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Rich can get poor: conversion of hub to non-hub proteins
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Abstract Hubs are ubiquitous network elements with

high connectivity. One of the common observations about

hub proteins is their preferential attachment leading to

scale-free network topology. Here we examine the ques-

tion: does rich protein always get richer, or can it get poor

too? To answer this question, we compared similar and

well-annotated hub proteins in six organisms, from pro-

karyotes to eukaryotes. Our findings indicate that hub

proteins retain, gain or lose connectivity based on the

context. Furthermore, the loss or gain of connectivity

appears to correlate with the functional role of the protein

in a given system.

Keywords Hub � Non-hub � Proteins � Rich � Poor �
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Abbreviations

k Connectivity

hki Average connectivity

kfc Connectivity fold change

p(k) Probability distribution of connectivity

SS Sum square error

df Degree of freedom

PPI Protein–protein interaction network

Introduction

In a network, hubs represent nodes with large number of

links surrounded by nodes with just few connections. The

hubs have important roles, not only in information man-

agement within a network but also as regulatory molecules

(Rodriguez-Caso et al. 2005). Protein–Protein Interaction

(PPI) networks, in their general form, appear as a small

number of hubs and a large number of sparsely connected

non-hub proteins. Recent evidence points to the prepon-

derance of structural disorderliness in hub proteins com-

pared with the non-hub proteins (Haynes et al. 2006; Singh

et al. 2007).

A notable feature of the PPI networks is their property of

power-law and scale-freeness. The differential degree of

connectivity distribution has been ascribed to the prefer-

ential attachment of hub proteins (Barabasi and Albert

1999; (Barabasi and Oltvai 2004). According to this model,

the probability of connecting to a new node in the network

is proportional to the connectivity density (i.e., vertex

degree) of the existing node. Thus, a highly connected node
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has greater chances of attracting a new node compared to

the ‘connectivity potential’ of a sparsely connected node,

i.e., rich gets richer. Interestingly, enzymes that are can-

didates for horizontal gene transfer seem to have higher

average connectivity than other enzymes (Light et al.

2005). Furthermore, protein age seems to correlate with the

network connectivity (Eisenberg and Levanon 2003). Sat-

uration and viability have also been reported as properties

of networks showing preferential attachment (D’Souza

et al. 2007). Though preferential attachment of hub pro-

teins has been studied in the past, the reasons of its origin

and the functional implications of ‘rich-gets-richer’ are

unclear. Interestingly, Pagel et al. (2007) propose a variable

rate of attachment model according to which power-scaling

can be achieved without preferential attachment.

In this study we asked: Is preferential attachment uni-

versal to all the protein-protein interaction networks? Are

there any exceptions? What is the functional implication of

the preferential attachment model, or the lack of it? To

answer these questions, well-annotated and evolutionary

conserved hub orthologs in several organisms were iden-

tified. Six protein–protein interaction (PPI) databases were

integrated to minimize the effect of data bias. Stringent

criteria were followed to ensure the accuracy of the sample.

Overall, our work supports the existing notion of ‘‘rich-

gets-richer’’. However, every hub protein that we studied

did not follow the preferential attachment model. Several

examples of ‘rich-proteins-getting-poor’ were observed.

Based on these findings, we propose a hypothesis of hub

convertibility, i.e., a hub protein can get rich or poor, based

on the context. Our findings also point to the functional

correlation with the loss or gain of hubness.

Materials and methods

Six organisms, H. pylori, E. coli, S. cerevisiae (Yeast),

C. elegans (Worm), D. melanogaster (Fly) and H. sapiens

(Human) were selected in the present study due to their rich

annotation and interaction data. The publicly available

protein-protein interaction databases (DIP, Salwinski et al.

2004; BIND, Bader et al. 2003; IntAct, Hermjakob et al.

2004; Reactome, Joshi-Tope et al. 2005; HPRD, Mishra

et al. 2006; MINT, Chatr-aryamontri et al. 2007) were

integrated. We used exact sequence homology to overcome

the problem of unique accession identifier in each database.

Using this meta-dataset, a sample of non-redundant pro-

teins and their interactions was extracted (Table 1). In all,

44,149 proteins were collected from 100,915 accessions

and 205,835 interactions were collected from 260,449

accessions. The average overlap for proteins was 1.95 and

the average overlap for interaction between them is 1.26.

