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Abstract: Influenza A virus (IAV) is the most common infectious agent in humans, and infects
approximately 10–20% of the world’s population, resulting in 3–5 million hospitalizations per year. A
scientific literature search was performed using the PubMed database and the Medical Subject Head-
ings (MeSH) “Influenza A H1N1” and “Genetic susceptibility”. Due to the amount of information
and evidence about genetic susceptibility generated from the studies carried out in the last influenza
A H1N1 pandemic, studies published between January 2009 to May 2020 were considered; 119 papers
were found. Several pathways are involved in the host defense against IAV infection (innate immune
response, pro-inflammatory cytokines, chemokines, complement activation, and HLA molecules
participating in viral antigen presentation). On the other hand, single nucleotide polymorphisms
(SNPs) are a type of variation involving the change of a single base pair that can mean that encoded
proteins do not carry out their functions properly, allowing higher viral replication and abnormal host
response to infection, such as a cytokine storm. Some of the most studied SNPs associated with IAV
infection genetic susceptibility are located in the FCGR2A, C1QBP, CD55, and RPAIN genes, affecting
host immune responses through abnormal complement activation. Also, SNPs in IFITM3 (which
participates in endosomes and lysosomes fusion) represent some of the most critical polymorphisms
associated with IAV infection, suggesting an ineffective virus clearance. Regarding inflammatory
response genes, single nucleotide variants in IL1B, TNF, LTA IL17A, IL8, IL6, IRAK2, PIK3CG, and
HLA complex are associated with altered phenotype in pro-inflammatory molecules, participating in
IAV infection and the severest form of the disease.

Keywords: influenza; inflammation; genetic susceptibility; polymorphisms; cytokine storm

1. Introduction

Influenza A virus (IAV), a single-stranded negative-sense RNA virus of the Orthomyx-
oviridae family, is the most common infectious agent in humans, causing significant mor-
bidity and mortality in infants and the elderly every year [1,2]. Also, influenza infects
approximately 10–20% of the world’s population resulting in 3–5 million hospitalizations
each year and an estimated 87.1 billion dollars in total annual economic burden in the
United States alone [3]. Since 1918, humankind has experienced three influenza pandemics:
the “Asian” influenza pandemic, in 1957, the “Hong Kong” influenza pandemic in 1968,
and the 2009 so-named “swine flu” pandemic. Although mild compared to that of 1918,
these pandemics highlight the constant threat that the influenza virus poses to human
health [4].

In April 2009, the first influenza A H1N1 cases were registered in Mexico and as-
sociated with a surprising number of deaths [5], and it spread rapidly throughout the
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world [6]. Worldwide, estimates of the crude hospitalization fatality risk (HFR), defined
as the probability of death among H1N1 pdm09 cases which required hospitalization for
medical reasons, ranged from 0% to 52%, with higher estimates from tertiary-care referral
hospitals in countries with a lower gross domestic product. However, in wealthy countries,
the estimation was 1%–3% in all settings [7].

2. Bibliometric Analysis

A scientific literature search was performed using the PubMed database; the Medical
Subject Headings (MeSH) “Influenza A H1N1” AND “Genetic susceptibility” were used.
Studies published between January 2009 to May 2020 were included due to the amount of
information and evidence about genetic susceptibility generated from the studies carried
out in the last influenza A H1N1 pandemic. The bibliometric analysis was performed using
RISmed [8], and for the wordcloud creation with the keywords of articles included in this
review, we used the wordcloud tool [9] in RStudio V 3.6.1 [10] following the workflow
proposed by the libraries developer. Applying this criteria selection, 119 papers were
identified. Figure 1 shows articles published with these MeSH by year in the period, as
mentioned above, and journals where papers were published.

Figure 1. (a) Publications with the words “influenza A H1N1” and “genetic susceptibility” published between January 2009
to May 2020. (b) Top 25 journals where the 119 articles were published.

A wordcloud showing the main keywords terms in the bibliometric analysis is shown
in Figure 2.



