, Pr
(
zi = 1

)
= 1 for the n observed indi-

viduals, and zi∼Bernoulli (�) for the entire collection of M individu-
als. Population size can then be derived from the sum of indicators, 
N =

∑
zi (realized N) or from the product M ∙ � (expected N), and 

density can be derived from dividing the population size by the area 
of the state space, D = N∕‖S‖. Many other SCR observation models 
and specifications are possible depending on sampling design (Royle 
et al., 2014).

The process of assigning individual identities to samples in cap-
ture–recapture can be conceptualized as a random thinning process, 
where samples lose their individual identities at random with a prob-
ability 1 − �. This process produces two types of data sets, one with 
individual identities and one without. Hereafter, this approach will 
be called the “random thinning SCR model” (see Figure 1 and DAG in 
Appendix S1). Thus, the new feature of our model is a submodel for 
individual identification conditional on the true encounter frequen-
cies ytrue

ijk
. We define yID

ijk
 to be identified samples from individual i, at 

trap j on occasion k. Then, we assume:

The individual identities of unrecognizable encounter frequen-
cies ynoID

ijk
 are then latent and ynoID

ijk
= ytrue

ijk
− yID

ijk
. For the unidentified 

samples, we only observe the trap by occasion counts summed 
across captured individuals, nnidjk =

∑
N
i= 1

ynoID
ijk

. Thus, the same in-
dividual could be in both encounter histories —identified and not—at 
the same trap on the same sampling occasion. Note also that individ-
uals with unidentified samples are not required to also be in the set 
of identified samples.

We fit this model in NIMBLE (NIMBLE Development Team, 2019) 
using a custom Metropolis–Hastings update for ytrue

ijk
 that obeys the 

constraint ynoID
ijk

= ytrue
ijk

− yID
ijk

. This Metropolis–Hastings sampler 
was used because the full conditional distribution for ytrue

. jk
 used by 

Chandler & Royle (2013) is no longer valid when some individual 
identities may be known for the same individuals that also have la-
tent identity samples (Appendix S2) and there is no default function 
implemented in NIMBLE to do this. We provide 2 versions of this 
sampler with and without the K dimension, which is faster when 
there are not occasion-specific covariates or behavioral responses 
to capture (Appendix S2).

2.2 | Simulation

We simulated 12 scenarios with 100 data sets in each scenario, in 
densities close to previous SCR density estimates from several spe-
cies. We explored each case to assess the accuracy and precision of 
density estimates for the random thinning SCR model compared to 
a standard SCR model. We used two different trapping arrays, with 
higher density scenarios simulated on the smaller array requiring a 
lower population size (N) to achieve the desired density (D), thus re-
ducing computation time for the simulation study. We explored low 
population densities (individuals/unit2) equivalent to population size 

�ij = �
(
si, xj

)
= �0exp

(
−d2

ij
∕2�2

)

ytrue
ijk

|zi ∼ Poisson
(
�ijk ∙ zi

)

yID
ijk

∼ Binomial
(
ytrue
ijk

, �
)
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(0.1 individuals/km2) found for Iberian lynx Lynx pardinus (Jiménez, 
Nuñez-Arjona, et al., 2019) with a trap array 12 × 12 J = 144and unit 
spacing with a baseline encounter rate �0 = 0.5. We also used two 
scenarios with a smaller trapping array (6 × 6 ; J = 36) and unit spac-
ing, with two levels of population size (N ∈ {20, 50} ;D ∈ {0.35, 0.89} 
individuals/unit2), which can be viewed as density from stone mar-
ten Martes foina and fox Vulpes vulpes populations, respectively 
(Jiménez, Nuñez-Arjona, et al., 2019). We generated encounter data 
with K = 10surveys, with a baseline encounter rate �0 = 0.65and 
half-normal scale parameter � = 0.5units (large array), and the same 
Kand �, and �0 = 0.5(small array) simulating populations from low to 
high density, corresponding to low to high levels of home range over-
lap across individuals. Across the three density scenarios, we used 
four levels of identification probability (� ∈ {0.10, 0.20, 0.30, 0.40})