The InParanoid algorithm (O’Brien et al. 2005) with

BLOSUM45 substitution matrix for prokaryote and BLO-

SUM60 for eukaryote was used to identify orthologs. The

pair wise orthologs were combined into multi-species

cluster using MultiParanoid algorithm (Alexeyenko et al.

2006). To separate orthologs from spurious matches, a 50

bits cut-off was used. The matching segment of the longer

sequence exceeded 50% of its total length. The ortholog

data were also examined using COG and KOG protein

family classification.

We selected fold change definition for connectivity,

kfc = k/hki, and appropriate cutoff to identify hubs in

different PPI networks. For Prokaryotes, a node with

kfc C 2 was considered as hub (cutoff, P \ 0.03 using

distribution of standard normalized kfc values in

Ortho_Pk). For eukaryotes the criterion was, kfc C 10

(with P \ 0.001). A higher cutoff of 10-fold change was

used for eukaryotes in order to minimize the effect of false

positives, especially in data from S. cerevisiae. Of the

orthologs identified in each category (Ortho_PkEk,

Ortho_Pk and Ortho_Ek), only those satisfying stringent

hub criteria in at least one species were selected. A hub was

considered ‘converted to non-hub’ when its kfc value

crossed the cutoff. In order to define the nature of this hub

convertibility, we observed trends along the complexity

profile of six species (H. pylori, E. coli, S. cerevisiae,

C. elegans, D. melanogaster and Homo sapiens).

Three classes of hubs were identified from the data: (a)

the ‘‘getting rich’’ hubs showing increasing kfc, (b) the

‘‘getting poor’’ hubs showing decreasing kfc and (c)

‘‘flexible’’ hubs with non-uniform connectivity trend across

the organisms. The GO annotation for each protein was

obtained from the source database (BIND, SGD, Flybase,

Wormbase, HPRD). The resulting GO annotation are

Table 1 PPI networks selected in this study

Item H. pylori
(HPY)

E. coli
(ECL)

S. cerevisiae
(YST)

C. elegans
(WRM)

D. melanogaster
(FLY)

H. sapiens
(HMN)

Proteins (# of nodes) 758 3393 6498 7390 10363 15747

Interactions (# of links) 1437 10835 44711 25723 37823 85306

Average connectivity hki 3.792 6.387 13.761 6.962 7.3 10.835

Power Law exponent (c) 1.93 1.88 1.62 1.86 1.79 1.75

Compiled from six databases: DIP, BIND, IntAct, Reactome, HPRD, MINT
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enriched into 10 top level molecular functions namely:

catalytic activity, structural molecule activity, transporter

activity, binding, antioxidant activity, chaperone regulator

activity, enzyme regulator activity, transcription regulator

activity, translation regulator activity and molecular

transducer activity.

Studying the protein-partner retention across species

Here the aim was to find if a hub-protein retained the same

partner across the species. A statistically significant

(e-value less than 0.001) similarity was counted as 1 (i.e.,

partner retained) else it was counted as 0 (i.e., partner

changed). By summing up the scores, the total number of

evolutionally conserved interactions was computed. Fur-

thermore, the total number was divided by individual

connectivity, and average score was calculated. The sta-

tistical significance of ‘getting rich’, ‘getting poor’ and

‘flexible’ groups was studied using F-test. The F-value was

calculated as:

F ¼ SSM=dfM

SSG=dfG

SSM and SSG are sum squared error from the total mean and

categorical means. df1 and df2 are degree of freedoms of

SSM and SSG, respectively, and their values are 20 (21–1)

and 2 (3–1) P-value is obtained from F-distribution of

respective degrees of freedom (Brandt 1983).

Result

Table 1, summarizes the PPI network data obtained for six

model species. All the networks exhibit power law degree

distribution of nodes (as p(k) k-) with very similar constant

values for the exponent. This reveals comparable scale free

nature of all the PPI networks selected. However, the

average connectivity, hki varies largely across the six

species from 3.8 in H. pylori (HPY) to 13.8 in S. cerevi-

siae. For ortholog selection, a total of 101 orthologs in

Prokaryotic group (denoted as Ortho_Pk) and 377 in

Eukaryotic group (Ortho_Ek) were identified, out of which

21 were common to both (Ortho_PkEk). These groups of

orthologs form the basis of our analysis and argument in

support of hub convertibility.

