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Abstract

Background: This study analyzes the predictions of a number of promoter predictors on the
ENCODE regions of the human genome as part of the ENCODE Genome Annotation Assess-
ment Project (EGASP). The systems analyzed operate on various principles and we assessed the
effectiveness of different conceptual strategies used to correlate produced promoter predictions
with the manually annotated 5’ gene ends.

Results: The predictions were assessed relative to the manual HAVANA annotation of the 5’
gene ends. These 5’ gene ends were used as the estimated reference transcription start sites.
With the maximum allowed distance for predictions of 1,000 nucleotides from the reference
transcription start sites, the sensitivity of predictors was in the range 32% to 56%, while the
positive predictive value was in the range 79% to 93%. The average distance mismatch of
predictions from the reference transcription start sites was in the range 259 to 305 nucleotides.
At the same time, using transcription start site estimates from DBTSS and H-Invitational
databases as promoter predictions, we obtained a sensitivity of 58%, a positive predictive value of
92%, and an average distance from the annotated transcription start sites of 117 nucleotides. In
this experiment, the best performing promoter predictors were those that combined promoter
prediction with gene prediction. The main reason for this is the reduced promoter search space
that resulted in smaller numbers of false positive predictions.

Conclusions: The main finding, now supported by comprehensive data, is that the accuracy of
human promoter predictors for high-throughput annotation purposes can be significantly
improved if promoter prediction is combined with gene prediction. Based on the lessons learned
in this experiment, we propose a framework for the preparation of the next similar promoter
prediction assessment.
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Background
Complexity of the target
Accurate determination of transcription start sites (TSSs) is

one of the most difficult problems in genomics. The

reference genomic location from which a transcript will be

generated has remained elusive for many years, mainly due

to our insufficient understanding of the transcription initia-

tion process. The transcript promoter region surrounds the

TSS and serves as the docking DNA segment that binds the

preinitiation complex and various transcription factors that

jointly create the biochemical conditions to initiate trans-

cription [1,2]. Consequently, the analysis of promoter

regions for binding sites of transcription factors can reveal

many crucial aspects of how, where and when the transcript

will be generated.

The naive concept of a gene having one TSS was abandoned

long ago. Current data suggest that TSSs can be found

scattered across the gene loci, generally more concentrated

at the 5’ end, but also more downstream, sometimes in exons,

introns, and interestingly in the 3’ untranslated regon (UTR)

[3]. Moreover, one gene region may frequently have several

promoters, and within one promoter several alternative TSS

locations close to each other could be found. To make this

complex picture even more complicated, promoter regions

are frequently shared or overlap each other, such as in

sense/antisense genes and in bidirectionally promoted genes

[4]. All these considerably complicate the development of

strategies for attacking the problem of promoter prediction.

To avoid confusion, in this report, by ‘promoter prediction’

we mean the prediction of the TSS locations and not the

prediction of a region surrounding a TSS.

Potential use of accurate TSS locations
Promoters are among the key genomic control regions for

transcriptional regulation of every gene [1,2,5]. Thus,

accurate TSS location makes determination of promoters

more accurate, which allows for more accurate analysis of

transcriptional regulatory elements necessary for any

subsequent transcriptional regulatory network analyses.

Furthermore, even when there are no expressed sequence

data (expressed sequence tag (EST), cDNA, mRNA or differ-

ent tags such as CAGE (cap-analysis of gene expression),

SAGE (serial analysis of gene expression) and so on), the

computational prediction of promoters and TSSs can allow

for gene discovery.

Historical perspective
Realizing the importance of predicting promoters accurately,

different experimental and computational methods have

been developed. The large number of gene loci in eukaryotic

genes inevitably calls for high-throughput large-scale tech-

nologies for determining TSS locations. Among the most

efficient ones are those based on oligo-capping [6] and CAP-

trapping [7]. Another group of methods is based on the use

of multiple aligned ESTs and cDNA/mRNA fragments, and

an assessment of TSS location as groups of identical 5’ ends

or the most 5’ located end within the same locus. The third

group of methods is based on the assessment of the binding

location of DNA-associated RNA polymerase from ChIP-

chip experiments [8]. However, the TSS location cannot be

determined precisely from these experiments. In summary,

none of the mentioned methods is sufficiently accurate or

complete; this makes it difficult to obtain a proper reference

dataset - one with high coverage and accuracy - to use for

evaluation of promoter predictions.

An alternative to experimental methods are computational

ones, but they generally are imperfect due to our insufficient

understanding of the transcription initiation process.

Several reviews have been published aiming at presenting

the most crucial aspects and principles used in the

construction of promoter prediction systems, as well as in

the assessment of performance of promoter predictors

[9-14]. Solutions proposed [15-31] were based on different

concepts and exhibited various degrees of performance.

PromoterInspector [28] was the first study to present

computational predictions with an acceptable level of false

positives (FPs) with human data, after the first genome scale

evaluation as part of GASP had earlier shown promising

results for Drosophila [32]. Encouraged by this, several

efficient methods were later proposed [15-20,23-27,29-31].

The performance of many of these solutions have been

extensively evaluated in [12].

Two strategies for designing promoter predictors
There is a lot of evidence that in mammalian genomes trans-

cription initiates at various and unusual positions, such as

intergenic regions far from currently known genes, 3’ UTRs

of known protein-coding genes, coding exons, and introns

[3,4,33]. One gene may overlap another and promoters of

such genes could fall anywhere on the body of the other gene

[4]. The destiny of transcripts that are initiated is decided at

various levels in the post-transcriptional processing, and

many such transcripts are later degraded. However, it is

difficult to estimate what proportion of all transcripts that

the cell generates is functional. It is also difficult to

determine which TSSs generate non-functional transcripts

and whether they always generate such transcripts. For a long

time biologists focused on protein-coding genes and this is

one of the reasons that today most of the data we have relate

to that transcript group. However, non-coding transcripts

have recently been recognized as important for regulation of

gene expression. A significant proportion of transcripts also

cannot be accurately classified as being in either the coding or

the non-coding group. For all these reasons it would be

valuable to make the inventory of all TSSs in one genome and

to investigate their functional properties.

