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Abstract Introduction: Composite scales have recently been proposed as outcomemeasures for clinical trials.
*Corresponding au

E-mail address: se

http://dx.doi.org/10.10

2352-8737/� 2017 T

license (http://creative
For example, the Preclinical Alzheimer’s Cognitive Composite (PACC) is the sum of z-score normed
component measures assessing episodic memory, timed executive function, and global cognition.
Alternative methods of calculating composite total scores using the weighted sum of the component
measures that maximize the signal-to-noise ratio of the resulting composite score have been pro-
posed. Optimal weights can be estimated from pilot data, but it is an open question how large a pilot
trial is required to calculate reliably optimal weights.
Methods: We describe the calculation of optimal weights and use large-scale computer simula-
tions to investigate the question as how large a pilot study sample is required to inform the
calculation of optimal weights. The simulations are informed by the pattern of decline observed
in cognitively normal subjects enrolled in the Alzheimer’s Disease Cooperative Study Preven-
tion Instrument cohort study, restricting to n 5 75 subjects aged 75 years and older with an
APOE ε4 risk allele and therefore likely to have an underlying Alzheimer’s disease neurodegen-
erative process.
Results: In the context of secondary prevention trials in Alzheimer’s disease and using the components
of the PACC, we found that pilot studies as small as 100 are sufficient tomeaningfully informweighting
parameters. Regardless of the pilot study sample size used to inform weights, the optimally weighted
PACC consistently outperformed the standard PACC in terms of statistical power to detect treatment
effects in a clinical trial. Pilot studies of size 300 producedweights that achieved near-optimal statistical
power and reduced required sample size relative to the standard PACC by more than half.
Discussion: These simulations suggest that modestly sized pilot studies, comparable to that of a
phase 2 clinical trial, are sufficient to inform the construction of composite outcome measures.
Although these findings apply only to the PACC in the context of prodromal Alzheimer’s disease,
the observation that weights only have to approximate the optimal weights to achieve near-optimal
performance should generalize. Performing a pilot study or phase 2 trial to inform the weighting
of proposed composite outcome measures is highly cost-effective. The net effect of more efficient
outcome measures is that smaller trials will be required to test novel treatments. Alternatively, second
generation trials can use prior clinical trial data to inform weighting, so that greater efficiency can be
achieved as we move forward.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Composite endpoints have received increasing attention
as potential outcome measures for clinical trials in Alz-
heimer’s disease (AD). Composites can be defined as the
sum of items taken from component instruments of a cogni-
tive battery [1]. Or, more simply, composites can be defined
as the sum of established cognitive instruments. One such
composite is the Preclinical Alzheimer’s Cognitive Compos-
ite (PACC) [2]. The PACC is constructed from component
measures assessing episodic memory, timed executive func-
tion, and global cognition and is the primary outcome mea-
sure for a major ongoing trial [3].We have described how the
performance of a composite endpoint depends on the
weighting used and how optimal weights can be derived if
the multivariate distribution of change scores on component
measures is known [4]. The multivariate distribution of
change scores of the component measures is typically not
known but can be estimated if pilot data are available, for
example, from a prior trial or from a prior representative reg-
istry study using the component instruments. An important
consideration is whether prior data are sufficient to inform
weighting parameters for a composite outcome measure
and, in particular, how large a sample size would be required
to meaningfully inform calculation of weights. In this
article, we use data from a completed registry trial to
describe calculation of optimal weights and to investigate
the question of what size pilot study is sufficient to inform
calculation of optimal weights.
2. Methods

In overview, we use simulations informed by data from a
completed registry trial, the Alzheimer’s Disease Coopera-
tive Study Prevention Instrument (PI) trial, to demonstrate
optimal weighting and investigate the question as how large
a pilot study is required to determine weights that improve
the performance of the PACC. In the text that follows we
briefly describe the PACC and the PI trial and then formally
characterize optimal weights and computer simulation pro-
cedures.
2.1. Preclinical Alzheimer’s Cognitive Composite

We use the PACC [2] to demonstrate the influence of
weighting on characteristics of the composite scale. The
PACC is a weighted sum of well recognized and validated
component instruments, the Mini-Mental Status Examina-
tion (MMSE) assessing global cognition function [5], the
Free and Cued Selective Reminding task (FCSRT) assessing
episodic memory [6], and the WAIS-R Digit Symbol task
(Digit Symbol), a timed test of processing speed and mem-
ory function [7], and the WMS-R Logical Memory story de-
layed recall task (Logical Memory) [8].
2.2. Prodromal AD PI cohort

