
Frontiers in Immunology | www.frontiersin.

Edited by:
Jun Li,

Lake Superior State University,
United States

Reviewed by:
Jing Xing,

Ocean University of China, China
Yong-hua Hu,

Chinese Academy of Tropical
Agricultural Sciences, China

Jianmin Ye,
South China Normal University, China

*Correspondence:
Mo-fei Li

murphy210@163.com

Specialty section:
This article was submitted to

Comparative Immunology,
a section of the journal

Frontiers in Immunology

Received: 11 November 2021
Accepted: 04 February 2022
Published: 25 February 2022

Citation:
Wu M, Jia B-b and Li M-f (2022)
Complement C3 and Activated
Fragment C3a Are Involved in
Complement Activation and

Anti-Bacterial Immunity.
Front. Immunol. 13:813173.

doi: 10.3389/fimmu.2022.813173

ORIGINAL RESEARCH
published: 25 February 2022

doi: 10.3389/fimmu.2022.813173
Complement C3 and Activated
Fragment C3a Are Involved in
Complement Activation and
Anti-Bacterial Immunity
Meng Wu1,2,3, Bei-bei Jia1,2,3 and Mo-fei Li1,2*

1 Chinese Academy of Sciences (CAS) & Shandong Province Key Laboratory of Experimental Marine Biology, Institute of
Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China, 2 Laboratory for Marine
Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China,
3 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

In the complement system, C3 is a central component in complement activation, immune
defense and immune regulation. In all pathways of complement activation, the pivotal step
is conversion of the component C3 to C3b and C3a, which is responsible to eliminate the
pathogen and opsonization. In this study, we examined the immunological properties of
C3 and its activated fragment C3a from Japanese flounder (Paralichthys olivaceus) (PoC3
and PoC3a), a teleost species with important economic value. PoC3 is composed of 1655
amino acid residues, contains the six domains and highly conserved GCGEQ sequence of
the C3 family. We found that PoC3 expression occurred in nine different tissues and was
upregulated by bacterial challenge. In serum, PoC3 was able to bind to a broad-spectrum
of bacteria, and purified native PoC3 could directly kill specific pathogen. When PoC3
expression in Japanese flounder was knocked down by siRNA, serum complement
activity was significantly decreased, and bacterial replication in fish tissues was
significantly increased. Recombinant PoC3a (rPoC3a) exhibited apparent binding
capacities to bacteria and Japanese flounder peripheral blood leukocytes (PBL) and
induce chemotaxis of PBL. Japanese flounder administered rPoC3a exhibited enhanced
resistance against bacterial infection. Taken together, these results indicate that PoC3 is
likely a key factor of complement activation, and PoC3 and PoC3a are required for optimal
defense against bacterial infection in teleost.

Keywords: C3, C3a, complement, Japanese flounder, bacterial infection
1 INTRODUCTION

The complement system is composed of approximately 35 proteins, which present in serum, tissue
fluid and the surface of cell membranes (1, 2). The complement system plays an important role in
host defense, which is widely involved in innate and adaptive immunity (3). The complement
system can be activated by three different pathways, including the classical pathway, lectin pathway,
and alternative pathway (1, 4, 5). C3 is a center factor in the complement system, all three
complement activation pathways converge in C3 and formation of C5 convertase (6). C5 convertase
org February 2022 | Volume 13 | Article 8131731
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cleavage of C5 to C5a and C5b, and C5b is involved in assembly
of the membrane-attack complexes (MAC) (7, 8). MAC forms
channels or pores on the cell surface of pathogens, leading to the
destruction of infected cells and the death of foreign pathogens
(6–8).

In mammals, the molecule weight of C3 is about 190 kDa, and
C3 is composed of two polypeptide chains a and b connected by
disulfide bonds, and contains a highly conserved GCGEQ motif
in a chain (9, 10). The mutation or deletion of the C3 gene leads
to a variety of immune diseases, and increases bacterial infections
(11). Previous studies have shown that the C3-deficient mice
lacked of antibody response to an exogenous antigen and showed
decreased immune function (12, 13). In human, hereditary C3
deficiency can cause severe recurrent infections and immune
complex disorders (14).

In the cascade reaction of complement activation, C3 convertase
cleaves C3 to produce C3a and C3b (6). In mammals, C3a is also
known as anaphylatoxin, and it is derived from the N-terminal
region of C3 a chain (15). C3a consists of 74-78 amino acids and
molecule weight is approximately 10 kDa (15). Previous studies
indicated that C3a can bind to specific cell surface receptors and
induce chemotaxis and phagocytosis to eliminate pathogen (16–
19). In human, recombinant or synthetic C3a can induce the
chemotaxis of eosinophils and mast cells, and indirectly activate
neutrophils (20–22). In mammals, C3a induces multiple immune
responses, including stimulating respiratory burst (20, 21, 23),
regulating tumor necrosis factor-a and interleukin 1b expression
(22), and killing bacteria and fungi (24, 25).