For some purposes, a comprehensive list of potential TSSs

may be most useful, even if the list contains FPs and TSSs of

non-functional transcripts; for other applications, a list
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containing fewer FPs and non-functional TSSs may be

better, even if it systematically omits interesting TSSs whose

functions are less common or less well understood. Given

our current state of knowledge, we must choose; predicting

all and only functional TSSs is not currently feasible. Thus,

TSS prediction programs have been designed around two

strategies: use only the local genomic context (that is, model

some aspects of the biological transcription initiation

process or look at distinguishing characteristics of the region

that immediately surrounds the TSS); or also take into

account possible gene presence to restrict the search to

regions that are most likely to contain promoters. The latter

approach may use any of the available methods of gene

prediction, including de novo prediction and prediction

based on aligning ESTs, cDNA sequences, and/or proteins.

It is also possible to utilize the annotation of genes if it is

available. Using evidence about the presence of nearby genes

may considerably enhance the performance of systems that

work by analyzing the local promoter context. In general, on

the genome scale, such a combination will reduce sensitivity

to some extent, but it will significantly reduce the total

number of predictions and will increase specificity.

On the other hand, to understand biological mechanisms of

regulatory regions and to cover broad spectra of such

regions, we probably should not use necessarily gene

identification as a part of a strategy for pinpointing TSSs.

The gene finding models introduce many implicit

assumptions that reduce coverage of various types of TSSs

that could be of interest. Also, linking promoter predictors to

gene finders does not directly model the way in which

transcription is initiated in the cell. A comprehensive

solution is most likely to come from modeling the

information cells use to determine where to initiate

transcription, including the local promoter sequence and its

epigenetic state [34].

Goals of this assessment
The ENCODE Genome Annotation Assessment Project

(EGASP) is explained in detail in the main EGASP report [35].

The main goal of the project has been to assess the accuracy of

prediction of protein coding genes, as well as the completeness

of current human genome annotations of the ENCODE

regions [36] covering approximately 1% of the human genome

sequence. The reference gene set against which all predictions

were assessed was created by manual annotation of the

ENCODE regions by the HAVANA group [37] at the Sanger

Institute, within the GENCODE project [38].

In our study, we attempt to make a critical assessment of the

promoter prediction field in its current state relative to the

HAVANA gene annotation [39] of the ENCODE regions.

Thus, we assessed the extent of correlation of promoter

predictions with the 5’ gene ends of the HAVANA anno-

tation. We argue that using promoter predictors together

with gene predictors or as a complement to the manual

annotation of genes is a good intermediate step to improve

promoter prediction performance because this constrains

the search space based on information about the gene. We

propose promising strategies for future development of

promoter prediction systems on the basis of the current

performance assessment.

Results
The method for counting correct and wrong predictions is

explained in Materials and methods. We have analyzed

predictions on all 44 ENCODE regions (total length

29,998,060 base-pairs (bp)), with the training set consisting

of 13 regions of total length 8,538,447 bp and the remaining

part as the test set with a length of 21,459,613 bp. The

genomic sequences were from the human genome Build

hg17. The performance results are summarized in Figures 1

and 2. Figure 1 contains results where true positive (TP)

predictions were allowed to be within a maximum distance

of 1,000 nucleotides from the reference TSS; Figure 2

contains results where the maximum distance allowed was

250 nucleotides. We present results within three categories:

for the test ENCODE regions, for the training ENCODE

regions, and for all ENCODE regions. We considered only

predictions of promoters for known genes that contained

coding sequence (CDS) based on the HAVANA annotation

that was submitted for the EGASP workshop. In total, there

were 994 unique TSSs, of which 319 were in the ENCODE

training set and 675 were within the ENCODE test set. In

our analysis, the reference data against which the perfor-

mance of promoter predictors was evaluated were the esti-

mated TSS locations based on the 5’ ends of genes in the

HAVANA annotation. It is important to note, however, that

HAVANA annotation does not attempt to specifically predict

TSSs but rather to best represent the exon structure, CDS

and UTRs of a gene and its splice variants.

In arriving at our conclusions, we used various measures of

performance, as presented in [11]. The use of these different

performance measures ensure that the final conclusions are

less influenced by the choice of performance measures. The

main reference for discussion is the current performance

achieved on the ENCODE test regions. Since the ENCODE

training regions have higher GC content (44.69%) than the

average of the human genome, the results on the ENCODE

training set and comprehensive ENCODE set are less

representative.

Figure 1 shows that TSS locations compiled from DBTSS

[40] and H-Invitational [41] databases, when used as

predicted TSS locations and compared to the reference

manual HAVANA annotation, show only 58% sensitivity (Se)

and 92% positive predictive value (ppv). N-SCAN [30] has

achieved a greater ppv of 93%. However, all promoter

predictors had a ppv >79%, which is a considerable improve-

ment over the last assessment [12]. The sensitivity, however,
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ranged from 32% to 56%. Positional mismatch of the predic-

ted TSS locations relative to the reference ones was, on

average, in the range 226 to 305 nucleotides for promoter

predictors, while it was 117 nucleotides for DBTSS and

H-Invitational TSS predictions. The correlation coefficient

(CC; see Materials and methods) ranged from 0.52 to 0.70

for promoter predictors, and was 0.73 for DBTSS and

H-Invitational TSS estimates. Figures 3 and 4 are bar graphs

of different performance indicators. When the maximum

allowed mismatch of the prediction from the reference TSS

for counting TP predictions was 1,000 nucleotides, the best

predictor, based on 11 measures of prediction success, was

N-SCAN, followed by Fprom, Dragon Gene Start Finder

(DGSF) [17,18], Dragon Promoter Finder (DPF) [15,16], First

Exon Finder (FEF) [19], and McPromoter [23,24].

When this maximum allowed distance was reduced to 250

nucleotides (Figure 2), the obtained sensitivity and positive

predictive value were, as expected, lower. With this distance

constraint, the DBTSS and H-Invitational prediction set

produced a sensitivity of 49%, ppv of 89%, and an average

mismatch of predictions to the reference TSS of 41

nucleotides. Promoter predictors achieved a sensitivity in

the range 17% to 33%, a ppv in the range 58% to 81%, and an

average positional error in the range 77 to 126 nucleotides.