Viruses 2021, 13, 344 3 of 21

Figure 2. Depicting word cloud showing main keywords in the bibliometric analysis.

3. Inflammatory Response and IFITM3 Role in Influenza A Virus Infection

Through experimental and clinical studies, the systemic inflammatory dysregulation
correlating with the disease’s severity and progression has been identified as one of the most
important pathogenic mechanisms in infection [11,12]. Cytokine secretion by infected cells
is necessary for the initiation of the immune response that controls virus replication [13];
also, immunopathological mechanisms such as hypercytokinemia (also known as cytokine
storm) generally contribute to the more severe evolution of the infection [14,15].

A cytokine storm during viral infection is a prospective predictor of morbidity and
mortality, yet the cellular sources remain undefined [16]. Critically ill patients who de-
veloped ARDS related to influenza A H1N1 virus infection had a slower decline in na-
sopharyngeal viral loads; had higher plasma levels of pro-inflammatory cytokines and
chemokines; and were more likely to have bacterial coinfections, myocarditis, or viremia
than patients in the survived-without-ARDS or the mild-disease groups. The hallmarks of
the severity of disease were interleukin-(IL)-6, IL-8 and Tumor necrosis factor (TNF)-α [17].
The genes encoding these proteins are polymorphic, and specific alleles have been associ-
ated with susceptibility to different diseases, covering a broad spectrum of pathologies,
from infectious to oncological, including pulmonary and systemic diseases [18–20].

These genes’ extensive polymorphism could be associated with the high mortality
rate during the A H1N1 influenza pandemic in Mexico and its high prevalence. According
to Borja et al. 2012, a fourth wave observed in Mexico during 2011–2012 was not reported
in other countries. Therefore, these differences could be explained by patterns of genetic
susceptibility in Mexicans or vaccination coverage failures [21].

Elevated serum levels of IL-1β and IL-6 have been identified as markers of severity in
acute lung damage during influenza A H1N1 virus pdm09 infection; additionally, elevated
levels of IL-1β are considered an early biomarker of the severity and progression of lung
inflammation in patients who require mechanical ventilation and who do not respond to
conventional antimicrobial treatments [22,23].

For example, the UK experienced two waves, one in spring–autumn 2009, followed
by a more severe one in 2010–2011 [24,25], which was not seen in other European countries.
These differences could be explained by geographic variations, previous immunity, control
strategies, connectivity, public health, and for now, it remains a key for future research.

The defense mechanism that is provided by the innate immune system is the quintessen-
tial barrier, a specialized immune system in which different mucosa co-exist that fights
the invasion of pathogens. The viral RNA is recognized as foreign by the different Pattern
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Recognition Receptors (PRRs) present in infected cells, which secrete type I interferons
(IFNs), pro-inflammatory cytokines, eicosanoids, and chemokines [26]. Type I interfer-
ons, produced by macrophages, pneumocytes, dendritic cells, and plasmacytoid dendritic
cells (pDCs), stimulate the expression of hundreds of collectively called IFN-stimulating
genes (ISGs) in neighboring cells, which induce an antiviral state. Pro-inflammatory cy-
tokines and eicosanoids lead to systemic and local inflammation, which results in fever
and anorexia and instructs the adaptive system to respond to the influenza virus [27,28].

The innate immune response comprises a system of mobile lines that encode dif-
ferent receptors inspecting the intracellular and extracellular compartments for signs
of infection and highly conserved microbial motifs, also called pathogen-associated
molecular patterns (PAMPs), which are molecular signatures of pathogens that facilitate
induction of the host immune response; PAMPs activate cellular PRRs such as toll-like
receptors (TLRs) to induce immunity [29]. Vast arrays of pathogens enable PRRs in the
absence of PRR-specific PAMPs. It is thought that, during infection, cellular factors can
activate PRRs and thus indirectly fulfill the function of PAMPs [30]. PRRs are classified
into several families. The Toll-like receptor (TLR) family consists of more than ten mem-
bers, which enable innate immune cells to respond to a variety of PAMPs [31]. TLR3,
TLR7, TLR8, and TLR9 represent a TLR subfamily that recognizes viral nucleic acid and
can induce type I IFN [32]. More recently, it has become apparent that viral RNA is
also detected by members of the RIG-I-like RNA helicase (RLH) family, such as RIG-I
and Mda5 [31–33]. TLR and RLH differ in their cellular localization, ligand specificity,
and downstream signaling pathways, suggesting that host cells have multiple defense
mechanisms against viral infection. Among ISGs, 2′–5′-oligoadenylate synthetase (OAS)
plays a critical role in antiviral immunity by synthesizing 2–5As, which induces RNA
degradation by activating a latent RNase (RNase L) pathway [34].