(Appendix S3).
For the simulated data sets, we calculated the number of in-

dividuals captured, number of captures with identification ("ID"), 

captures without identification ("non-ID"), number of recaptures, 
and number of spatial recaptures (mean and 95% confidence inter-
val, see Appendix  S3). Both the random thinning and regular SCR 
models were fit using NIMBLE (NIMBLE Development Team, 2019) 
in R (R Core Team, 2020) (Appendix S2). We fitted the random thin-
ning model using both identified and unidentified samples, and we 
fitted the standard SCR models to the subset of encounter histo-
ries of identified individuals. In each case, we ran 3 chains of 50,000 
(standard SCR models)-500,000 iterations (random thinning SCR 
models), discarding 5,000–50,000 iterations as burn-in and thinning 
by 5 or 100, respectively. We compared the posterior mean, me-
dian, and mode for point estimates. We calculated the root-mean-
square error (RMSE) and the relative bias (RB) using the package 
SimDesign (Chalmers, 2020) in R and compared the improvements 
in RMSE using random thinning SCR models. We also calculated the 
coverage rates for the 95% highest posterior density (HPD) intervals 
for population sizes.

F I G U R E  1   Graphical depiction of the random thinning spatial capture–recapture model. Random thinning SCR is hierarchical model with 
two processes: ecological (population size and location—si—of individuals) and observation. In this model (like in standard SCR), the detection 
rate of each individual depends on (i) Euclidean distance between individual's locations and traps (centroids of polygonal grid in the study 
case); (ii) baseline detection rate (�0) that here depends on sampling effort (length of transect in each polygon); and (iii) the scale parameter 
(�) from the half-normal detection function, that describes the animal movement. In the observation process, we obtain two types of data: 
encounters with identification (yID) and non-ID data (ynoID) or counts. Random thinning SCR model uses ID data (in red) like in standard SCR 
to make inferences about population size and individuals' distribution (including nonobserved individuals, in gray), but also uses the counts 
(in orange) with a constraint (ynoID = ytrue − yID) using a Metropolis–Hastings algorithm—in a mechanistic approach—to make a probabilistic 
reconstruction of the true encounter frequencies (ytrue), thus assigning identities to non-ID samples

ECOLOGICAL PROCESS
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PROCESS
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2.3 | Application

The brown bear (Figure  2) is considered an “endangered species” 
under Spanish law (Real Decreto 139/2011, 2011) and is a “prior-
ity species” and a “species of community interest in need of strict 
protection” according to the European Community Habitat Directive 
(Council Directive 92/43/EEC, 1992). Brown bear in Spain form two 
separate nuclei: a small population (ca. 40 individuals) in the Pyrenees 
(Fundacion Oso Pardo, 2020), a mountain range between Spain 
and France, and a larger population in the Cantabrian Mountains 
(300 km along the northern coast of Spain; highest peak: 2,648 m). 
The Cantabrian population is fragmented across a mountain range 
into two subpopulations (Western and Eastern) separated by 50 km, 
and the total population was estimated at 200 individuals (95% CI: 
183–278; Pérez et al., 2014) in 2014. We applied the random thinning 
SCR model to the smallest subpopulation, in the Eastern Cantabrian 
Mountains, using the data from Lopez-Bao et  al.  (2020). Between 
November and December 2017, 128 bear fecal samples were col-
lected, along with 23 hair samples. For each noninvasive sample, in-
dividual identification was attempted using both microsatellites and 
single nucleotide polymorphisms (SNPs). Lopez-Bao et  al.  (2020) 
obtained 94 genotypes using SNPs (60% success; 68% (n = 87) for 
scats and 30% (n = 7) for hair). From those genotypes, they identified 
33 different individuals. Lopez-Bao et al. (2020) compared the two 
data sets (microsatellites versus. SNPs) and conducted population 
estimates using spatial capture–recapture models. They fit standard 
SCR models discretizing the space by a grid of hexagonal polygons 

and using the track length in each polygon as an effort covariate for 
the baseline detection rate �0:

The full details and data of this study can be found in Lopez-

Bao et al. (2020). We used the SNP data and fit the random thinning 
SCR model. We also fit a standard SCR model using the known ID 
encounters without incorporating the unknown ID detections. The 
state space S was defined by a minimum convex polygon around 
the trap locations (J = 144) in a total area of 2,624 km2, buffered by 
2.5 × � km (Figure 3). Each trap had K = 1 survey. For both models, 
we used data augmentation with M = 300 and calculated posterior 
summaries from 50,000 iterations generated by 3 chains of 55,000 
iterations with a burn-in of 5,000. We confirmed model convergence 
by examining trace plots and ensuring that the potential scale re-
duction factor (R̂) statistic for each parameter was <1.1 (Gelman 
et al., 2013).