In teleost, C3 has been cloned and identified in several fish
species, including olive flounder (26), southern catfish (27), spotted
wolfish (28), rainbow trout (29), Atlantic salmon (30), zebrafish
(31), andorange-spotted grouper (32). In teleost, expressionpattern
of C3 was determined in various tissues with or without pathogen
infection, and C3 transcripts was significantly impacted by
environment stress (pH and temperature) in tissues (27, 33). In
rainbow trout and gilthead sea bream,mature C3 has been purified
from serum (34, 35), however, the function of C3 is less known in
fish. In Branchiostoma japonicum, recombinant C3a can stimulate
chemotaxis of macrophages, and enhance phagocytosis and
respiratory burst of macrophage (36). In rainbow trout, C3a is
also reported to enhance phagocytosis of head kidney leukocytes
(37). In this study, with an aim to gain more insights into the
function of teleost C3 and C3a, we examined the biological role of
Japanese flounder (Paralichthys olivaceus) C3 (PoC3) and C3a
(PoC3a) in complement activation and antibacterial
immune defense.
2 MATERIALS AND METHODS

2.1 Ethics Statement
All experiments involving live animals conducted in this study
were approved by the Ethics Committee of Institute of
Oceanology, Chinese Academy of Sciences. All methods were
carried out in accordance with the relevant guidelines, including
any relevant details.
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2.2 Fish
Clinically healthy Japanese flounders (average 24.3 g) were
purchased from a local fish farm (Haiyang, Qingdao, China).
The fish were acclimatized in the laboratory for 2 weeks at 20°C
in aerated seawater prior to the study. Before the experiment, fish
were randomly sampled and verified to be absent of bacterial
pathogens as reported previously (38). For tissue collection, fish
were euthanized as reported previously (39).

2.3 Bacterial Strains and
Culture Conditions
Baci l lus subt i l i s , Micrococcus luteus , Pseudomonas
fluorescens TSS, Vibrio anguillarum C312, Edwardsiella
tarda TX1, Vibrio harveyi T4D, and Streptococcus iniae SF1 are
pathogenic bacteria preserved in the laboratory (40–42).
Escherichia coli DH5a and BL21 (DE3) were purchased from
TransGen (Beijing, China). V. anguillarum, V. harveyi, E. tarda,
P. fluorescens, and B. subtilis were inoculated into Luria-Bertani
(LB) broth and grew overnight at 28°C. E. coli was inoculated
into LB and grew overnight at 37°C. S. iniae were inoculated to
tryptic soy broth (TSB) and grew overnight at 28°C.

2.4 Sequence Analysis
BLAST program was used to analyse the amino acid sequence of
PoC3 (GenBank accession no. BAA88901.1) at the National
Center for Biotechnology Information (NCBI). Domain search,
theoretical molecular mass and pI, multiple sequence alignment,
and phylogenetic analysis were performed as described
previously (38).

2.5 Real-Time Quantitative PCR
2.5.1 PoC3 Expression in Fish Tissues Under Normal
Physiological Conditions
Under normal condition, different tissues (intestine, head kidney,
blood, liver, spleen, heart, gill, muscle, and brain) were taken
aseptically from Japanese flounder (5 fish) as above. Total RNA
extraction and cDNA synthesis of each tissue were performed as
described previously (38, 43). The qRT-PCR was carried out with
primers F1 (5’-GGCTCAACTCAGGCTACCATT-3’) and R1
(5 ’ -GAGGTAGAGCATAATACAGCGACA-3 ’ ) . The
expression level of PoC3 was analyzed using comparative
threshold cycle method (2−DDCT) with b-actin (ACTB) as an
internal reference. All data were given in terms of mRNA levels
relative to that of ACTB and expressed as means plus or minus
standard errors of the means (SEM).

2.5.2 PoC3 Expression During Bacterial Infection
E. tarda and V. anguillarum are common fish pathogens, and
these bacteria were cultured and resuspended in PBS to 107 CFU/
ml as described previously (38). Japanese flounders were
randomly divided into three groups (20/group) and injected
intramuscularly with 100 ml E. tarda, V. anguillarum or PBS. At
6, 12, 24, and 48 h post-infection, blood, spleen and head kidney
were collected from 5 fish, and qRT-PCR was performed to
detect the expression of PoC3 as above. The a-tubulin (TUBA)
gene was used as an internal reference gene in blood and spleen,
February 2022 | Volume 13 | Article 813173
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and 18S rRNA was used as an internal reference gene in head
kidney as reported previously (44).

2.6 Binding Assay of PoC3 to
Bacteria in Serum
Purification of PoC3 and preparation of mouse anti-PoC3
polyclonal antibody were described previously (45, 46). V.
harveyi, E. tarda, E. coli, S. iniae, V. anguillarum and P.
fluorescens were grown to mid-log phase as described above.
The bacterial cells were harvested by centrifugation and washed
with PBS. The bacteria were adjusted to 1×109 CFU/mL in PBS.
Serum was added to the bacterial suspension and incubated at
room temperature for 1 h. For the control sample, PBS was
added to the bacterial suspension. After incubation, the bacteria
were centrifuged and washed with PBS for 3 times. The collected
bacteria were lysed with 8 M urea, centrifuged at 10,000 rpm for
2 min, and the supernatant was taken for Western blot analysis
(45). The interaction between serum PoC3 and bacteria was
detected by ELISA as reported previously (47). Bacteria were
cultured and resuspended in coating buffer (15 mM Na2CO3, 35
mM NaHCO3, pH 9.6) to 108 CFU/ml as above, and were
incubated in the 96-well ELISA plates (Corning Incorporated,
New York, USA) at 4°C for overnight. After the sealed with 5%
skim milk powder (Solarbio, Beijing, China), the plates were
incubated with different dilutions fold of Japanese flounder
serum (1/2, 1/4, 1/8, and 1/16) or PBS (control) at 22°C for
2 h, and washed with PBST. Mouse anti-PoC3 polyclonal
antibody were added to the respective plates. The plates were
incubated at 37°C for 1 h and washed three times in PBST. Goat
anti-mouse IgG-horseradish peroxidase (HRP) antibody
(Abcam, Cambridge, UK) was added to the plates, and the
plates were incubated at 37°C for 1 h. Subsequent ELISA assay
was determined as reported previously (47).