After infection, viral components are recognized by several PRRs that promote down-
stream cellular and humoral responses, including the cytokine storm [35], a term used for
the first time in 2003 to describe an immune response to influenza infection about influenza-
associated encephalopathy [36]. The influenza-induced cytokine storm has been linked to
aggressive pro-inflammatory responses and insufficient control of the anti-inflammatory
responses [16]. Several experimental studies and clinical trials suggested that a cytokine
storm correlates directly with widespread tissue damage and unfavorable prognosis of
severe influenza [37]. Nevertheless, we have little understanding of the mechanisms that
promote cytokine storms or why some individuals exhibit an excessive response to the
virus that leads to hospitalization or death, while the majority of patients only develop a
mild to moderate form of the disease, without this exaggerated inflammatory response.

Also, the innate immune system recognizes the influenza virus by members of some
of the three different classes of PRRs. Increased cellular expression of TLR9, TLR8, TLR3,
and TLR7 during influenza has been reported while TLR2 and TLR4 were suppressed [38].
TLR9 may be the critical receptor among pattern recognized receptors to recognize and
bind to influenza A H1N1 virus [38].

The IL-1 receptor-associated kinases (IRAKs) are critical regulators of TLR/IL-1 sig-
naling, critical regulators of mammalian inflammation, and innate immune response. The
non-synonymous IRAK2 variant rs708035 (coding D431E) increases NF-κB activity and
leads to more NF-κB-dependent pro-inflammatory expression cytokines compared with
IRAK2 wild type [39].

Genetic studies in mice have determined a specific role for each of the ISGs, including
the antiviral myxovirus resistance protein 1 (MX1), the interferon-inducing transmembrane
protein (IFITM), and PKR, in limiting virus infection and its spread [38].

The myxovirus resistance (MX) genes are evolutionarily conserved in nearly all verte-
brates. MX gene expression is induced by interferons type I or III, and the corresponding
gene products can inhibit a wide range of viruses [38]. The MX1 is an interferon-induced
GTPase that plays an essential role in the mammalian cell defense against influenza A
viruses. Mouse MX1 interacts with the influenza ribonucleoprotein complexes (vRNPs)
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and can prevent the interaction between polymerase basic 2 (PB2) and the nucleoprotein
(NP) of influenza A viruses [40]. Human MxA can suppress the replication of Orthomyx-
oviridae viruses (influenza and Thogoto), rhabdovirus (vesicular stomatitis virus), and
hepadnavirus (hepatitis B virus), and mouse MX1 inhibits influenza and Thogoto virus
replication [41].

IFITMs are a family of small proteins that comprises five members, including immune-
related IFITM1, 2, 3, 5, and 10, with IFITM3 being the most important in host defense
against viral infections [42]. The human IFITM loci measure approximately 18kb long and
are located on chromosome 11. All of the IFITM genes contain two exons in their structure.
The interferon-induced transmembrane protein 3 (IFITM3) gene is an endogenous immune-
related gene considered as a small ISGs, since it includes an interferon-stimulated response
element (ISRE) in its promoter region, which promotes a robustly up-regulated expression
of IFITM3 by the stimulus of all three types IFNs, resulting in a significant affinity of
transcriptional factors, the most critical being POLR2A, MYC, ELF1, PHF8, CHD1, TAF1,
REST, SIN3AK20, SIN3A, IRF1, STAT1, TBP, STAT3, STAT2, ZBTB7A, and CTCF [43–46].