3  | RESULTS

3.1 | Simulations

Summary statistics of the posterior mean, median, and mode from 
our simulations are given in Appendix  S4. The posterior mode is 
approximately unbiased as a point estimator at low density and ID 
rate. At medium density, the behavior of the posterior mode and 
median is similar, but at highest ID rate, we only found small dif-
ferences between the posterior mean and median. In general, 
point estimates become more similar when the N/D posteriors are 
less right skewed, which occurs both when D and the percentage 
of identified samples increase. At high density, all point estimators 
are similar (Appendix S4). This is consistent with Chandler & Royle 
(2013), which noted that the skew in posterior distribution for N 
in unmarked SCR diminished as the number of marked individuals 
increased. Therefore, we used the posterior median as the point 
estimator.

In the simulations, the improvement in population size esti-
mates using the random thinning SCR model is more important in 
low-density scenarios and is greater for lower rates of individual 
identification (Figure 4 and Appendix S4). For � = 0.1 (10% individual 
identification), there is a 79% RMSE reduction from 15.62 (SCR) to 
3.28 (random thinning SCR), compared to a smaller (28.2%) reduc-
tion from 2.62 to 1.88 at � = 0.4. In medium-density scenarios, there 
is a 32.2% RMSE reduction from 13.64 to 9.23 for � = 0.1, which 
decreases from 3.14 to 2.98 for � = 0.4 (5%). In high-density situa-
tions, there is no improvement with the use of the random thinning 
SCR model. The improvement in the scale parameter estimate of the 
half-normal detection function (�) is similar: At low density, it is very 
substantial (from 0.19 to 0.04; 78.9%) at lower rates � = 0.1, but the 
improvement is reduced (0.05 to 0.03; 40%) at � = 0.4. At medium 
density, the RMSE improvement was from 0.19 to 0.07 (63.2%) at 

log
(
�0

[
j
])

= �0 + �2 × L
[
j
]
+ �3 ×

(
L
[
j
])2

F I G U R E  2   Brown bear (Ursus arctos) in Oriental Cantabrian 
Mountains (North Spain) in an “Escobal” (shrubland dominated by 
Cytisus scoparius). Credit: Jonathan Rodríguez-Ramiro
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� = 0.1 and from 0.06 to 0.04 (33.3%) at � = 0.4. At high density, the 
RMSE improvement is less pronounced: from 0.08 to 0.05 (37.5%) at 
� = 0.1 and no improvement at � = 0.4. The baseline detection rate 
(�0) is the parameter with the greatest RMSE improvement (81.8%), 
from 0.44 to 0.08 (low density and � = 0.1) and from 0.40 to 0.15 
(62.5%, high density and � = 0.4) (Appendix S4). In summary, RMSE 
reduction in the model's parameters by using random thinning SCR 
versus SCR is greater at lower levels of �, and decreases as density 
increases (Appendix S3).

Relative bias (RB) has the same behavior as RMSE. For � = 0.1

, there is a 92.4% RB reduction from 0.66 (SCR) to 0.05 (random 
thinning SCR), and from 0.03 to 0.02 (3.3%) at � = 0.4. In medi-
um-density situations, there is a RB reduction from 0.54 to 0.26 
(51.9%) for � = 0.1, which is almost the same values (0.03) in � = 0.4

. In high-density scenarios, the improvement in relative bias is mini-
mal (Figure 5). Sigma was less biased using the random thinning SCR 
model at low and medium density, but there was no improvement 
at high density (Figure 5 and Appendix S4). Coverage of 95% HPD 
intervals was close to the nominal values in all cases (Appendix S4).

In scenarios with low density (D = 0.1, N = 20) and � = 0.1, the sim-
ulated data sets resulted in no spatial recaptures in the SCR data with 
individual identities for 33/100 data sets. In these cases, the random 
thinning SCR model was unbiased and worked correctly in situations 
where using an SCR model would be inadvisable. In such cases, the 

full data sets (prethinning) included spatial recaptures, which were 
lost in the ID random thinning, process, but remained in our data as 
unidentified capture events. These latent identity observations were 
used in the random thinning SCR model to probabilistically recon-
struct latent spatial recapture events, allowing parameters to be esti-
mated with minimal bias (RMSE = 3.83 and RB = −0.01), whereas the 
spatial scale parameter was estimated with strong bias in the reduced 
data. Similarly, for simulated data sets with only one spatial recap-
ture (36 cases) using standard SCR, RMSE = 11.61 and RB = 0.31. 
Using random thinning SCR, RMSE = 3.06 and RB = 0.01, indicating a 
large improvement (73.6% and 96.8%, respectively). For two or more 
spatial recaptures (31 cases) using standard SCR, RMSE = 6.93 and 
RB = 0.08, and using the random thinning SCR model, RMSE = 2.34 
and RB = 0.02 (an improvement of 66.2% and 75%, respectively).