Correlation coefficients ranged from 0.35 to 0.51, while for

the DBTSS and H-Invitational set it was 0.66. In this case,

the best ranked predictors based on a cocktail of 11 measures

were Fprom and N-SCAN, followed by DGSF, FEF,

McPromoter (the standard system), DPF, and McPromoter

(with the post-processing of shadowed predictions).
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Figure 1
Prediction results for the distance criterion of 1,000 nucleotides. The light blue row shows the results of comparison of DBTSS+H-Invitational data to
the manual HAVANA annotation. We used this as a reference to enable assessment of promoter predictor performance. The highlighted blue fields
denote the score for the best performing promoter predictor. MaxTol is the maximum allowed mismatch between the predictions and the reference
TSS locations. The programs with names in red officially participated in the EGASP data submission. The results shown are for the MaxTol = 1,000
nucleotides. AE is the average mismatch of predictions relative to the most close TSS location from the HAVANA annotation. It is divided by 1,000 to
scale for the graph presentation. DIP1 and DIP2 are two measures representing distance from the ideal predictor as defined in [10]. ASM is the average
score measure as defined in [10].

ALL ENCODE REGIONS
TP FP Number of 

hits for TP
Unclear Se ppv AE DIP1 DIP2 CC ASM MaxTol

7-80-8 McPromoter 380 48 180 466 0.3823 0.8879 258.6632 0.6278 435.6963 0.5826 5.1818
7-81-8 McPromoter 339 57 152 518 0.341 0.8561 263.1239 0.6745 490.3552 0.5403 6.5455
41-108-8 Fprom 482 59 249 225 0.4849 0.8909 216.9295 0.5265 280.6293 0.6573 3.8182
20_76_4 N-SCAN 559 43 283 115 0.5624 0.9286 240.5313 0.4434 195.5468 0.7226 2.6364
DBTSS 608 45 352 127 0.6117 0.9311 116.7237 0.3944 206.6641 0.7547 1.090 1,000
DGSF 456 46 197 385 0.4588 0.9084 324.4912 0.5489 344.7403 0.6455 3.9091
DPF 614 151 0.6177 0.8026 282.4896 0.4302 932.7682 0.7041 3.8182
FEF 593 120 246 900 0.5966 0.8317 271.2968 0.4371 553.3941 0.7044 3.6364

TRAINING ENCODE REGIONS
TP FP Number of 

hits for TP
Unclear Se ppv AE DIP1 DIP2 CC ASM MaxTol

7-80-8 McPromoter 142 17 68 188 0.4451 0.8931 258.6831 0.5651 154.2631 0.6305 5.0909
7-81-8 McPromoter 123 22 55 209 0.3856 0.8483 266.5447 0.6329 181.0026 0.5719 6.7273
41-108-8 Fprom 145 20 70 68 0.4545 0.8788 194.9724 0.5588 88.2841 0.632 5
20_76_4 N-SCAN 199 16 98 37 0.6238 0.9256 225.1859 0.3835 57.9034 0.7599 3.1818
DBTSS 216 13 124 42 0.6771 0.9432 115.2778 0.3278 58.6827 0.7992 1.9091
DGSF 180 20 79 151 0.5643 0.9 353.4556 0.4471 111.7661 0.7126 3.6364
DPF 235 53 86 654 0.7367 0.816 258.0311 0.3213 254.7557 0.7753 3.5455
FEF 239 36 96 333 0.7492 0.8691 278.6862 0.2829 131.5462 0.8069 2.0909

TESTING ENCODE REGIONS
TP FP Number of 

hits for TP
Unclear Se ppv AE DIP1 DIP2 CC ASM MaxTol

7-80-8 McPromoter 238 31 112 278 0.3526 0.8848 258.6513 0.6576 276.843 0.5585 5.0909
7-81-8 McPromoter 216 35 97 309 0.32 0.8606 261.1759 0.6941 306.12 0.5248 6.1818
41-108-8 Fprom 337 39 179 157 0.4993 0.8963 226.3769 0.5114 191.764 0.6689 3.2727
20_76_4 N-SCAN 360 27 185 78 0.5333 0.9302 249.0139 0.4719 136.8374 0.7044 2.2727
DBTSS 392 32 228 85 0.5807 0.9245 117.5204 0.426 146.9693 0.7327 1.1818
DGSF 276 26 118 234 0.4089 0.9139 305.6014 0.5973 225.7974 0.6113 3.8182
DPF 379 98 156 1,121 0.5615 0.7945 297.6552 0.4843 665.8586 0.6679 4.0909
FEF 354 84 150 567 0.5244 0.8082 266.3079 0.5128 410.7287 0.651 4.3636

0.32-0.56    >0.79  226-305

242 1,175

1,000
1,000
1,000

1,000
1,000
1,000

1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000

1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000



Discussion
We have analyzed four sets of promoter predictions that

were submitted as a response to the EGASP call. These

include McPromoter (the standard system), McPromoter

(with post-processing of shadowed predictions), Fprom and

N-SCAN. These submissions received internal EGASP

coding 7-80-8, 7-81-8, 41-108-8, 20-76-4, respectively. The

internal coding of submissions by the three numbers is

explained in [42]. For the control set we used the estimated

TSS locations inferred from the DBTSS and H-Invitational

databases. These TSS estimates are based on flcDNAs, with

those from DBTSS being derived from the oligo-capped full-

length cDNAs (flcDNAs), and thus such a control set is

expected to largely reflect the real TSS locations. Addition-

ally, we also considered the predictions of three other

programs, FEF, DPF and DGSF, as these were found in a

recent comparative study [12] on the whole human genome

to have reasonably good performance. The best performing

programs in study [12] were DGSF and FEF. Thus, it was of

interest to see how they would perform in EGASP. For these

additional three programs, the predictions were run under

the same conditions as in [12]. These collections of

predictions formed the basis for the assessment of

performance and promoter prediction strategies. It should

be noted that all programs included in this study make

assessments of the TSS locations.

Based on the results shown in Figures 1 and 2, we conclude

that the best performance achieved with the ENCODE data

is by programs that combine promoter prediction with gene
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Figure 2
Prediction results for the distance criterion of 250 nucleotides. The light blue row shows the results of comparison of DBTSS+H-Invitational data to the
manual HAVANA annotation. We used this as a reference to enable assessment of promoter predictor performance. The highlighted blue fields denote
the score for the best performing promoter predictor(s). MaxTol is the maximum allowed mismatch between the predictions and the reference TSS
locations. AE is the average mismatch of predictions relative to the closest TSS location from the HAVANA annotation. It is divided by 1,000 to scale for
the graph presentation. DIP1 and DIP2 are two measures representing distance from the ideal predictor as defined in [10]. ASM is the average score
measure as defined in [10]. The programs with names in red officially participated in the EGASP data submission. The results shown are for the MaxTol =
250 nucleotides.