2.7 Bacterial Killing Assay
V. harveyi, E. tarda, E. coli, S. iniae, V. anguillarum and P.
fluorescens were cultured as above, harvested by centrifugation
and resuspended in PBS to 106 CFU/ml as above. Purified native
PoC3 or bovine albumin (BSA) was added to the bacterial
suspension at the final concentration of 12.5 µg/ml, 25 µg/ml,
50 µg/ml, or 100 µg/ml. For the control sample, PBS was added to
the bacterial suspension. The mixture was incubated at room
temperature for 1 h and then plated on LB or TSB agar plates as
described previously (46). The plates were incubated at 28°C for
24 h, and the colonies that appeared on the plates were counted.

2.8 PoC3 Knockdown
PoC3 knockdown was performed by small RNA (siRNA)
interference as reported previously (47). Briefly, to select PoC3
specific siRNA, three different siRNA targeting PoC3 were
inserted into the siRNA expression vector pRNAT-CMV3.1
(GenScript, Piscataway, USA) at BamHI/AlfII sites, resulting in
plasmids pPoC3si-1, pPoC3si-2, and pPoC3si-3. In addition, the
plasmid pPoC3siC, which expresses a scramble siRNA, was
constructed in the same fashion. To examine the efficiency of
the siRNA plasmids, four groups (N = 5) of Japanese flounder
Frontiers in Immunology | www.frontiersin.org 3
(average 20.3 g) were injected intramuscularly with each of the
plasmids (20 mg/fish) or with PBS. At 7 d post-plasmid
administration, expression of PoC3 in blood, kidney, and spleen
was determined by qRT-PCR as described above. The plasmid
with the strongest inhibitory effect on PoC3 expression was
renamed pPoC3si. This screening experiment was performed
three times. The siRNA sequences expressed by pPoC3si and
pPoC3siC are 5’-CGAACAGTATGAGTGTGTTC-3’ and 5’-
CAGTAGGTAACGAACCTGAC-3’ respectively.

2.9 Serum Hemolytic and
Bactericidal Activity
Serum was prepared from Japanese flounder containing
pPoC3si, pPoC3siC or PBS (control) and was diluted serially
in Hank’s Balanced Salt Solution (HBSS) (Solarbio, Beijing,
China). Hemolytic activity and bactericidal activity assay were
determined as reported previously (45, 48). For hemolytic
activity, the control sample at 1/4 serum dilution was defined
as 100% for easy of comparison. For bactericidal activity, the
control sample at 1/8 serum dilution was defined as 100% for
easy of comparison.

2.10 Effect of PoC3 Knockdown on
Bacterial Infection
E. tarda was cultured as above and resuspended in PBS to 1×108

CFU/ml. Japanese flounder were divided randomly into three
groups (N = 15) and administered with pPoC3si, pPoC3siC or
PBS (control) as above. At 7 d post-plasmid administration, the
fish were infected with 100 ml E. tarda as described above. At
12 h, 24 h, and 48 h post-infection, blood, spleen, and kidney
were taken from the fish (5 fish/time point) and examined for
bacterial recovery by plate count. The experiment was performed
three times.

2.11 Preparation of Recombinant
PoC3a (rPoC3a)
The coding sequence of PoC3awas cloned by PCRwith primers F2
(5′-GGATCCATG GCTACCACTGTAATGAACGTC-3′,
underlined sequence, BamH1 site) and R2 (5′-CTCGAGTCA
CTTGTCATCATCGTCTTTGTAATCGCGAGCCAAGTCGA
GCTGAT-3′, underlined sequence, Xho1 site and Flag-tag). The
PCR product of PoC3a was fused a Flag-tag at the C-terminal. PCR
product was ligated with the T-A cloning vector T-Simple
(TransGen Biotech, Beijing, China), and the recombinant plasmid
was digested with BamH1 and Xho1 to retrieve the PoC3a-
containing fragment, which was inserted into pET28a-Sumo that
contains 6× His tag and SUMO (small ubiquitin-like modifier) tag
at theN-terminal as described previously (49, 50) betweenBamH1/
Xho1 sites, resulting in pEtPoC3a-Sumo. E. coli BL21 (DE3) was
transformed with pEtPoC3a-Sumo (which expresses the rPoC3a-
Sumo) and pET28a-Sumo (which expresses the rSumo). Protein
purification from the transformants was performed as reported
previously (51). Briefly, the transformants were cultured in LB
medium at 37°C to mid-log phase. Isopropyl-b-D-
thiogalactopyranoside was added to the culture to a final
concentration of 0.5 mM. After growing at 16°C for an additional
February 2022 | Volume 13 | Article 813173
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16 h, the cells were harvested by centrifugation, and recombinant
proteins were purified using nickel-nitrilotriacetic acid columns
(GE Healthcare, Piscataway, USA), as recommended by the
manufacturer. The purified proteins were dialyzed for 24 h
against PBS and treated with Triton X-114 to remove endotoxin
as reported previously (52). The reconstituted proteinswere treated
with Sumo Protease (Thermo,Waltham, America) to remove His-
and Sumo-tag. The proteins were analyzed by SDS-PAGE and
visualized after staining with Coomassie brilliant blue R-250.

2.12 Binding Assay of rPoC3a
2.12.1 Binding to Bacteria
The interaction between protein and bacteria was detected by
ELISA as reported previously (47). Eight bacteria were cultured
and resuspended in coating buffer (15 mM Na2CO3, 35 mM
NaHCO3, pH 9.6) to 108 CFU/ml as above, and were incubated
in the 96-well ELISA plates (Corning Incorporated, New York,
USA) at 4°C for overnight. After the sealed with 5% skim milk
powder (Solarbio, Beijing, China), the plates were coated with
different concentrations (0.3125 mg/ml, 0.625 mg/ml, 1.25 mg/ml,
2.5 mg/ml, 5 mg/ml, and 10 mg/ml) of rPoC3a, rSumo (10 mg/ml)
or PBS (control) at 22°C for 2 h, and washed with PBST. Mouse
anti-Flag antibody targeting Flag-tagged rPoC3a or mouse anti-
His antibody targeting His-tagged rSumo (Abcam, Cambridge,
UK) were added to the respective plates. The plates were
incubated at 37°C for 1 h and washed three times in PBST.
Goat anti-mouse IgG-horseradish peroxidase (HRP) antibody
(Abcam, Cambridge, UK) was added to the plates, and the plates
were incubated at 37°C for 1 h. Subsequent ELISA assay was
determined as reported previously (47).