Pilot study longitudinal data for the PACC to inform in-
strument behavior and clinical trial design are not available
[2]. However, roughly comparable component instruments
are available from the PI protocol conducted by the Alz-
heimer’s Disease Cooperative Study [9]. The PI protocol
performed annual neuropsychometric and functional as-
sessments of 644 cognitively normal older persons (age
75 years and older). Although there was no randomization
to treatment, the PI enrollment and assessment procedures
mimicked that of a clinical trial, with primary purpose to
assess the utility of the components of the assessment bat-
tery as potential endpoints for an Alzheimer’s disease pre-
vention trial, and these data were used in the initial
description of the PACC [2]. The PACC components that
were not assessed in the PI study were the MMSE and the
Logical Memory test. Comparable domain-specific instru-
ments used in their stead were the modified MMSE [10]
substituting for the MMSE, and the New York University
Paragraph delayed recall test [11] substituting for the
Logical Memory test. When the distinction is relevant,
we call the resulting composite the PI-PACC to distinguish
it from the PACC constructed from the MMSE, FCSRT,
Digit Symbol, and Logical Memory test.

Donohueet al. [2] restricted their analysis to subjectswith an
APOE ε4 risk allele, andwe follow suit. Subjects aged 75 years
andolderwith this genetic risk profile havewith high likelihood
an underlying Alzheimer’s disease neurodegenerative process,
and hence these subjects are an approximate representation of
clinically normal, AD biomarker positive subjects that are the
target of contemporary secondary prevention trials [2]. We
call this subset of the PI cohort the PI Prodromal AD cohort.
Baseline through month 36 data are available for 75 of these
subjects (mean age at baseline 78.5 years [standard deviation
2.9 years], 59% female), and these longitudinal data are used
to inform the simulations reported here.
2.3. Optimal weights

We assume the primary analysis is mixed model repeated
measure (MMRM) comparing change first to last in treat-
ment versus change first to last in control [2]. To simplify
presentation, we assume complete data for all simulations.
Including missing values in simulations would reduce power
given a total sample size, but would not appreciably impact
the relative efficiency of trial designs and endpoints, which is
the focus of this article. We further make the usual assump-
tion that an effective treatment would shift the mean change
but not affect the variability of change (constant variance of
change in treatment and control arms). Under these assump-
tions, optimal weights for constructing a composite endpoint
are a simple function of two sets of parameters, the expected
change and the covariance of change of the component mea-
sures [4]. Given the vector m of expected change scores of
component measures and covariance matrix S of change



Table 1

Mean (standard deviation) of component item scores at baseline and year 3

visit, mean to standard deviation ratio of the component scores, and

component weights used to construct the weighted sum composite scores

Summary

statistic FCSRT mMMSE

NYU

Paragraph

Digit

Symbol

Mean (SD)

Baseline 47.88 (0.47) 95.97 (2.84) 7.39 (2.49) 41.29 (12.04)

Year 3 46.63 (4.18) 91.88 (15.44) 5.69 (3.25) 38.64 (11.10)

Change 21.27 (4.11) 24.09 (15.02) 21.69 (3.15) 22.65 (9.33)

Mean to standard deviation ratio (MSDR)

0.31 0.27 0.54 0.28

Item weights

PACC 0.72 0.12 0.14 0.03

Optimal

PACC

0.25 0.06 0.65 0.04

Abbreviations: Digit Symbol, WAIS-R Digit Symbol task; FCSRT, Free

and Cued Selective Reminding task; mMMSE, modified Mini-Mental Sta-

tus Examination; NYU Paragraph, New York University Paragraph delayed

recall test; PACC, Prodromal Alzheimer’s Cognitive Composite.
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scores, weights that maximize the signal-to-noise ratio of the
composite (and therefore statistical power of clinical trials
using the composite) are

Optimal weights5c � S21m0

The c is an arbitrary scalar constant—any nonzero value
of c will produce equally optimal weights. A useful conven-
tion is to set c so that the weights sum in absolute value to 1.
The distribution of component change scores is typically un-
known, but can be estimated, for example, from prior clin-
ical trials that included the component measures or from
registry trials specifically designed to investigate properties
of potential outcome measures.