IFITM3 is an essential antiviral factor that has been shown to restrict RNA viruses’
replication, including IAV, the West Nile virus, and Dengue virus [47]. The mechanism
of how IFITM3 regulates viral replication is not entirely understood. However, recent
evidence suggests that IFITM3 is part of the endosomal compartments, preventing viral
entry into the cytoplasm, preventing virus membrane fusion with cells, and inhibiting the
fusion of infected cells (syncytialization) [48–50]. Essentially, IFITM3-deficient mice are
more susceptible to influenza virus infection [47].

In this sense, studies in the IFITM3 knockout (KO) mouse model have demonstrated
that gene suppression improves weight loss and mortality following influenza virus infec-
tions. Also, infected IFITM3 KO mice developed several cardiac disorders, such as aberrant
cardiac electrical activity, including decreased heart rate and irregular, arrhythmic RR
(interbeat) intervals. In contrast, WT mice exhibited a mild decrease in heart rate without
irregular RR intervals. Additionally, these mice were accompanied by increased activation
of fibrotic pathways and fibrotic lesions in the heart, suggesting a protective role of IFITM3
in the heart [51,52].

4. Genetic Variants and Influenza A H1N1 Virus Infection
4.1. Polymorphisms in the Complement System and Antibodies-Related Genes

There is considerable variability in the disease severity resulting from infection with
influenza viruses. There are primary determinants of this variability; among these are the
virus’s intrinsic pathogenicity, acquired host factors (such as immunity and comorbidities),
and inherent host susceptibility. Whereas the viral genetic determinants of influenza
severity and host immunity have been intensively studied, host genetic determinants are
much less well studied. In 2009, the World Health Organization identified studies of the
role of host genetic factors on susceptibility to severe influenza as a priority [53,54].

Single nucleotide polymorphisms (SNPs) are genetic variants involving a particular
base pair [55]. The genes coding for immune-response proteins are polymorphic, and
specific alleles have been associated with susceptibility to respiratory diseases that cover a
wide range of pathologies [18].

Reports have estimated an increase in the seasonal influenza-associated respiratory
deaths each year worldwide, mostly affecting older individuals [56]. Promptly, an ex-
ploratory study was published, providing evidence that genetic factors played an essential
role in determining the susceptibility of Mexican Mestizo individuals to the development
of severe pneumonia in the first outbreak of influenza A H1N1 infection. The authors
found significant associations of five SNPs (rs1801274, rs9856661, rs8070740, rs3786054, and
rs3744714) located on chromosomes 1 and 3 with the development of severe pneumonia in
patients with influenza A H1N1 virus infection [57]. Three of these SNPs occur in FCGR2A
(Fc Fragment of IgG Receptor IIa) and C1QBP (Complement component 1 Q subcomponent-
binding protein), genes that may affect host immune responses to and/or replicate the
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A H1N1 influenza virus [57]. Immune complexes and complement activation have been
implicated in the pathogenesis of the severe disease. Also, severe illness was found to be
associated with high titers of low-avidity, non-protective anti-influenza antibodies, leading
to immune complex deposition and complement activation in the respiratory tract [58].
Interestingly, the FCGR2A gene affects immune complexes’ control, while C1QBP can
activate the complement system.

The FCGR2A gene encodes the Fcγ receptor IIA (FcγRIIA), which binds immune
complexes with high avidity [59]. The human FCGR2A gene in the 1q23 chromosome region
encodes a member of the heterogeneous Fc fragment of the IgG receptor family of immune
receptors. It contains a functional rs1801274 variation in exon 4, which leads to the amino
acid alteration from histidine (H) to arginine (R) at position 131 of the FcγRIIA protein [60].
The homozygous His131 genotype (A/A) was significantly enriched in patients with severe
pneumonia compared with healthy A H1N1 exposed household contacts who did not
develop respiratory illness [57]. The His131 allele of FCGR2A (FcγRIIA-H131) has a higher
affinity than the Arg131 allele (FcγRIIA-R131) for all human IgG subclasses. The affinity
of FcγRIIA-R131 for IgG2 is notably reduced, and FcγRIIa-H131 is the only human Fcγ
receptor that recognizes this IgG subclass efficiently [61]. Immunoglobulin engagement of
activating-type Fc receptors such as FcγRIIA induces multiple pro-inflammatory events,
including immune cell degranulation and transcriptional activation of cytokine-encoding
genes. Some FcγRIIA alleles have been proven to modulate the phagocytes’ ability to
bind/internalize IgG-opsonised particles, with FcγRIIA-H131 conferring higher phagocytic
function [62].