2.12.2 Binding to Peripheral Blood Leukocytes (PBL)
PBL were prepared from Japanese flounder with Percoll and
PBL-protein binding was determined by microscopy as reported
previously (53). Briefly, PBL were resuspended in PBS to 107

cells/ml and added to glass slide (Citotest, Jiangsu, China) to
allow the cells to settle. After 1 h, the supernatant was removed,
and the slide was blocked with 5% skim milk powder in PBS and
incubated at 22°C for 1 h. The slide was washed with PBS, and
rPoC3a (50mg/ml), rSumo (50mg/ml) and PBS (control) were
added to the slide. The slide was incubated at 22°C for 1 h and
washed with PBS for three times. Mouse anti-Flag antibody
targeting Flag-tagged rPoC3a or mouse anti-His antibody
targeting His-tagged rSumo was added to the slide. The slide
was incubated at 37°C for 2 h and washed as above. Fluorescein
isothiocyanate (FITC)-labeled goat antimouse IgG (Abcam,
Cambridge, UK) was added to the slide. The slide was
incubated at 37°C for 1 h in dark and washed as above. The
cells were fixed with 4% paraformaldehyde for 0.5 h and washed
as above. The cells were stained with 4, 6-diamino-2-
phenylindole (DAPI) (Solarbio, Beijing, China) and examined
with a confocal microscope (Carl Zeiss, Oberkochen, Germany).

2.13 Chemotaxis Assay
PBL were prepared as above. Chemotaxis assay was carried out in
24-well Costar Transwell (Corning Costar Co., Cambridge, MA,
USA) as described previously (54). Briefly, different concentrations
Frontiers in Immunology | www.frontiersin.org 4
(6.25 mg/ml, 12.5 mg/ml, 25 mg/ml and 50 mg/ml) of rPoC3a and
rSumo were diluted in L-15 medium. As a control, PBS was
similarly diluted. Six hundred microliters of each of the dilutions
was applied to the lower chamber of Transwell. The upper
chamber containing a poly-carbonate membrane of 3 mm pore
size was placed on top of the lower chamber. One hundred
microliters of PBL (106 cells/ml) were added to the upper
chamber, and the plate was incubated at 22°C for 40 min. The
number of cells migrated into the lower chamber was counted
with a microscope. Chemotactic index was presented as fold
increase in the number of migrated cells induced by purified
recombinant protein compared to that induced by PBS. To
distinguish between chemotaxis and chemokinesis, the above
assay was also performed with the same concentration of
rPoC3a present in both the upper and lower chambers of
Transwell. The assay was performed independently for
three times.

2.14 Effect of rPoC3a on Bacterial Infection
Japanese flounder were divided randomly into three groups (N =
15) and rPoC3a, rSumo or PBS (control) were injected
intraperitoneally at the dose of 20 mg/fish. E. tarda was
cultured as above and resuspended in PBS to 10 6 CFU/ml. At
6 h post-protein administration, the fish were infected with 100
ml E. tarda as described above. At 12 h, 24 h, and 48 h post-
infection, blood, spleen and kidney were taken from the fish (5
fish/time point) and examined for bacterial recovery by plate
count. The experiment was performed three times.

2.15 Statistical Analysis
All experiments were performed three times, and statistical
analyses were carried out with SPSS 18.0 software (SPSS Inc.,
Chicago, IL, USA). Data were analyzed with analysis of variance
(ANOVA), and statistical significance was defined as P < 0.05.
3 RESULTS

3.1 PoC3 Sequence Analysis
PoC3 is composed of 1655 residues, which has a calculated
molecular mass of 184.7 kDa and a theoretical pI of 6.05. PoC3
is composed of a chain (residues 663 to 1653) and ß chain
(residues 1 to 662), and possesses 6 domains, A2M_N_2 (a2-
macroglobulin family N-terminal region) domain (residues 457 to
597), Anato (anaphylatoxin-like domain) domain (residues 685 to
720), A2M (a2-macroglobulin family domain) domain (residues
760 to 860), and Thiol-ester_cl (a2-macroglobulin thiol-ester
bond forming region) domain (residues 992 to 1021),
A2M_recep (a2-macroglobulin receptor) domain (residues 1385
to 1479), and C345C (netrin C-terminal domain) domain
(residues 1518 to 1637) (Figure 1). The predicted derivative C3
activation fragment includes C3a, C3dg, and C3f (Figure 1). PoC3
contains the highly conserved sequence GCGEQ (residues 1002 to
1006) of the C3 family. DNAMAN analysis showed that PoC3
shares 42.6% to 79.2% overall sequence identities with the C3 of
Miichthys miiuy, Larimichthys crocea, Anarhichas minor, Oryzias
latipes-1, Oryzias latipes-2, Cyprinus carpio-H2, Cyprinus
February 2022 | Volume 13 | Article 813173
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FIGURE 1 | Sequence alignment of PoC3 homologues. Dots denote gaps introduced for maximum matching. Numbers in brackets indicate overall sequence
identities between PoC3 and the compared sequences. The consensus residues are in blue, the residues that are ≥75% identical among the aligned sequences are
in black, and the residues that are ≥50% identical among the aligned sequences are in grey. The A2M_N_2, ANATO, A2M, Thiol-ester_cl, A2M_recep and C345C
domains are marked with black arrows. Derived C3 activation fragment C3a, C3dg, and C3f are marked with red box. The C3 convertase cleavage site of C3 is
marked in black box. The highly conserved sequence GCGEQ of the C3 family is marked with a yellow box. The GenBank accession numbers of the aligned
sequences are as follows: PoC3, BAA88901.1; Miichthys miiuy, AFC89899.1; Larimichthys crocea, AHZ41228.1; Anarhichas minor, CAC29154.1; Oryzias latipes-1,
NP_001098552.1; Oryzias latipes-2, NP_001098553.1; Cyprinus carpio-H2, BAA36620.1; Cyprinus carpio-H1, BAA36619.1; Danio rerio, NP_001032313.2; Sus
scrofa, NP_999174.1; Rattus norvegicus, NP_058690.2; Homo sapiens, NP_000055.2; Bos taurus, NP_001035559.2.
Frontiers in Immunology | www.frontiersin.org February 2022 | Volume 13 | Article 8131735
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carpio-H1, Danio rerio, Sus scrofa, Rattus norvegicus, Homo
sapiens, and Bos Taurus (Figure 1). Phylogenetic analysis
showed that the constructed evolutionary tree was mainly
divided into two branches, among which PoC3 was mainly
clustered together with teleost C3, including Oryzias latipes,
Miichthys miiuy, Anarhichas minor, Larimichthys crocea, Danio
rerio and Cyprinus carpio, and it is farther from the branch of
mammals (Figure 2).