2.4. Computer simulations

We used computer simulations to investigate the proper-
ties of weights estimated from pilot registry study data per-
formed before a formal randomized clinical trial. We
simulated 40,000 pilot study–clinical trial dyads, using pilot
study sample sizes of 100 to 300 persons, and clinical trial
sample sizes of 100 to 1600 subjects per arm. The pilot study
component of the dyad could be a prior nonintervention
study registry trial or the placebo arm of a previously
completed trial with comparable inclusion criteria. Simula-
tions assumed multivariate normality of component change
scores with the mean and covariance structure observed in
the PI prodromal AD cohort. A 25% shift in mean change
was added to the treatment arm to simulate data from a trial
with an effective treatment. For each dyad, we calculated the
standard PACC [2] and optimal PACC from the simulated
component scores, with weights for the optimal PACC esti-
mated from the simulated pilot study and weights for the
standard PACC calculated from baseline data of the clinical
trial, reflecting how these endpoints would be calculated in
practice. An MMRM model testing the hypothesis that the
mean 3-year decline was different in the treatment and con-
trol armswas fit to the respective compositemeasures. Statis-
tical power of the PACC and optimal PACCwas calculated as
the percentage of simulations for which a statistically signif-
icant difference was observed at a5 0.05 significance level.
All data simulations and statistical analyses were performed
using the R statistical programming language, with model
fitting performed using the nlme package [12].
3. Results

Baseline characteristics and 3-year change observed in
the PI prodromal AD cohort are summarized in Table 1.
The ratio of mean change to the standard deviation of change
(the mean to standard deviation ratio (MSDR), aka the
signal-to-noise) for each component instrument of the PI-
PACC is also summarized in Table 1. Instruments with
high MSDR are more sensitive to change and are more
powerful endpoints for clinical trials [13]. Among the com-
ponents of the PI-PACC, the paragraph recall test has the
greatest MSDR (Table 1). PACC and optimal PACCweights,
standardized to sum in absolute value to 1, are summarized
in the bottom two rows of the table. Both composites give
relatively lower weight to the modified MMSE and the Digit
Symbol test. A primary difference between the PACC and
the optimal PACC is a greater weight to the FCSRT by the
PACC and greater weight to the paragraph recall test by
the optimal PACC (Table 1).

Power to detect treatment effects as a function of sample
size is summarized in Fig. 1. As a reference point, the theo-
retical maximum power achievable if the true covariance of
component change scores was known is also plotted in the
figure. A three year clinical trial using weights informed
by a three year pilot study of size 300 subjects achieves
near-optimal power, with obtained power deviating from
optimal power by less than 1% in the critical region of the
power curve with power of 80% and higher (Fig. 1). Power
of pilot study–clinical trial dyads decreases if smaller pilot
studies are used to inform weights, but only modestly. Power
obtained was within 1.2 percentage points of the theoretical
maximum achievable power when pilot sample size is 200
subjects, and within 2.4 percentage points of the theoretical
maximum when pilot sample size is 100 subjects. Nonethe-
less, it is important to note that there is some loss of power,
and a modest inflation of estimated sample size would be
prudent if the pilot study data used to estimate optimal
weights were also used to estimate sample size for a future
clinical trial, on the order of 3% (pilot N 5 300) to 10%
(pilot N 5 100) for the scenarios reported here.
4. Discussion

The optimal weighting formula as implemented here as-
sumes a treatment effect that shifts the mean change from
baseline to last visit but assumes a constant variance of



Fig. 1. Power to detect a 25% slowing in cognitive decline as a function of sample size per arm and outcome measure used. For optimal composites, power is

also a function of the size of pilot study used to inform optimal weights. (Clinical trial with equal allocation to, two-sided hypothesis testing, and type I error rate

a 5 0.05.)
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change in treatment and control. This is the usual assumption
used in power calculations (e.g., [14–16]). Alternative
treatment effects may be plausible. For example, instead of
assuming a percentage shift in mean location, we could
assume a percentage decrease in rate of decline in all
subjects, so that the variance of change scores would be
decreased; for example, under this assumed treatment
effect, a 25% shift in mean would be accompanied by a
0.75 squared 5 0.5625 reduction in variance in the
treatment arm and accompanying increase in power. We
prefer the more conservation mean shift assumption for
several reasons. First, given the general uncertainty in
parameter estimates used to inform power calculations,
conservative assumptions provide some margin of error in
sample size calculations. Second, an alternative scenario
that is plausible and even likely is that response to
treatment will be variable within the treatment arm. In
other words, the variance of change in the treatment arm
will be the sum of variance in rate of decline plus the
variance of response to treatment. Under this plausible and
likely scenario, the total variance will be larger than the
variance in the placebo arm, meaning the percent shift
hypothesis would be highly anticonservative and result in
underestimates of required sample size and underpowered
trials.