Ortho_PkEk proteins

Figure 1 shows the hub connectivity profile (based on kfc)

for six species. Using a cutoff level of 2-fold change, all the

21 Ortho_PkEk proteins showed hubness in at least one

species. Furthermore analysis of the kfc data showed three

distinct trends for 21 core proteins (separately indicated for

clarity in Fig. 1). A total of 57.1% of the core proteins

showed ‘‘flexible’’ hub convertibility, 14.3% proteins

showed ‘‘getting rich’’ and 28.6% proteins showed ‘‘getting

poor’’ trend. It is important to note that ‘‘getting poor’’

proteins show higher confidence of hub convertibility. The

hubness is lost in higher organisms even though the cutoff

is far below the actual limit (kfc C 10 for Eukaryotes). In

order to observe the hub conversion between two major

groups of phylogeny, we compared the average kfc (hkfci)
profiles by grouping species in each category (Fig. 2).

A common cutoff of hkfci * 2 was used to observe the hub

convertibility between Prokaryotes and Eukaryotes. Some

proteins [proteins 6 and 17 in Ortho_EkPk] were found to

be retained as highly connected nodes in both the species

groups (Hub–Hub). It is evident from their annotation that

these two proteins (with functional domains Ribosomal

L14 and Elongation Factor, respectively) are essential to

Fig. 1 Distribution of kfc for

21 Ortho_PkEk proteins over

six species. The profiles are

clustered separately to highlight

the three distinct trends in

connectivity. Groups of 3, 6 and

12 proteins, respectively, show

‘‘getting rich’’, ‘‘getting poor’’

and ‘‘flexible’’ hub

convertibility
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protein folding mechanism. Orthologs (12, 15 and 19 with

functional annotations DNAj, ATP_synthase and dehy-

drogenase) were observed to ‘‘get rich’’, in Eukaryotes.

Orthologs (4, 11 13 representing MSH family, helicase and

ClpA protein, respectively) show ‘‘getting poor’’ trend

from Prokaryotes to Eukaryotes.

Hub convertibility in prokaryotes and eukaryotes

Using the criteria of fold change cutoff kfc (2 and 10 for

Prokaryotes and Eukaryotes respectively), about 25% of

Ortho_Pk proteins (25 out of 101) and 12.7% of Ortho_Ek

proteins (48 out of 377) were found to exhibit hubness. It

was difficult to establish meaningful conclusions for the

remaining orthologs exhibiting significant connectivity

variations. These nodes were below the connectivity

threshold set by hubness criteria for all the organisms.

Even though the two organisms (H. pylori and E. coli)

belong to the same super kingdom of Eubacteria, they

exhibit different patterns of hubness for the conserved

proteins (Fig. 3a). Thirteen out of 25 potential hub candi-

dates from Ortho_Pk list, exhibit differential hubness.

Eight core proteins (32%) are significantly richer (seven

times higher) in HPY compared to ECL showing ‘‘getting

poor’’ trend. Whereas five proteins (20%) get richer in ECL

connectivity (10 times more than HPY kfc values), the

remaining 12 proteins continue to exist as hub nodes in

both the networks. Figure 3b, with average kfc profiles for

these three groups summarizes these observations for

Prokaryote hub convertibility.

Among 48 Ortho_Ek hub proteins, 45.8% proteins (22

out of 48) were found to show ‘‘get rich’’ pattern whereas

39.6% of ortholog proteins (19 out of 48) showed

decreasing hubness across the four species (Fig. 4a). The

gain and loss of hubness indicates a significant change of

connectivity in several organisms, with average kfc profiles

(in Fig. 4b) indicating an order of magnitude difference.

Hubness trends for the ‘‘flexible’’ nodes shows a large

deviation in connectivity, possibly due to presence of

higher number of false positives in Yeast and Human data.

The ‘‘getting poor’’ and ‘‘getting rich’’ hub convertibility

trends are stable with smaller standard deviations. The hub

connectivity profile shows a distinct trend among various

organisms (Fig. 5a–d).