3.2 Expression of PoC3 in Absence and
Presence of Bacterial Infections
qRT-PCR analysis showed that constitutive PoC3 expression
occurred, in increasing order, in the brain, gill, muscle, blood,
head kidney, spleen, heart, intestine, and liver of Japanese
flounders, with the expression level in liver drastically higher
than the expression of other tissues (Figure 3A). When the fish
were infected with the bacterial pathogen E. tarda, significant
inductions of PoC3 expression were detected in blood at 12 and
24 h post-infection (hpi), with the highest level of induction
occurring at 24 hpi (17.9-fold) (Figure 3B). In spleen and head
kidney, E. tarda infection induced PoC3 expression to significant
levels at 6, 12, 24, and 48 hpi, with the highest expression level of
induction occurring at 24 hpi (23.6- and 21.7-fold respectively)
(Figure 3B). When the fish were challenged with V. anguillarum,
PoC3 expression was significantly upregulated at 6, 12, 24, and
48 hpi in blood and head kidney, and the expression of PoC3 in
Frontiers in Immunology | www.frontiersin.org 6
spleen increased significantly at 6, 12, and 24 hpi (15.8-fold), and
fell back to normal level at 48 hpi (Figure 3C).

3.3 Binding and Bactericidal Effect of
PoC3 to Bacteria
In order to examine the binding effect of PoC3 to bacteria in the
serum, the different bacteria were incubated with the serum of
Japanese flounder or PBS (control). The western blot analyses
with mouse anti-PoC3 polyclonal antibody (45) showed that
PoC3 in the serum can bind to V. harveyi, E. tarda, E. coli, S.
iniae, V. anguillarum and P. fluorescens, among which V.
anguillarum had the strongest binding ability, but no binding
phenomenon was found in the control group (Figure 4A). In
addition, PoC3 could be degraded into activated fragments after
incubation with bacteria in serum, including C3c and C3d.
ELISA analysis showed that PoC3 in serum exhibited apparent
binding to E. tarda, E. coli, P. fluorescens, V. anguillarum, V.
harveyi, and S. iniae in a manner that depended on the
concentration of serum (Figure 4B). To examine the
bactericidal effect of the PoC3, different concentrations of
PoC3 were incubated with V. harveyi, S. iniae, E. tarda, E. coli,
V. anguillarum and P. fluorescens. The results showed that PoC3
exhibited a direct bactericidal activity to V. harveyi and S. iniae in
a manner that depended on the dose of the protein (Figure 5),
whereas it had no significant effect on the survival of E. tarda,
E. coli, V. anguillarum and P. fluorescens (data not shown).
FIGURE 2 | Phylogenetic analysis of PoC3. The phylogenetic tree was constructed using the neighbor-joining method of MEGA-X based on the amino acid sequences
from teleost and mammals. Data were analyzed using p-distance, with gaps removed by pairwise deletion. The topological stability of the tree was evaluated by 1000
bootstrap replications. The GenBank accession numbers of the phylogenetic sequences are as follows: Oryzias latipes-2, NP_001098553.1; Miichthys miiuy,
AFC89899.1; Paralichthys olivaceus, BAA88901.1; Anarhichas minor, CAC29154.1; Oryzias latipes-1, NP_001098552.1; Larimichthys crocea, AHZ41228.1;
Danio rerio, NP_001032313.2; Cyprinus carpio-H1, BAA36619.1; Cyprinus carpio-H2, BAA36620.1; Homo sapiens, NP_000055.2; Rattus norvegicus, NP_058690.2;
Bos taurus, NP_001035559.2; Sus scrofa, NP_999174.1.
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3.4 Involvement of PoC3 in Complement
Activation and Bacterial Infection
To examine the effect of PoC3 on complement activation, PoC3
expression in Japanese flounder was knocked down by RNA
interference (RNAi). qRT-PCR analysis showed that in Japanese
flounder administered with pPoC3si-2, which expresses a PoC3-
targeting small interfering RNA (siRNA), the expression of PoC3 in
blood, spleen, and kidney was most significantly inhibited
compared to that in the control fish (Figure S1). Therefore, we
used pPoC3si-2 for the knockdown experiment and renamed
pPoC3si-2 as pPoC3si. After incubation with rabbit erythrocytes,
the serum of the fish treated with pPoC3si exhibited significantly
decreased hemolytic activities at 1/4 and 1/8 dilution fold and
bactericidal activities at 1/8, 1/16, and 1/32 dilution fold, whereas the
serum of the fish treated with pPoC3siC exhibited hemolytic and
bactericidal activities similar to that of the serum from the control
fish (Figures 6A, B). To examine the effect of PoC3 knockdown on
bacterial infection, pPoC3si- and pPoC3siC-treated Japanese
Frontiers in Immunology | www.frontiersin.org 7
flounder were infected with E. tarda, and bacterial recoveries
from blood, spleen and kidney were determined at 12, 24, and 48
hpi. The results showed that in all examined tissues pPoC3si-treatd
fish exhibited significantly higher bacterial recoveries than the
control fish at all examined time points (Figures 6C–E). No
apparent difference in bacterial recovery between pPoC3siC-
treated fish and control fish was observed.