ALL ENCODE REGIONS
TP FP Number of 

hits for TP
Unclear Se ppv AE DIP1 DIP2 CC ASM MaxTol

7-80-8 McPromoter 228 73 124 497 0.2294 0.7575 85.5351 0.8079 560.6727 0.4168 5.5455 250
7-81-8 McPromoter 194 83 101 543 0.1952 0.7004 86.799 0.8588 624.3458 0.3697 7.2727 250
41-108-8 Fprom    327 82 188 263 0.329 0.7995 74.8746 0.7003 373.2796 0.5128 3.7273 250
20_76_4 NSCAN     350 78 212 151 0.3521 0.8178 119.9086 0.673 296.8066 0.5366 2.0909 250
DBTSS + H-Inv     509 60 321 143 0.5121 0.8946 40.0884 0.4992 261.5766 0.6768 1 250
DGSF              239 79 128 421 0.2404 0.7516 128.6695 0.7992 501.8674 0.4251 5.3636 250
DPF               349 215 159 1794 0.3511 0.6188 112.4345 0.7526 1631.599 0.4661 6.2727 250
FEF               350 190 159 917 0.3521 0.6481 115.06 0.7373 933.3758 0.4777 4.7273 250

TRAINING ENCODE REGIONS
TP FP Number of 

hits for TP
Unclear Se ppv AE DIP1 DIP2 CC ASM MaxTol

7-80-8 McPromoter 84 28 45 200 0.2633 0.75 68.8929 0.7779 212.3781 0.4444 5.3636 250
7-81-8 McPromoter 74 32 35 219 0.232 0.6981 84.2838 0.8252 236.0147 0.4024 7.5455 250
41-108-8 Fprom    102 28 51 79 0.3197 0.7846 69.902 0.7135 112.7385 0.5009 4.1818 250
20_76_4 NSCAN     132 30 74 47 0.4138 0.8148 125.2348 0.6148 92.829 0.5806 2.9091 250
DBTSS + H-Inv     179 20 109 50 0.5611 0.8995 37.2123 0.4502 80.5915 0.7104 1 250
DGSF              80 33 45 172 0.2508 0.708 132.6 0.8041 201.0301 0.4214 6.7273 250
DPF               151 72 63 658 0.4734 0.6771 111.4517 0.6177 489.8666 0.5661 4.1818 250
FEF               142 62 65 338 0.4451 0.6961 118.6901 0.6326 294.1788 0.5566 4.0909 250

TESTING ENCODE REGIONS
TP FP Number of 

hits for TP
Unclear Se ppv AE DIP1 DIP2 CC ASM MaxTol

7-80-8 McPromoter 144 45 79 297 0.2133 0.7619 95.2431 0.8219 346.0235 0.4032 5.6364 250
7-81-8 McPromoter 120 51 66 324 0.1778 0.7018 88.35 0.8746 385.7174 0.3532 7 250
41-108-8 Fprom    225 54 137 184 0.3333 0.8065 77.1289 0.6942 260.3228 0.5185 2.7273 250
20_76_4 NSCAN     218 48 138 104 0.323 0.8195 116.6835 0.7007 203.195 0.5145 2.7273 250
DBTSS + H-Inv     330 40 212 93 0.4889 0.8919 41.6485 0.5224 180.2347 0.6603 1 250
DGSF              159 46 83 249 0.2356 0.7756 126.6918 0.7967 301.1515 0.4274 4.7273 250
DPF               198 143 96 1136 0.2933 0.5806 113.1841 0.8217 1129.876 0.4127 6.7273 250
FEF               208 128 94 579 0.3081 0.619 112.5817 0.7898 632.6296 0.4367 5.4545 250

0.17-0.33     >0.58   77-126
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Figure 3
The results for different ENCODE regions. The results presented are for
the maximum allowed distance of 1,000 nucleotides between the
predicted TSS and the reference one. AE is the average mismatch of
predictions relative to the most close TSS location from the HAVANA
annotation. It is divided by 1,000 to scale for the graph presentation.
Results are presented for: all ENCODE regions; the training set; and the
test set. Relation of scores to the predictor performance is as follows: for
Se and ppv, the higher the score, the better the performance. The scores
for these two measures range from 0 to 1. For AE, the lower the score,
the better.

(a)

(b)

(c)

Figure 4
Another set of results for ENCODE regions. The results presented are for
the maximum allowed distance of 1,000 nucleotides between the predicted
TSS and the reference one. DIP1 and DIP2 are two measures of prediction
qualities expressed as distances from the ideal predictor [10]. CC is the
Pearson correlation coefficient. ASM is the average score measure as
defined in [10]. DIP2 and ASM are scaled down to fit into the graph. Results
are presented for all ENCODE regions, for the training set and for the test
set. Relation of scores to the predictor performance is as follows: for
distances from the ideal predictor (DIP1 and DIP2), as well as for ASM, the
lower the score, the better. ASM represents the averaged rank position of
the predictor calculated based on the individual measures of success. For
CC, the greater the score, the better. CC ranges from -1 to +1.

(a)

(b)

(c)



prediction. This directly reduces the search space for

promoters and minimizes the number of FP predictions

since promoter searches are localized to the regions close to

the estimated 5’ end of genes. This also reduces the overall

number of predictions. As a consequence, the accuracy of

such programs (N-SCAN and Fprom) is somewhat increased

compared to other programs. It is obvious that one could use

the existing gene annotation to restrict the promoter search

space. However, all programs evaluated in this study use ab

initio predictions and do not rely on gene annotation.

Moreover, programs that may rely on gene annotation to

enhance promoter prediction would not work efficiently in a

situation where such annotation does not exist.