Figure 6 shows percent protein-partners with at least

one significantly similar (E-value of less than 0.001)

partner protein. The mean values and standard deviations

for each protein class are shown. The figure suggests that

getting rich and getting poor categories of proteins are

significantly higher in retaining protein-partners than the

proteins in the flexible category.

The relative abundance of molecular functions for six

species in each category was also studied (Fig. 7a). Fig-

ure 7b shows changes in average functional counts from

H. Pylori to Human for ‘getting rich’, ‘flexible’ and ‘get-

ting poor’ categories. The changes reflect number of doc-

umented annotations to a protein. Our work broadly

suggests some functional meaning of the protein-partner-

ship trend. However, more studies need to be performed to

address this issue in depth.

Fig. 2 Distribution of

averaged kfc for 21 Ortho_PkEk

proteins. hkfci for Prokaryotes

(PK) is obtained by averaging

kfc of HPY, ECL and for

Eukaryotes (EK) by averaging

over YST, WRM, FLY, HMN
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Discussion

The ability to understand information-flow in bio-molecu-

lar networks is one of the key goals in systems biology.

Hubs are central to this process of information manage-

ment, as they literally ‘hold the networks together’.

Originally introduced by Barabasi and Albert (1999) and

followed by several interesting papers (Barabasi and Oltvai

2004; Nacher and Akutsu 2007), scale freeness has been

widely accepted as a generic model of networks exhibiting

power law distributions. However, there are some reports

of protein interaction networks not conforming to the

power law (Khanin and Wit 2006; Tanaka et al. 2005). It is

further argued that some published PPI networks are better

described by an exponential function and proponents of

this approach recommend using rank plots instead of fre-

quency-degree plots (Tanaka et al. 2005). Furthermore, it

has been demonstrated that power law degree distribution

is equivalent to a power law degree-rank function only if

scaling exponent is greater than 2 (Wu et al. 2008). It is

important to recognize that rich getting richer paradigm is

not the only mechanism leading to scale free networks

(Li et al. 2005). Finaly, the scale-free topology of existing

protein-protein interaction networks may not be confi-

dently extrapolated to complete interactomes (Han et al.

2005).

We addressed the paradigm of ‘rich-getting-richer’ from

a different perspective. Our aim was to see if rich always

get richer. If no, what would happen if hub proteins lost

most of the links? As a first step, the data were integrated

from six protein-protein interaction databases to create a

reasonably large size and variety of the sample. Sequence

homology was used to eliminate redundancy among hub

proteins. A protein node was classified as a hub or non-hub

based on the extent of its connectivity. People have used

Fig. 3 a kfc distribution of 25 potential hub Ortho_Pk proteins

across H. pylori and E. coli. The trends are clustered into three

distinct groups. Total of 12 proteins show smaller variations

(clustered in the middle as green group on the dendrogram), 8

proteins are ‘‘getting poor’’ (blue cluster) and only 5 proteins are

‘‘getting rich’’ (top block in red cluster). The labels on right hand side

indicate protein indices in Ortho_Pk set. b Average kfc profiles (±r)

showing the hub convertibility phenomena in Prokaryotes

Fig. 4 a kfc distribution of 48 potential hub Ortho_Ek proteins

across four Eukaryote species. Proteins clustered in red group on the

dendrogram are ‘‘getting rich’’, proteins in blue cluster are ‘‘getting

poor’’ and others are ‘‘flexible’’. The labels on right hand side indicate

protein indices in Ortho_Ek set. b Average kfc profiles (±r) showing

the hub convertibility phenomena in Eukaryotes
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several criteria to define hubness based on the type of

network analysis. For example, Barabasi and Albert (1999)

suggest that, hub nodes in scale free networks generally

exhibit connectivity, k, an order of magnitude higher than

average vertex degree hki of the network. Unfortunately,

such measures cannot be generalized to biological net-

works exhibiting modularity. Han et al. (2004) used hub

node criterion of k C 5 (in a network with average vertex

degree hki = 3.6). Such arbitrary cutoff measures can lead

to misclassification of nodes in large networks with

potential false positive interactions. Single criterion, based

on k cutoff is misleading as even a non-hub node in dense

network might have edges more than hub node in less

denser network. The Z score cutoff (C2.5), based on the

standardized normal distribution of connectivity values (k)

has also been used to establish significant hub nodes

(Ekman et al. 2006; Guimera and Nunes Amaral 2005).