3.5 Binding of rPoC3a to Bacteria
To examine the protein interact with bacteria, rPoC3a and rSumo
were purified from E. coli as a Flag- or His-tagged protein (Figure
S2), and the Gram-negative bacteria E. tarda, E. coli, P. fluorescens,
V. anguillarum, and V. harveyi, and the Gram-positive bacteria S.
iniae, M. luteus and B. subtilis were incubated with rPoC3a and
rSumo in different concentrations. ELISA analysis showed that
rPoC3a exhibited apparent binding to E. tarda, E. coli, P.
fluorescens, V. anguillarum, V. harveyi, S. iniae, M. luteus and B.
subtilis in a manner that depended on the dose of the protein
B

C

A

FIGURE 3 | The expression of PoC3 in Japanese flounder tissues with and without bacterial infection. (A) PoC3 expression in the brain, gill, muscle, blood, head
kidney, spleen, heart, intestine, and liver of Japanese flounder was determined by quantitative real time RT-PCR. For convenience of comparison, the expression
level in brain was set as 1. (B, C) PoC3 expression after bacterial challenge. Japanese flounder were infected with or without (control) Edwardsiella tarda (B) or Vibrio
anguillarum (C) and PoC3 expression in blood, spleen, and head kidney was determined by quantitative real time RT-PCR at various time points. In each case, the
expression level of the control fish was set as 1. Data are shown as means ± SEM (N = 3). N, the number of times the experiment was performed. **P < 0.01;
*P < 0.05.
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(Figure 7). However, rPoC3a had no apparent bactericidal activity
on E. tarda, E. coli, P. fluorescens, V. anguillarum, V. harveyi, S.
iniae, M. luteus and B. subtilis (data not shown).
3.6 Effect of rPoC3a on Peripheral Blood
Leukocytes (PBL)
Immunofluorescence microscopy showed that following incubation
of PBL with rPoC3, the protein was detected on the PBL cells
(Figure 8A). In contrast, when PBL were incubated similarly with
rSumo, no binding of the protein was detected on the PBL cells
Frontiers in Immunology | www.frontiersin.org 8
(Figure 8A). To further examine the effect of rPoC3, the
chemotactic activity of rPoC3a was determined. The results
showed that rPoC3a could induce the migration of PBL in a
dose-dependent manner (Figure 8B). At the concentrations of
6.25, 12.5, 25, and 50 mg/ml, the numbers of migrated cells
induced by rPoC3a were 2.6-, 5.5-, 9.6-, and 16.2-fold higher,
respectively, compared to the control. When rPoC3a was added
to both the upper and lower chambers of the transwell, cell
migration was significantly inhibited, which suggested that
migration was mediated by rPoC3a-induced chemotaxis rather
than by chemokinesis (data not show). Consistently, microscopy
B

A

FIGURE 4 | Serum PoC3 binding to bacteria. (A) Different bacteria were incubated with or without (control) serum for 1 h, and Western blot was performed to
detect bacteria-bound serum C3 with mouse anti-PoC3 polyclonal antibody. Lane 1, Japanese flounder serum. Lane 2, protein marker. Lane 3 to 8 are Vibrio
harveyi, Edwardsiella tarda, Escherichia coli, Streptococcus iniae, Vibrio anguillarum and Pseudomonas fluorescens. (B) Different bacteria were incubated with or
without different dilutions fold Japanese flounder serum, and PoC3 in serum interacted with bacteria was determined by ELISA. Data are the means of three
independent assays and presented as means ± SEM.
FIGURE 5 | The bactericidal activity of PoC3. Vibrio harveyi and Streptococcus iniae were incubated with or without different concentrations of PoC3 or BSA for 1 h.
The bacterial survival was determined by plate count. Data are shown as means ± SEM (N = 3). N, the number of times the experiment was performed.
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results showed that rPoC3a induced migration of PBL in a manner
that depended on the dose of the protein (Figure 8C).