The other three programs (McPromoter, DPF, DGSF) did

not utilize gene structure prediction, while FEF used only a

partial prediction of gene structure. In particular, McPromoter

is a representative example of the aforementioned first

group of successful ab initio genome-wide predictors, given

that its version tuned for human data is essentially

unchanged since its publication [24]. FEF uses an internal

recognition of the first exon that is part of the overall gene

structure, although it does not attempt to predict other parts

of the gene structure. Also, DPF and DGSF use rough,

simplified models of intron and exon domains in the

promoter recognition process. These four programs (FEF,

McPromoter, DPF, DGSF) have been tuned to search for

promoters when no information except a single DNA

sequence is available. This requires much tighter tuning in

order to reduce FPs and maximize TPs. Still, their perfor-

mance is considerable, keeping in mind that many of the FP

predictions of these programs could be eliminated if some

form of the complete gene structure prediction is used. One

should note that the idea that promoter predictions can

benefit from gene prediction is not new. One of the early

suggestions in this direction was given in [9]. Although a

similar idea has been contemplated by others, such as in

[19], it has never been supported by comprehensive data.

Our report seems to be the first one to provide such evidence

on a larger scale.

The comparison analysis [12] focused on programs that do

not use additional gene prediction. That study has

demonstrated that a strong beneficial effect in accuracy can

be achieved for many promoter predictors if masking

repeats is used and the promoter search is restricted to non-

masked regions. In the current study we reach a similar

general conclusion on improved accuracy when restricted

search space is used, in the context of combining promoter

prediction with gene prediction. Note that N-SCAN has also

used masking repeats in the context of their gene prediction.

Finally, we comment on the generally better performance of

promoter predictors on the training ENCODE set as opposed

to the test ENCODE set. The simple explanation could be

that it is a consequence of the increased GC content of the

training ENCODE regions (44.69%) compared to the test

ENCODE regions (42.33%). Usually, GC rich isochores

represent more dense gene regions than the GC depleted

isochors (at least based on current data). We also know [12]

that many promoter predictors more efficiently predict GC

rich promoters, which complies with the results on the

ENCODE regions. However, since the DBTSS and H-

Invitational TSS set shows better concordance with the

HAVANA annotation data, it is also possible that part of the

answer is in a more detailed and accurate annotation of the

training set.

The reference TSS locations and TSS estimates from
DBTSS and H-Invitational databases
We have used the HAVANA group’s manual annotation of

the ENCODE regions and considered the annotated 5’ ends

of transcripts as the reference TSS locations. As an

alternative, we also used DBTSS and H-Invitational data-

bases as a source of another collection of estimated TSS

locations. Since this second collection is based on flcDNAs,

of which many were oligo-capped, the TSS estimates based

on this dataset should largely correspond or be close to

genuine TSS locations. Actually, a recent report [43]

indicates that 7% of the TSSs estimated from the oligo-

capped flcDNAs of DBTSS mismatch by more than 100 bp

those from the Eukaryotic Promoter Database (EPD) [44],

while no precise estimates of distance mismatch are given

for the remaining 93% of the DBTSS TSSs that fall within

100 bp of the corresponding EPD TSSs.

We then compared the HAVANA annotation and the TSS

predictions based on the DBTSS and H-Invitational data-

bases. It was somewhat disconcerting to find that sensitivity

was only 58% with the DBTSS and H-Invitational data

relative to the HAVANA reference set. Moreover, the ppv

was only 92%. This estimation was done using the maximum

allowed distance mismatch of 1,000 nucleotides between the

estimated TSS and HAVANA annotated 5’ gene ends. For

those DBTSS and H-Invitational TSSs that did satisfy the

distance criterion, the average positional error relative to

HAVANA based estimates was 117 nucleotides, again a

significant difference. Of the DBTSS and H-Invitational

TSSs, 42% were more than 1,000 nucleotides apart from the

closest HAVANA annotated 5’ gene end. Although HAVANA

gene structures may be based on the same mRNA evidence

as DBTSS and H-invitational TSS predictions, HAVANA

annotation may introduce a bias towards the most 5’ TSS for

some genes as gene structures are extended as far as other

mRNAs and ESTs with identical exon structures support

them (see Materials and methods). However, HAVANA

annotation only uses spliced mRNA and ESTs as evidence to

extend gene structures and, as such, would fail to extend the

5’ end of a gene upstream where only single exon evidence

supported it. Furthermore, mRNAs used by DBTSS and H-

invitational to predict TSSs may not be used in HAVANA

annotation to support coding genes, or possibly any gene
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structure, if their predicted CDSs appear questionable in its

genomic context. The annotation of coding genes and splice

variants supported by human ESTs and non-human mRNAs

and ESTs by HAVANA may also result in 5’ ends of genes

being identified that are not represented in the current

DBTSS and H-invitational databases. However, being aware

that the experimental support for accurate TSS location is

not easy to provide, we believe that this issue requires a

separate and in-depth study, particularly when the CAGE

data [3] have become available.

Although we used the HAVANA annotation as a reference

dataset, we do not treat it as the ‘gold standard’ for promoter

prediction. We are fully aware of the fact that there is no

universally accepted genomic scale ‘gold standard’ for the

accurate TSS locations that we could use. Different sets of

experimental data bear the bias of the shortcomings of the

experimental procedures used in experiments or of the post-

processing of these data. One may argue that the TSS

estimates based on the DBTSS and H-Invitational database

could be more reliable. However, one should not forget that

TSS estimates from DBTSS and H-Invitational databases are

also not guaranteed to be correct. Thus, blindly assuming that

one set is good while the other is not without an in-depth

evaluation of the experimental data is not justified. For this

reason, we emphasize that the conclusions of our study are

based on the constraints and framework defined in EGASP

and those of our analysis, and they are valid to that extent.

The differences between the reference set and TSS

estimates from the DBTSS and H-Invitational databases

may explain the sensitivity results achieved by programs

used in this study - for example, the decline in sensitivity

for programs such as FEF, DPF, DGSF and McPromoter

that were evaluated in [12] where DBTSS data was used as

a reference. In any case, the HAVANA annotation currently

represents the best gene annotation for the ENCODE

regions. We believe that this has resulted in an increased

ppv for promoter predictors in this study. Specifically,

when we compare the ppv results from [12], we find that

FEF, DPF, DGSF and McPromoter all have a much higher

ppv on the ENCODE data and the associated HAVANA

annotation, likely because of the more accurate annotation

of gene loci regions.