The Z scores definition is inappropriate in our study, since

different networks exhibit different degree distributions

with varying hki.
One of the confounding factors in studying PPI networks

is the low quality of experimental data (Gentleman and

Huber 2007; Jensen and Bork 2008). This can be particularly

worrying if one relies too much on a particular database or

attempts to integrate several independently constructed

databases (Alexeyenko and Sonnhammer 2009). To address

the issue of data integrity, we adopted a stringent metric of

10-fold change to identify hubs and minimize false posi-

tives, mainly for eukaryotes. Thus, in theory even if 50%

edges turn out to be false positives, the protein will still show

a significantly high vertex degree to qualify for the standard

definition of hubness. A smaller cutoff was, however, used

for prokaryotic hub proteins given the relatively smaller hki
and smaller size of networks.

The current dataset includes proteins representing both

physical and functional interactions to reduce data bias

(Han et al. 2004). To ensure that we were studying the

same protein in different organisms, a set of conserved

proteins (orthologs) were extracted in all the six species. A

stringent threshold of 50 bits and matching segment

exceeding 50% of its total length was adopted. The

ortholog data were also examined using COG and KOG

protein family classification.

Fig. 5 Connectivity [k]

profiles for Ortho_Ek proteins a
‘‘getting poor’’, b ‘‘getting

rich’’. Connectivity fold change

(kfc) profiles c ‘‘getting poor’’,

d ‘‘getting rich’’. Overall

increase decrease trends are

seen clearer in kfc profiles. kfc

cutoff of 10 is used to decide

hub nodes

Fig. 6 The functional classification of Ortho_Ek core proteins

performed using KOG

80 K. Tun et al.

123



Our observation of proteins ‘‘getting rich’’ supports the

preferential attachment model for all scale free networks

(Barabasi and Albert 1999; Qian et al. 2001). However, we

also found incidences of rich-proteins-getting-poor. Inter-

estingly, the existing network growth models do not con-

sider the possibility of fluctuating connectivity in hub

proteins. Even if we take into account the yeast, S. cere-

visiae where average connectivity score is higher, the

results are still significant at 10-fold change cutoff. Our

findings support the concept of hub convertibility i.e., loss,

retention and gain of hubness based on the context.

We further asked if the getting-rich or getting-poor hub

proteins retain their core protein partners across all the

species? A total of 380 protein-partners were found to

exhibit significant similarity by way of their sequence

identity (e-value h0.001). Among them, 24 partners shared

more than two species. Although statically non-significant

(P-value = 0.13), the getting-rich proteins tend to maintain

their interacting partners, thereby reflecting ‘‘an intrinsic

scale-free design’’ of larger networks. However from this

data, we could not identify an interaction partner that was

ortholog in all six species. Interestingly, the functional-

spread of the hub proteins shows a decrease as their part-

ners gradually downsize in number. The present hub con-

vertibility data suggests that several ancient proteins (hub

nodes in Prokaryotes) are conserved i.e., remain as ortho-

logs in eukaryotes despite the loss of hubness. One reason

for this observation could be their key roles (Kunin et al.

2004) in the cell, irrespective of their observed connec-

tivity patterns.

In future, it would be interesting to address following

questions (i) how do new hubs arise in the networks? (ii)

Which cellular decisions determine the ‘retirement’ of

proteins that previously existed as hubs? (iii) Is there any

protein-structure basis for hub convertibility? (iv) How

networks compensate for the loss of rich proteins getting

poor? (v) How is robustness maintained in view of fluc-

tuating connectivity trends in hub/non-hub proteins? (vi)

Are some of the proteins more susceptible to hub con-

vertibility than others, If yes—why? (vii) Can the ‘con-

version potential’ of a protein be predicted from its

sequence/structure data? (viii) Does compartmentalization

impact the gain or loss of hubness? (ix) Does protein-

partner loss/retention impact the maintenance of specific

functional modules? (x) How do metabolic needs impact

component reuse vis-à-vis retention or invention of novel

functional modules in a network?
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