3.7 Effect of rPoC3a Against Bacterial
Infections
To examine the effect of rPoC3a on pathogen infection, Japanese
flounder were infected with E. tarda in the presence of rPoC3a,
rSumo or PBS (control), and bacterial dissemination into blood,
kidney, and spleen was subsequently determined at 12, 24, and
48 hpi. The results showed that at 12, 24, and 48 hpi, the amounts
of E. tarda recovered from the three tissues in the fish infected
with E. tarda plus rPoC3a were significantly lower than those
from the control fish (Figure 9). For bacterial infections, the
presence of rSumo had no apparent effect on pathogen burdens
in the infected fish (Figure 9).
4 DISCUSSION

In this study, we analyzed the sequence and expression of Japanese
flounder C3, and examined biological effects of PoC3 and its
activation fragment PoC3a. In mammals, the C3 is composed of
two polypeptide chains a and ß, and contains macroglobulin
domain, anaphylatoxin domain, thioester-containing domain and
C345C domain (9, 55). Previous studies reported that domains of
Frontiers in Immunology | www.frontiersin.org 9
C3 have a variety of biological functions and play an important role
in the process of immunity (56–58). In our study, sequence analysis
showed that PoC3 is also composed of two polypeptide chains and
possesses six domains: A2M_N_2, A2M, A2M_recep, Thiol-
ester_cl, ANATO and C345C. These results suggested that PoC3
were basically consistent with higher vertebrates and even
mammalian C3 in terms of structure and domains. The GCGEQ
sequence is a highly conserved region in C3 of all species, and
responsible for C3 to covalently link to the target molecule (10). In
this study, we found that PoC3 contained the GCGEQ sequence,
and a C3 convertase cleavage site was predicted in the LAR site.
Sequence analysis revealed that PoC3 share high sequence
identities with teleost C3. Furthermore, phylogenetic analysis
showed that teleost C3 formed a clade that was distinctly
separated from that formed by other vertebrate C3. These
observations suggest that PoC3 may play an evolutionarily
conserved role essential to the biological function of C3.

In mammals, C3 is mainly synthesized in liver cells (59). In
southern catfish, in situ hybridization and RT-PCR indicated that
C3 was highly expressed in the liver (27). In the grouper, mRNA
expression level of C3 in liver was drastically higher than the other
tissues (32). In Atlantic salmon, common carp, and wolfish, C3 also
had high levels of expression in liver (29, 30, 60). In our study, the
PoC3 was detected ubiquitously in all examined tissues of healthy
fish, with relatively higher levels occurring in liver, intestine and
BA

D EC

FIGURE 6 | Effect of PoC3 knockdown on complement activation and bacterial infection. (A, B) Effect of PoC3 knockdown on hemolytic activity and bactericidal
activity. Serum from Japanese flounder treated with pPoC3si, pPoC3siC, or PBS (control) was serially diluted and incubated with rabbit red blood cells (A) and
Escherichia coli (B), respectively. At 1 h after incubation, the hemolytic (A) and bactericidal (B) activities of the serum were determined. (C–E) Effect of PoC3
knockdown on bacterial infection. Japanese flounder pre-administered with or without (control) pPoC3si or pPoC3siC were infected with Edwardsiella tarda, and
bacterial numbers in blood (C), spleen (D) and kidney (E) were determined at various time points. Data are shown as means ± SEM (N = 3). N, the number of times
the experiment was performed. *P < 0.05, **P < 0.01.
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heart, and low levels occurring in brain, which was similar to the C3
expression profiles in other teleost. Pathogen infection will increase
the expression level of complement components (8, 27). In dojo
loach, the expression level of C3 was significantly upregulated by
Aeromonas hydrophila challenge in liver, spleen, skin, and gill (61).
The mRNA expression level of C3 was induced after LPS
stimulation in rainbow trout (62). Similar to these reports, in this
study, the expression of PoC3 was induced to significant extents in
blood, spleen and head kidney by E. tarda or V. harweyi. These
results suggested that PoC3 was involved in host immune response
against bacterial infection.

In mammals, C3 played an important role in immunity involved
in opsonization and cytolysis of pathogens (63). Activation of the
complement pathway results in cleavage of C3, and release of the
anaphylatoxin C3a and deposition of C3b on the bacterial surface
(64). After complement activation, C3b is cleaved to iC3b by factor I
in the presence of the cofactor, and formation C3 final degradation
products C3c and C3d (65). Previous studies found that serum C3
can bind to several pathogens, including Legionella pneumophila
(66), Chlamydia trachomatis (67), Leishmania major (68),
Leishmania mexicana (69), Trypanosoma cruzi (70),
Mycobacterium leprae (71) and Mycobacterium tuberculosis (72).
In this study, we investigated the binding effect of serum PoC3 to
bacteria, and these results indicated that PoC3 can bind to several
Gram-negative and Gram-positive bacteria in complement
activation process. However, in previous report, there is no
conclusion that C3 can directly kill bacteria. In teleost, several
complement components can bind and inhibit the growth of
bacteria (73, 74). In our study, we found that PoC3 can have a
direct bactericidal activity to V. harveyi and S. iniae. These results
indicated that C3 of teleost may have multiple strategies to eliminate
pathogens and enhance innate immunity. Based on these results, we
speculated that C3 interaction with bacteria played an important
role in the elimination of bacterial infection.

In murine model, C3-deficient mice lack of antibody
responded to T-cell-dependent antigen, resulting in impaired
host immune response (12, 13). C3-deficient mice infected by
Frontiers in Immunology | www.frontiersin.org 10
Streptococcus pneumoniae exhibited significantly infection in the
lungs and bloodstream, leading to an overwhelming
inflammatory response and decreased survival times (75).
Previous studies have shown that C3-deficient mice was
significantly reduced in the ability of removing E. coli than
wild-type mice, and the lost function in C3-deficient mice was
restored by complementation with C3 protein (76). In lamprey,
C3 knockdown decreased the survival rate of larvae against the
infection with A. hydrophila (77). In pervious study, we found
that recombinant trypsin-like serine protease domain of Fcator I
inhibited complement activation by degrading C3b in the serum
of Japanese flounder (45). Based on the previous results, in this
study, we found that in Japanese flounder administered with
pPoC3si, the mRNA level of PoC3 was significantly decreased,
suggesting that PoC3 expression was successfully interfered by
the small RNA expressed from the plasmid. In subsequent
experiments, we found that pPoC3si treated fish serum
exhibited significantly lower hemolytic and bactericidal
activities than untreated normal serum or pPoC3siC-treated
fish serum. Following exposure to E. tarda infection, fish with
PoC3 knockdown displayed significantly increased number of E.
tarda than the control fish. These results are consistent with the
decreased hemolytic and bactericidal activities in pPoC3si-
treated fish and suggest that PoC3 plays a positive role in the
anti-infection immunity of Japanese flounder.