Comparison with a previous study on the whole
human genome
The direct comparison of the results of this study and the

one performed recently on the whole human genome [12] is

not possible simply for the reason that the reference data

against which assessments are made are different. In [12] we

used the whole human genome and the data from DBTSS; in

the current study we used HAVANA annotation as the

reference and focus only on ENCODE regions that make up

about 1% of the whole human genome. In addition, the two

datasets are not very similar, as we have already shown.

However, in spite of these differences in the reference

dataset, we are still in a position to make some global obser-

vations. Compared to the previous whole human genome

analysis [12], in this study we used a more stringent

distance constraint: the maximum allowed mismatch of the

predicted TSS from the reference TSS was 1,000

nucleotides. In [12] as the maximum allowed was 2,000

nucleotides. Because of this, one would expect the decrease

in ppv, but we observe the opposite trend for all programs

that were evaluated in [12] (FEF, DPF, DGSF and

McPromoter). In [12] the reported ppv was in the range

25% to 67%. In the current study, with the stringent

distance criterion, the ppv for these programs is in the

range 79% to 91%, which is a positive surprise. For N-SCAN

and Fprom, which were not included in [12], the ppv is also

very high at 94% and 89%, respectively. Sensitivities for

FEF, DPF, DGSF and McPromoter were, in [12], in the

range 54% to 80% and in this study, as expected, they have

been reduced, falling to the range 32% to 56%. However,

one should be cautious in drawing conclusions as the DBTSS

and H-Invitational TSS set shows only 58% sensitivity and a

92% ppv relative to the HAVANA annotation.

Another positive surprise is the positional accuracy of

promoter predictors. Note that for experimental DBTSS and

H-Invitational TSSs the positional error is 117 nucleotides.

All promoter predictors in the current study achieved an

average positional error in the range 226 to 305 nucleotides

relative to the HAVANA annotation. This is only two- to

three-fold larger than the average positional error of the

DBTSS and H-Invitational experimental data.

Future developments
The lessons from EGASP relative to promoter predictions is

that it is beneficial to combine the TSS/promoter predictors

with gene finding programs irrespective how gene prediction

is done. Using such an approach it will be possible to retune

promoter predictors and also to partly change their design

philosophy since more relaxed conditions will be required

due to the restricted search space.

However, this cannot be a final solution as it will inevitably

bias the predictions to only those towards the 5’ gene end,

or, at best, extend predictions to cover the whole body of the

gene. The intergenic space will be covered only to the extent

provided by the abilities of gene finding programs to detect

new genes by ab initio methods.

Although most of the promoter predictors today can detect

TSSs on the basis of an ab initio approach, we need to

enhance their predictive ability. The ultimate solution will be

to mimic the cellular transcription initiation process through

technical implementation in promoter predictors. That is

likely to allow efficient detection of a broad range of genuine

TSSs in arbitrary genomic sequence irrespective of the

support from experimental data or gene predictions. This is
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a challenging task and requires more sophisticated technical

solutions that take advantage of the molecular biology of

promoter regulation.

We also observe that the positional accuracy of promoter

predictors requires further improvement. A recent review

[14] proposed that the next goal in positional accuracy of

promoter predictors is a 20 nucleotides mismatch relative to

the experimental TSS locations, that is, on the same scale as

naturally observed variation in the initiation process.

However, this leaves the open issue of a good reference

dataset. But, if we intend to achieve this goal, we have to

incorporate more of the relevant biological information in

the recognition algorithms. Related to this is also the

following problem. Due to the massive expressed data

(EST/cDNA/mRNA) available, annotation naturally uses

such sources of information. Promoter prediction programs

that utilize expressed sequences should generate predictions

most close to the annotation based reference dataset, as this

is more or less how the reference annotation is derived as

well. This brings into focus an issue of circularity that will

just confirm that promoter predictors that use such

strategies comply well with the annotated data.

Scenario for promoter prediction for future
experiments
Lessons from the current experiment motivate us to propose

a framework for future promoter prediction assessment. It is

absolutely necessary to conduct promoter prediction

experiments within different categories of conditions that

programs utilize, so as to be in a position to compare

individual contributions of different types of information

used. Two broad scenarios are of interest: one that assesses

the genomic context within which the predictions are made,

and another that assesses types of data/information used in

deriving predictions.

In the first group, it will be helpful to consider separately

methods that utilize only the immediate region surrounding

a TSS (say [-200,+200]), as opposed to those that use a

much broader genomic context. The reason for this is to

evaluate the contribution of global and local signals in

promoter predictions. The latter methods can include those

that make use of gene structure prediction.

The second group could include: ab initio predictions based

exclusively on the use of genomic sequence from one

genome; ab initio predictions that use only genomic

sequences from multiple genomes; predictions that utilize

different support information (that is, known protein

mapping, and so on), but not transcript data (that is,

mRNA/EST mapping); and predictions that use infor-

mation from mapping transcript data, as well as any other

information. The comparison of programs would make

sense only within categories, but not across various

categories.

Conclusions
The current study argues in favor of combining promoter

predictions with gene structure predictions as an inter-

mediate improvement for promoter prediction accuracy. The

long term goal has to be the development of a positionally

accurate ab initio promoter prediction solution. For the next

EGASP or similar project, different categories of promoter

predictions should be provided, to enable the comparison of

approaches differing on a large scale and the assessment of

contributions of different types of information used in

solutions. These in return would allow for more efficient

promoter prediction programs.

Materials and methods
EGASP participants
We analyzed the following prediction sets provided in

response to the EGASP call for submissions: 7-80-8

(McPromoter, the standard system), 7-81-8 (McPromoter

with post-processing of shadowed predictions), 41-108-8

(Fprom), 20_76_4 (N-SCAN).

Additional prediction sets
To make the assessment of promoter predictions more com-

plete, we also added four additional set of predictions, the

TSSs estimated based on the DBTSS and H-Invitationsl data,

which represent a large-scale experimental TSS dataset based

on capped flcDNA, and those from FEF, DGSF, and DPF.