The MMRM analysis plan typically includes baseline
level of the outcome variable as a covariate [17]. When
this term was added to the MMRM model fits to each
simulated data set the power increased slightly, less
than one percentage point for most of the range of sam-
ple sizes simulated for both the PACC and optimal
PACC. Hence, the observations regarding relative
efficiency of the PACC and optimally weighted PACC
are unchanged by inclusion on the baseline covariate
term.
5. Conclusions

We have investigated the magnitude of sample size
required to estimate weights that optimize the performance
of a cognitive composite endpoint and found that pilot
studies of as small as 100 to 300 subjects are sufficient to
inform composite weighting and achieve near-optimally
powerful composite endpoints. In other words, trials of the
size of a typical phase 2 trial are sufficient to estimate
weighting parameters for defining an optimal weighted com-
posite endpoint. This finding is similar to previously re-
ported findings in Ard et al. [4] for a two-component
composite instrument. Ard et al. used computer simulations
to document near-optimal composite performance with
weights estimated from pilot studies as small as 100 subjects
for the two-component composite. The current article repli-
cates and meaningfully extends those results by (1) assessing
the prospective performance of a composite currently in use
in a major Alzheimer’s disease clinical trial, and (2) using
data from a completed registry trial to determine realistic
simulation parameters.

A related concern is the representativeness of the pilot
study used to train weights—weights optimal in one clinical
trial target population may not be optimal in a different pop-
ulation. Raghavan et al. [18] addressed this latter question
and found substantial robustness of cognitive composites
to the training data set. They found that weights estimated
from longitudinal data obtained relatively earlier or later in
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the prodromal AD spectrum were comparable and consis-
tently improved trial efficiency regardless of the prodromal
AD stage recruited to the ultimate clinical trial. As we
observed in our investigation of pilot study sample size,
even approximate information about the distribution of
change scores was sufficient to inform the calculation of
optimal weights and improve the efficiency of composite
scales. On the basis of these observations we speculate
that, within the context of prodromal AD trials, weights
optimal in one sample will be optimal or near-optimal for
future trials with similar design and inclusion criteria, and
that an optimal PACC defined using optimal weights esti-
mated from a single registry trial (or completed clinical trial)
would be an appropriate endpoint for future trials with
similar design and inclusion criteria. In contrast, the PACC
as originally described is redefined on a trial-by-trial ba-
sis—it is the sum of z-score normed component instruments,
with z-score normative values estimated from baseline visit
data of the respective clinical trial [2]. In other words, the
PACC is measured on a different scale and has a different
interpretation for each clinical trial. A single established
optimally weighted PACC would have the dual advantages
of improved statistical power and of being comparable study
to study, so that future pooled meta-analyses would be
possible. The clear tradeoff and downside of optimal end-
points is that a pilot study is required, a real cost in terms
of both time and resources. For the “PI-PACC” assuming
the distribution of change scores observed in the PI Prodro-
mal AD cohort, the optimal PACC is relatively cost efficient
even considering the time and cost of a pilot registry trial—
assuming this distribution of change scores, a trial with 80%
power to detect a 25% slowing of decline using the optimal
PACC would require 600 subjects per arm (1200 subjects to-
tal), whereas a trial powered to detect the same percentage
slowing in the PI-PACC would require more than 2500
subjects.

Given the critical importance of statistical power in clin-
ical trials, any method of improving power and trial effi-
ciency should be seriously considered. More power
means there is less likelihood of false negative trials
missing effective treatments or conversely more power
means that we can perform smaller trials with equivalent
power, so that we may perform more clinical trials and
test more treatments with the limited study subject pool
available for prodromal AD studies. In the long run,
more efficient trials will shorten the time till effective treat-
ments are identified and we begin to make meaningful
progress against the epidemic of AD.
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RESEARCH IN CONTEXT

1. Systematic review: Composite scales, typically
defined as the weighted sum of established compo-
nent assessment scales, have recently been proposed
as outcome measures for clinical trials. Composite
scales can be severely inefficient endpoints if subop-
timal weights are used to construct the composite.
Optimal weights can be estimated from pilot data,
but it is an open question as how large a pilot trial
is required to calculate reliably optimal weights.

2. Interpretation: We demonstrated with large-scale
computer simulations that pilot trials of size 100 to
300 subjects, the size of typical phase 2 clinical trials,
are sufficient to determine optimal weights that
maximize the sensitivity and statistical power of
composite outcomes to detect treatment effects.

3. Future directions: The potential utility of optimally
weighted composites has been well demonstrated.
A practical demonstration of utility using data from
completed trials would further validate this approach
to clinical trial endpoint development.
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