According to our simulations, the random thinning SCR model 
performed well when density was low. For example, using a 12 × 12 
grid of detectors and N  =  20, even when the range of individuals 
detected was 4–10, 4–14 individuals were identified, 0–5 individuals 
were recaptures (0–4 spatial) and 87–143 detections could not be 
identified, and the population size error was quite low (RMSE = 3.5) 
(Appendices S3 and S4).

In summary, our simulations showed the random thinning SCR 
model yielded higher posterior precision than the standard SCR 
model at low density. At medium density, the improvement was 

F I G U R E  3   Locations of 144 cell centroids from the hexagonal grid (blue crosses) for sampling bears distributed across a 2,624 km2 
Eastern Cantabrian Mountains region, in North Spain (inset map), and spiderplot (black lines: spatial recaptures; red points: average capture 
location from each individual). Encounters of known ID (light blue circles) and unknown ID (light gold circles) samples collected during 
September–December 2019 are illustrated. The size of the circles represents the number of captures (i.e., number of genotyped samples) at 
each cell
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moderate, and at high density, there was no improvement over stan-
dard SCR models. In all cases, the improvement increased as the in-
dividual identification rate (�) decreased.

3.2 | Brown bear application

In applying the model to the brown bear data set, we used the pos-
terior median as the point estimate (appropriate at low density and 
high identification rate—see Appendix  S4). The estimate of bear 

density was slightly (0.8%) lower for the random thinning SCR model 
(1.019  ±  0.172 bear/100  km2) than for the standard SCR model 
(1.027  ±  0.195 bear/100  km2; Table  1). By incorporating the un-
known ID encounters (see Figures 1 and 3) into the random thinning 
SCR model, the CV of the density posterior was reduced by 11.8%. 
The movement parameter (�) was also smaller (13.6%) for the ran-
dom thinning SCR model than for the standard SCR model, and the 
CV was reduced by 31.6%. The increased baseline encounter rate, 
�0, logically reflected the additional encounters used by the random 
thinning SCR model (Table 1).

F I G U R E  4   Violin plot of RMSE from population size estimates (N ∈ {20, 20, 50} in three levels of density (d ∈ {0.1, 0.4, 0.9} using standard 
SCR (light blue) and random thinning SCR (light gold) models for four levels of identification rate (� ∈{10%, 20%, 30%, 40%})
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4  | DISCUSSION

We demonstrated that the integration of unknown ID encounters 
with known ID encounters in an SCR modeling framework can im-
prove the precision of density estimates while making use of avail-
able data that are often discarded in studies using noninvasive 
sampling techniques. A key aspect of the random thinning model 
that we proposed is that there is a natural mechanistic dependence 
between the unknown ID encounters and the known ID encounters 
in that they can arise from the same visitation of an individual to a 
location. This model structure allows for other count distributions 

(e.g., negative binomial) to be substituted for the Poisson encounter 
model without introducing dependence between sample types, and 
allows for variable thinning rates (discussed below).

Wildlife surveys that use remote camera trapping or passive/
active collection of genetic material commonly produce encounter 
data that can be attributed to species at a much higher rate than to 
individuals. Approaches to population size estimation using capture–
recapture, including the SCR model extensions (Royle et al., 2014), 
have traditionally required certainty in the assignment of identity 
to encounter data. This limitation can result in discarded informa-
tion, which in other forms might be useful for modeling species 

F I G U R E  5   Violin plot of relative bias from population size estimates (N ∈ {20, 20, 50} in three levels of density (d ∈ {0.1, 0.4, 0.9} using 
standard SCR (light blue) and random thinning SCR (light gold) models for four levels of identification rate (� ∈ {10%, 20%, 30%, 40%})
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distributions and/or habitat associations (e.g., Long et al. 2011). We 
illustrated that the inclusion of species detections (i.e., unknown ID 
encounters) provided useful gains in precision even under a basic 
model structure; further model complexity involving relationships 
between spatial environmental covariates and density or encounter 
probability (e.g., Royle et al.2013; Sutherland et al. 2015) would be 
expected to benefit similarly from the additional information that 
uses random thinning SCR.