C3a has been demonstrated to possess a direct and potent
antimicrobial effect against both Gram-negative and Gram-
positive bacteria (25). In B. japonicum, recombinant BjC3a
could inhibit the growth of bacteria in a dose-dependent
manner (78). In mammals, C3a bound to the cell surface of
bacteria, and induced bacterial membrane rupture (25). C3a-
derived peptide also could bind to bacteria membrane (24). We
found that rPoC3a exhibited binding activities to all eight
examined bacterial species from Gram-positive and Gram-
negative bacteria, the results indicating that rPoC3a have a
wide range of bacterial targets. The binding indexes differed for
different bacteria, suggesting that rPoC3a had different binding
FIGURE 7 | Binding of rPoC3a to bacteria. Edwardsiella tarda, Escherichia coli, Pseudomonas fluorescens, Vibrio anguillarum, Vibrio harveyi, Streptococcus iniae,
Micrococcus luteus and Bacillus subtilis were incubated with or without different concentrations of rPoC3a, and bacteria-protein binding was determined by ELISA.
Data are the means of three independent assays and presented as means ± SEM.
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affinities for different types of bacteria. In addition, we also found
that rPoC3a could not affect the survival and growth of bacteria.
These results suggested that interaction of rPoC3a with target
bacteria probably played a role in anti-bacterial immunity. In
mammals, C3a has been shown to induce chemotaxis for
eosinophils and mast cells, and promote the inflammation in
immune response (36). In teleost, previous study has proved that
recombinant C3a stimulated chemotaxis of macrophages (36). In
mammals, C3a performed biological activity via binding to C3a
receptors (C3aR), and C3a–C3aR interactions initiate
chemotaxis via a C3aR-independent mechanism (79). In
rainbow trout, C3a can bind to head kidney cells and cause
respiratory burst (78). We also found that rPoC3a could bind to
Japanese flounder PBL, and induce the migration of PBL. These
results indicate that, as observed in higher vertebrates, rPoC3a
Frontiers in Immunology | www.frontiersin.org 11
may have a pro-inflammatory effect in the immune response of
Japanese flounder by enhancing the activity of immune cells.
Previous studies have shown that various immune molecules
could bind to different glycoconjugates on bacterial cell surfaces
(80). In mammals, C3a can bind to C3aR on the cell membrane
(17, 79). We speculate that rPoC3a may bind to C3aR on
Japanese flounder PBL. So rPoC3a likely binds to PBL and
bacteria via different mechanisms. In mice, injection the C3a-
derived peptide into mice significantly reduced the infection of
Streptococcus pyogenes in the spleen (25). In mammals, C3a can
interact with C3aR in the membrane of phagocytes and mast
cells, inducing the cell migration and antibacterial effect (81, 82).
In agreement with these observations, our in vivo study showed
that in the presence of rPoC3a, E. tarda dissemination and
colonization in tissues of Japanese flounder were significantly
B

C

A

FIGURE 8 | Binding of rPoC3a to peripheral blood leukocytes (PBL). (A) PBL was incubated with or without (control) rPoC3a or rSumo, and FITC-labeled goat anti-
mouse IgG was used to detect the proteins bound to the cells. The cells were stained with DAPI and observed with a confocal microscope. Bar, 10mm.
(B, C) Chemotactic activity of rPoC3a. The chemotactic activity of rPoC3a in various concentrations against PBL was determined using transwell migration assay.
Chemotactic index was presented as fold increase in the number of migrated cells induced by rPoC3a compared to that induced by PBS (control). Data are shown
as means ± SEM (N = 3). N, the number of times the experiment was performed. **P < 0.01; *P < 0.05. (C) The migrated cells induced by the rPoC3a in (B) were
observed under a microscope. Bar, 20mm.
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reduced, suggesting that rPoC3a activated host immune
responses, which resulted in enhanced bacterial clearance.

In conclusion, the results of this study showed that PoC3 is a
structural homologue of C3 and a key factor involved in
complement activation. We demonstrated for the first time
that PoC3 had direct bactericidal effect on certain bacteria. In
addition, PoC3a plays a prominent role in inducing chemotaxis
and antibacterial infection, which supports a role for PoC3a in
antibacterial immunity. These observations provide new insights
into the biological function of C3 and C3a in fish.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The animal studywas reviewed and approved by Ethics Committee
of Institute of Oceanology, Chinese Academy of Sciences.
Frontiers in Immunology | www.frontiersin.org 12
AUTHOR CONTRIBUTIONS

M-fL and MW conceived the study. MW and B-bJ conducted the
experiments and analyzed the data. MW wrote the manuscript.
M-fL edited the manuscript. All authors contributed to the
article and approved the submitted version.
FUNDING

This work was supported by the grants from the National
Natural Science Foundation of China (31972831), the
National Key Research and Development Program of China
(2018YFD0900501), and the Taishan Scholar Program of
Shandong Province.
SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2022.813173/
full#supplementary-material
REFERENCES

1. Volanakis JE. The Role of Complement in Innate and Adaptive Immunity.
In: MD Cooper, H Koprowski, editors. The Interface Between Innate and
Acquired Immunity. Berlin, Heidelberg: Springer Berlin Heidelberg (2002).
p. 41–56.

2. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement
System Part I - Molecular Mechanisms of Activation and Regulation. Front
Immunol (2015) 6:262. doi: 10.3389/fimmu.2015.00262
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