On the other hand, SNPs in chromosome 17 have been associated with severe dis-
ease [57] and increased death risk [62]; the rs3786054, located in the C1QBP gene, encodes
the protein gC1qR, which was initially identified as a high-affinity receptor for C1q [62].
C1q is the first subcomponent of the C1 complex of the classical pathway of complement
activation [62], and gC1qR can activate this pathway [63]. gC1qR may also contribute to the
activation of the classical pathway of Complement by the surface of activated platelets [63].
It suggests that the risk allele of C1QBP associated with severe A H1N1 disease is associated
with increased complement activation [57].

4.2. CD55 and RPAIN Polymorphisms

In an initially small-scale genome-wide association study, with selection of Com-
plement decay-accelerating factor (CD55) single-nucleotide polymorphisms in Chinese
patients with severe to mild disease [64] and Sanger sequencing, the primary outcome ana-
lyzed was death [65]. The rs2564978 genotype TT carriers were significantly associated with
a severe infection under a recessive model, after adjustment for clinical confounders [66]
and hospitalization requirement [65]. Interestingly, in influenza A H1N1 pdm09 patients
from Northern Greece, the rs2564978 TT genotype was associated with increased death
risk too [62], and in Spain it was indirectly associated with influenza severity [67].

CD55 is a membrane-associated protein regulating complement activation by interfer-
ing with C3/C5 convertases both in the classical and alternative pathways and naturally
protects host cells from pathogens’ damage. An allele-specific effect on CD55 expression
was revealed and ascribed to a promoter indel variation in high linkage disequilibrium with
rs2564978. The promoter variant with deletion exhibited significantly lower transcriptional
activity. Also, the authors demonstrated that CD55 could protect respiratory epithelial cells
from complement activation [66].

On the other hand, using a microarray with more than 50,000 genetic variants,
Zúñiga et al. [57] found that RPAIN (Replication protein-A-interacting protein) gene, also
known as hRIP (human Rev-interacting protein), located in chromosome 17p13, is associ-
ated with influenza A H1N1 virus infection severity in a Mexican mestizo population. The
authors hypothesize that the risk allele of hRIP/RPAIN (rs8070740) associated with severe
A H1N1 disease is associated with increased influenza replication because it has been de-
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scribed that this protein interacts strongly with nuclear export protein (NEP), transferring
the influenza RNAs from the nucleus of infected cells to the cytoplasm [64,68,69].

4.3. Genetic Variants in IFITM3 and Influenza A H1N1

Several groups have investigated polymorphisms in the IFITM3 gene for association
with IAV infection, disease severity, and clinical characteristics. Some genetic variations
affecting the IFITM expression or function might contribute to viral pathogenesis [43].

Two SNPs (rs34481144 and rs12252) in IFITM3 have been widely studied and represent
some of the most critical polymorphisms associated with IAV infection [70]. The rs34481144
A allele (located in the promoter region) enhances the binding of CTCF to the IFITM3
promoter, leading to a repressive effect on IFITM3 expression, causing a reduction in protein
levels in endosomes and lysosomes. This allele has been associated with IAV infection in
three different cohorts; in the FLU09 Cohort (participants met the clinical case definition of
influenza virus infection at the enrollment time, or were asymptomatic household contacts
of a participant with confirmed influenza infection), it was reported that there was a higher
frequency of homozygosity of risk A allele in patients with severe illness than the mild
cases, as well as an increased frequency of the A allele in the Cohort of Genentech challenge
study (healthy volunteers between 18 to 45 years old and seronegative in hemagglutination
inhibition assays against A H3N2 IAV) and the PICFlu cohort (a multicenter study of
influenza critical illness in North American children admitted across 31 pediatric intensive
care units) [46].