In the brown bear application, density was very low but the pro-
portion of identified individuals � was high enough (~0.60) that a 
standard SCR model using only known ID encounters was able to 
provide a reasonable estimate of density, but even in these cases 
and by the configuration of detectors and the sigma value, we found 
an small improvement of the precision. Chandler & Royle (2013) 
demonstrated a rapid improvement in the RMSE of the posterior 
density estimates of their spatial model as the number of marked 
individuals in the sample increased from zero. Similarly, Sollmann 
et al. (2013) were able to estimate density with incomplete individ-
ual identification using a SMR model even with a small number of 
marked individuals. In both of these applications, the marking sta-
tus of each encounter was known with certainty. For the Chandler 
& Royle (2013) model applied to data without marked individuals, 
the spatial information associated with encounters was only useful 
when the study design ensured spatial correlation in the unidentified 
counts. Our result suggests that in low-density populations, uniden-
tified samples can be very informative about parameters, and this 

information results in improved estimates of all model parameters. 
Sollmann et  al.  (2013) used telemetry data to directly inform the 
model about individual movement and suggested density estimation 
would have otherwise been impossible. In the random thinning SCR 
model, telemetry data could be incorporated to improve this param-
eter estimate, particularly if there are few spatial recaptures.

The random thinning SCR model can be seen as an intermedi-
ate model between unmarked SCR (� = 0; Chandler & Royle, 2013) 
and standard SCR (� = 1). Unlike the standard SMR model, the ran-
dom thinning SCR model described here does not separate individ-
uals into “marked” and “unmarked” classes. Note, this is the same 
“random thinning” model previously used by Jiménez, Chandler, 
et al. (2019) where it was applied to only a subset of individuals that 
were marked in an SMR framework, whereas we apply it to all indi-
viduals. We consider that all individuals may produce identified and 
unidentified samples, and the process of individual identification 
occurs with a success rate � such that observed data with individ-
ual identities are a thinned version of the true encounter histories. 
The success rate can be a function of the random failure to map an 
encounter to an individual (e.g., poor quality photograph or DNA) or 
a deterministic decision based on study design considerations (e.g., 
Chandler & Clark, 2014).

Variation in the thinning rate � could arise in a variety of ways. 
Individual, trap, and occasion-specific covariates or random effects 
can be modeled on �. For example, individuals might vary in their 
identifiability in camera trap photographs, or DNA amplification 

TA B L E  1   Posterior summary statistics for both a standard spatial capture–recapture (SCR) model and the random thinning SCR model for 
a bear population in a 2,624 km2 (and 6 km buffer) region in the Eastern Cantabrian Mountains in Spain

Standard SCR BCI

Median SD 2.50% 97.50%

D̂ 1.027 0.195 0.715 1.479

�̂0 −0.240 0.275 −0.806 0.277

�̂2 1.525 0.266 1.058 2.086

�̂3 −0.171 0.058 −0.294 −0.066

�̂ 0.419 0.083 0.278 0.606

�̂ 0.236 0.019 0.202 0.280

Random thinning SCR BCI

Median SD 2.50% 97.50%

D̂ 1.019 0.172 0.740 1.405

�̂0 0.915 0.190 0.542 1.281

�̂2 1.006 0.203 0.627 1.427

�̂3 −0.094 0.048 −0.195 −0.003

�̂ 0.599 0.039 0.520 0.675

�̂ 0.416 0.075 0.288 0.581

�̂ 0.204 0.013 0.181 0.231

Note: We used the posterior median for all parameters, and presented the standard deviation and 95% Bayesian credible interval (BCI). D̂ is 
population density (individuals/100 km2); �̂0 is the intercept for effort; �̂2 is the slope for effort; �̂3 is the quadratic parameter for effort; �̂ is the 
identification rate; �̂ is the parameter for data augmentation; and �̂ is the scale parameter for the half-normal distribution, related to movement of 
animals.
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might be a function of occasion or trap by occasion weather covari-
ates. In fact, our random thinning model could potentially be used 
for studies where only a subset of naturally marked individuals are 
identifiable, which are currently analyzed using SMR. This approach 
would obviate the need to classify photographs as belonging to 
“marked” or “unmarked” individuals, which is often difficult to de-
termine using natural marks in photographs, but at the expense of 
reduced information in the unidentified observations (mark status). 
For this SMR-type case, we believe a finite mixture on � could be 
used, with one mixture component for � fixed to 0 to accommodate 
truly unidentifiable individuals, and � for the identifiable component 
of the population and the mixing proportion to be estimated. We 
are unsure if such a model would produce competitive estimates 
with SMR, even if it removes the possibility of errors in classifying 
the mark status of samples, but recommend it be studied further. 
Sample-level covariates and random effects could also be used (e.g., 
to accommodate variable DNA sample quality/quantity) but those 
require the code be modified to update the individual identity of one 
sample at a time.