McPromoter
McPromoter is an ab initio system for predicting trans-

cription start sites and was among the first fully probabilistic

approaches to this problem. It uses a sequence of six Markov

chain models for different subregions and elements within a

core promoter spanning position -250 to +50, such as TATA-

box, spacer, and initiator regions. As the core promoter is

considerably different for distantly related eukaryotes, we

have trained two separate models on vertebrate (mam-

malian) and invertebrate (fly) sequences. The Drosophila

system has been under constant development [23],

motivated by the identification of additional core promoter

elements such as DPE (reviewed in [2]). The mammalian

system has essentially remained constant throughout several

years, including the data set it is trained on (a set of 565

sequences taken from the EPD) [24]. Small differences

result from different strategies for the post-processing of the

initial posterior probabilities of the predictor: For instance,

submission 7-81-8 addressed the issue of shadow predic-

tions, that is, simultaneous predictions on both strands of a

core promoter caused by a strong signal in base composition.

Here, we removed a lower scoring prediction if it fell within 1

kb of a higher scoring prediction of the standard system

(7-80-8) on the opposite strand. However, as the results

clearly show, this simple strategy actually decreased the

performance slightly, indicating that a fraction of TPs is

accompanied by stronger scoring predictions on the opposite
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strand in close proximity. The version of the McPromoter

program used is MM:II, with a threshold of +0.005. The

program can be found at [45].

Fprom: Softberry Pol-II promoter recognition approach
The task of finding eukaryotic polymerase II promoter

involves two internal issues: finding the exact position of TSSs

within long upstream regions of eukaryotic genes; and

avoiding FP predictions within exon and intron sequences. To

resolve the second part of this task some authors of promoter

finding software include some recognition procedures of gene

coding parts inside promoter prediction programs [15,28].

However, gene finding software such as Genscan [46] or

Fgenesh [47] provides a much better accuracy in coding exon-

intron identification than any such empirical procedures. We

think that the best promoter identification strategy is to

predict all gene components in one program. In creating such

a program, it has currently been decided to use some

intermediate variant, which includes the following steps:

compute the gene annotation using a gene prediction pipeline

and run promoter prediction on 5’-regions upstream of the

annotated coding regions of predicted genes.

For promoter location within the selected regions, we used

the Fprom (find promoter) program, which is the develop-

ment of an algorithm realized earlier in the TSSW/TSSG

programs [48]. For each potential TSS position of a given

sequence, the Fprom program evaluates its possibility to be

a TSS using two linear discriminant functions (for TATA+

and TATA- promoters) with characteristics computed in the

[-200,+50] region around the given position. For TATA

promoter recognition we consider the following features

selected by discriminant analysis on the learning set of

known promoters: hexamers in region [-200,-45]; hexamers

in region [0:+40]; triplets in region [-200,-45]; triplets in

region [0,+40]; TATA box maximal weight in interval

[-45,-25]; TATA box average score on interval [-45,-25];

CpG-content; position triplet matrix in the [TSS-50,TSS+30]

region; similarities between [-200,-100] and [-100,-1]

regions; protein-DNA twist; protein-induced deformability;

regulatory motif density in region [-200,-101] in the direct

chain; and regulatory motif density in region [-100,-1] in the

reverse chain.

If we find a TATA-box (using TATA-box weight matrix) in

the positions [-45,-25] of the analyzed region, then we

compute the value of LDF for TATA+ promoters, otherwise

the value of the linear discriminant function (LDF) for

TATA-less promoters. Only one prediction, with the highest

LDF score and greater than some threshold, is selected

within any 300 bp region. We run Fprom on 5’ regions

extracted from the predicted genes. For each such region, we

selected the closest to the CDS predicted promoter and

presented it in our results. The Fprom program can be found

at the Softberry’s web site at [49] and contains no user

adjustable parameters.

N-SCAN
N-SCAN [50,51] is an extension of TWINSCAN [52].

N-SCAN’s DNA sequence modeling is identical to TWINSCAN

with the addition of states modeling 5’ UTR exons and

introns [30] and the capability to include conserved non-

coding states in intergenic regions. N-SCAN’s method of

incorporating alignment information is quite different from

TWINSCAN’s method. TWINSCAN utilizes alignment infor-

mation from one informant genome through a conservation

sequence. A conservation sequence is generated by assigning

each target sequence base a match, mismatch/gap or un-

aligned symbol based on a BLASTN alignment of the two

genomes. N-SCAN replaces TWINSCAN’s conservation

sequence with a multiple genome alignment that represents

the evolutionary relationships among the target and multiple

informants with a Bayesian network rooted at the target

genome along with a richer alphabet representing a more

detailed modeling of substitution rates, insertions, and

deletions across all informants. N-SCAN does not predict

TSSs as isolated features, but rather as the 5’ boundary of the

first exon in a gene structure.

N-SCAN’s human gene predictions employed human

genome Build hg17 (May 2004), the corresponding RefSeq

mappings, and a whole-genome, 8-way, MULTIZ alignment,

which were all downloaded from UCSC [53]. The particular

alignment subset chose human (hg17) as the target genome

and mouse (mm5), rat (rn3), and chicken (galGal2) as

informants, with all gaps in the target removed. Build hg17

was masked for interspersed repeats, but not low-complexity

or simple repeats as identified by UCSC. The human

sequence was further pseudogene masked (MJ van Baren

and MR Brent 2005, submitted). The RefSeq mappings were

filtered to remove probable errors; parameters were trained

on three-quarters of the filtered RefSeq mappings. The

program design and setting is explained in the companion

article [54].

First Exon Finder
The main idea implemented in FEF [19] is that promoter

prediction should be derived from prediction of the first

exon. This is implemented by splitting the first exons into

two groups, one that is GC rich and another that is GC poor.

Several types of compositional features are used in the

recognition process that is implemented as a rule-based

solution with several quadratic discriminant functions. In

[12], FEF was found to be among the best ab initio promoter

predictors. It was also found that its performance benefits if

combined with masking repeats by RepeatMasker. The

recommendations from [12] were implemented with the

default FEF parameter setting: a cutoff value for the first-

exon a posteriori probability of 0.5, a cutoff value for the

promoter a posteriori probability of 0.4, and a cutoff value

of the splice-donor a posteriori probability of 0.4. We used

the download version of the program. The web-server

implementation can be found at [55].
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Dragon Promoter Finder
DPF [15,16] uses three types of models for promoter regions,

exonic regions and intronic regions. It utilizes position

weight matrices of overlapping pentamers in these three

regions to derive its predictions. The program uses

separation of promoters to GC rich and GC poor groups and

uses five different prediction models for different levels of

sensitivity. It uses only 200 nucleotides DNA segments to

make predictions. In this study, it was used with the default

parameters and according to recommendations from [12],

which combine predictions with masking repeats by

RepeatMasker and uses clustering of its predictions. This

means that predictions are clustered if the distance between

the neighboring predictions is 1,000 nucleotides or less.

Such clusters are represented by the average position of

predictions in the cluster. The program version 1.5 was run

with the expected sensitivity of 0.65 and according to recom-

mendations from [12]. The program can be found at [56].

Dragon Gene Start Finder
DGSF [17,18] uses predictions of DPF in the region it assesses

to be a CpG island. The program is aimed at finding the

approximate start of gene loci. It first localizes the CpG island

and then identifies the most likely DPF prediction within that

region. Version 1.0 of the program was run with its default

threshold parameter of 0.994 and according to recom-

mendations from [12]. The program can be found at [57].

Counting predictions and other performance measures
The counting of TP and FP predictions is illustrated in Figure 3.

If the maximum allowed distance of the prediction form the

closest reference TSS on the same strand is D nt, then, if one or

more predictions fall on the region [-D,+D] relative to the

reference TSS location and on the same strand where the TSS

resides, the TSS is counted as TP. If the reference TSS is missed

based on this type of counting, then such a TSS is a false

negative (FN). All reference TSS locations that were missed by

this counting of TP predictions represent true negatives (TN).

Every other prediction that falls on the annotated part of the

gene loci in the segment [+D+1,EndOfTheGene] at the same

strand where TSS resides counts as a FP. One has to be aware

that some real TSSs/promoters could be in the regions

[+1001,EndOfTheGene]. The other predictions were not taken

for the determination of TPs and FPs. Figure 5 illustrates the

counting method.

The measures of performance were those used in [12]. In deter-

mining the average distance of predictions, only the minimum

distance of one prediction from all reference TSSs was

considered. Sensitivity is the proportion of correct predictions

of TSSs relative to all experimental TSSs, defined as:

Se = TP/(TP + FN)

A ppv is the proportion of correct predictions of TSSs out of

all counted positive predictions, defined as:

ppv = TP/(TP + FP)

The CC is the Pearson correlation coefficient, defined as:

CC = (TP × TN - FP × FN)/

((TP + FP)(TP + FN)(TN + FP)(TN + FN))1/2

Data
The ENCODE regions mapped at the human genome Build

hg17 (May 2005) were used. Out of the HAVANA annotation

for ENCODE regions we analyzed only the category of

known genes with CDS (category 2). After eliminating the

redundant TSS locations, we obtained 994 unique TSSs for

all ENCODE regions, 319 unique TSSs in the ENCODE

‘training’ set (13 regions), and 675 unique TSSs in the

ENCODE test set. Note that the region ENr313 does not have

any annotation. The length of DNA sequences in these

regions is: all regions 29,998,060 bp; ‘training’ regions

8,538,447 bp; and testing regions 21,459,613 bp.

Reference TSS locations: HAVANA annotated 5’ end
of gene objects
All HAVANA/GENCODE annotation is based on primary

EST, mRNA and protein evidence and structures are only

extended as far as the supporting evidence allows. No

automated predictions are used to support gene objects.

Main gene structures are based on human (and where a

novel structure with canonical splicing is supported) non-

human mRNA and EST evidence identified in the nucleotide

sequence databases and aligned by wuBLASTN [58]. Signifi-

cant hits are re-aligned to the unmasked genomic sequence
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Figure 5
The counting method for TPs and FPs. All hits to the ‘orange’ segments
count as FPs. Only one hit within A, B, or C counts as a TP for a unique
position of TSS (for example, three hits within C will count only as one TP).
Note that all TSS locations that were mutually different were considered as
valid reference TSSs. So, alternative TSSs were considered different TSSs.
Each of these had to be predicted. If one prediction falls on the intersection
of A and B, then that prediction identifies two TSS locations (one that
correspond to TSS related to A, and the other corresponding to TSS
related to B). In other words, one prediction correctly identifies all
reference TSS locations within the distance criterion.
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using est2genome [59] and proteins aligned by wuBLASTX.

All evidence is navigated using the Blixem alignment viewer

[60]. The 5’ ends of gene structures are extended using only

splicing human mRNA and EST evidence that agrees

completely with the structure of the gene object that it is

used to extend. As such, where mRNAs and ESTs support an

identical gene structure but have different length 5’ UTRs,

they are merged into a single gene structure that is extended

as far as the longest supported 5’ UTR, that is to the most 5’

aligned base of the most 5’ EST or mRNA. Where sequence

from the 5’ end of mRNA and EST evidence is missing from

the Est2genome alignment, visual inspection of the dot-plot

output from the Dotter tool [60] is used in an attempt to

identify any alignment with the genomic sequence upstream

of the identified end of homology. Where a very short length

of sequence (<15 bases) is missing from the 5’ end of the

alignment, a dot-plot is unsuitable due to the difficulty in

seeing very short alignments at the edge of the display and the

AcedB Restriction Analysis tool (essentially a pattern

matching tool) [61] is used to try and identify any alignment

with the genome. As such, the annotated 5’ ends of gene

objects are specified according to the best possible alignment

of transcriptional evidence to the genome rather than

specifically identifying TSSs in the genomic sequence. As new

transcript evidence is added to the databases, so novel 5’ exons

and 5’ extensions of existing exons continue to be identified.

TSS estimates from DBTSS and H-Invitational
databases
Using DBTSS data (version 4.2, 11 Jan 2005), we obtained

12,763 TSS estimates for hg17, and of these, 286 were

mapped to ENCODE regions. These were complemented by

H-Invitational TSS data. We used 95% identity and 90%

homology in BLAST mapping of H-Invitational data to hg17.

This provided us with 20,116 TSS estimates. Within the

ENCODE regions we found 325 TSS estimates not

overlapping with DBTSS data. In total, the DBTSS and H-

Invitational datasets provided 611 experimental TSS

locations. These are provided as Additional data files 1 and 2.

Additional data files
The following additional data are available with the online

version of this paper. Additional data file 1 lists the DBTSS

TSS locations. Additional data file 2 lists the H-Invitational

TSS locations.
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