An alternative model for combining identified and unidentified 
DNA samples is that of (Augustine et al., 2020), where each ge-
netic locus is regarded as a partial identity covariate, potentially 
observed with error. That model has two advantages over the 
model we consider here. First, it allows for the possibility that 
there may be errors in the individual identities assigned to the 
known identity samples. These errors should generally be rare, 
but they cannot be removed with certainty. Second, the Augustine 
et al. (2020) model can utilize the partial genotype scores associ-
ated with the unidentified samples to extract more information 
out of these samples.

Another model, the multiple observation process (MOP) model 
for combining SCR data and detections of unidentified individu-
als, was recently proposed by Tourani, Dupont, Nawaz, & Bischof 
(2020). Rather than conditioning on the latent encounter histo-
ries as we have done, the MOP model treats the two data sets 
as independent, except for sharing the same expected values for 
the detection process, modified by the thinning rate; however, in 
general, these data sets will not be independent because the de-
tection methods are colocated (Clare et al. 2017). These two data 
types can be regarded as independent in a special case where i) 
the true encounters are Poisson-distributed, and ii) the thinning 
rate is fixed for all samples (following standard results for thin-
ning Poisson processes; Chiu et al., 2013, p. 161). If this holds, the 
two sets of Poisson counts (ID and no-ID) can be converted to 
the Bernoulli data used by MOP (see Appendix S5). This Poisson 
requirement for independence between the ID and no-ID samples 
prevents the MOP model from considering that the true encoun-
ters came from other count distributions, for example, the nega-
tive binomial. Additionally, we can expect a loss of precision using 
detections instead of counts. In random thinning SCR model, be-
cause it probabilistically reconstructs the capture history samples, 
the dependence issue pointed out by Clare, McKinney, DePue, and  
Loftin (2017) it is not a problem. Another difference of our random 

thinning SCR model is that by conditioning on the latent encoun-
ter history, the model can accommodate a behavioral response to 
capture.

Computation is slow for the random thinning SCR model, and 
even using the faster version in NIMBLE without temporal variation 
on �0 or �, is slower to converge than the standard SCR model (in 
which we will need 50,000 iterations with 3 chains, that requires 
20–30  min using a 2.5  Ghz computer). Random thinning SCR re-
quires a high number of iterations, especially at low rates of iden-
tified events (typically we will need 500.000–1,000,000 iterations 
with a thinning of 100 for a � = 0.1, which requires 3–6  hr). The 
mixing in Nimble can be improved and runtime reduced by chang-
ing the default update chosen by Nimble for the activity centers 
(Appendix S2).

According to our simulations (Appendices S3 and S4), the ran-
dom thinning SCR model outperformed standard SCR model when 
density and � were low. In high-density scenarios with high identifi-
cation rates, there is almost no improvement in precision from using 
the random thinning SCR model, and it is advisable to discard the 
unidentified samples and fit standard SCR models to the observed 
encounter histories (though these samples may still be useful in a 
modified version of the model that probabilistically reconstructs a 
latent behavioral response to capture). At intermediate values of 
density and �, users would need to do simulations themselves that 
are in line with their specific applications to know the possible pre-
cision improvement. The probabilistic reconstruction of capture 
histories using the random thinning SCR is much more efficient in 
situations where there is little assignment uncertainty associated 
with unknown identities. The benefit of modeling the unidentified 
samples is greatest in scenarios where individual home range over-
lap is low, with sparse identified samples and abundant unidentified 
samples. Low- and medium-density scenarios with rates of indi-
vidual identification under 0.5 are common (e.g., Aziz et al., 2017; 
Hooker et al., 2015; Kendall et al., 2016; Molina et al., 2017; Murphy 
et al., ,2016, 2018; Ngoprasert et al., 2012; Sun et al., 2017), and the 
random thinning model may therefore be widely applicable.
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