Conversely, David and co-workers [71] found a statistically significant protective
effect of the rs34481144-A allele against severe influenza under the dominant model (OR =
0.26; 95% CI 0.07–0.97), which could be due to the minor allele’s reduced frequency and
the small sample size employed.

On the other hand, the most studied SNP associated with severe outcomes of IAV
infection is rs12252, which is a non-synonymous variation in the first exon of IFITM3. The
substitution of the T common allele for the alternative C allele might create an alternative
splicing site and generate an N-terminal truncated variant of IFITM3 with 21 amino acid
residues deletion [72]. The altered protein might be mostly translocated to the plasma
membrane. Therefore, it cannot restrict viral infection by IAV and its full-length coun-
terpart [50,73]. Figure 3 shows the proposed mechanism to explain how IFITM3 rs12252
participates in IAV infection.

This SNP has been associated with severe IAV infection in different populations. For
example, Everitt et al. [72] reported that in diverse Caucasian populations, the C allele
of the rs12252 has a higher frequency in hospitalized patients with IAV infection than
healthy controls. Besides, the CC genotype is found in ~70% of Chinese Han patients with
severe IAV infection, compared with 25% in moderate disease [74]. Conversely, López-
Rodríguez et al. [75] did not find any association with either alleles or genotypes of rs12252
and IAV infection in critically ill Spanish individuals and those with mild disease. Also,
David et al. [71] did not find an association between rs12252/C allele with mild or severe
IAV infection in a Portuguese population. Mills et al. [76] reported an association with the
CC genotype of rs12252 and mild IAV infection, contrasting with previous studies where
the association was founded with severely ill patients. These results could be related to a
decreased C allele frequency in European populations compared with Asian populations.

Wellington and co-workers [70] described that according to the 1000 genomes project [76],
there are remarkable differences in rs34481144 and rs12252 in different populations, described
in detail in Table 1.

Interestingly, minor allele frequency (MAF) of rs34481144 in the European population
is higher than Asian populations, while in the opposite, MAF of rs12252 is much higher
in Asian than European populations. Also, American and African populations are in the
middle between European and Asian populations’ frequency.
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Figure 3. The proposed mechanism to explain IFITM3 rs12252 participation in influenza A virus (IAV) infection. Created
with BioRender.com.

Table 1. Different IFITM3 single nucleotide polymorphism (SNP) allele distribution by populations.

Population rs34481144 G/A, (%) rs12252 T/C, (%)

African 96/4 74/26
American 77/23 82/18
East Asian 99/1 47/53
European 54/46 96/4

South Asian 79/21 85/15
All 82/18 76/24

In addition, David et al. [71] also described discrete difference in genotype frequencies
from Central Africa (largely Angola, GG: 82%, GA: 18%) and Portugal (GG: 45%, GA:
44%, AA: 11%), compared with African (GG: 90%, GA: 10%) and European (GG: 29%, GA:
49%, AA: 22%) references from 1000 genomes. López-Jiménez et al. [77] described for the
first time the allele and genotype frequencies of rs12252 from Western Mexico (four states:
Nayarit, Jalisco, Colima, and Michoacán), where the frequencies, in general, were T: 82%
and C: 18% for alleles, and TT: 67%, TC: 30%, CC: 3%, which are very similar to the 1000
genomes project.

BioRender.com
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4.4. Inflammatory Response Genes and Influenza A H1N1

Since the end of the 20th century, it has been described that variability in cytokine
production between individuals may be due in part to genetic factors, especially the
presence of polymorphisms in important regulatory regions, such as promoters [12,13,78].
It has been determined that the most important pathological mechanism in influenza
A H1N1 infection is the systemic dysregulation of the inflammatory response, which is
correlated with the illness severity and progression [79–82]. Besides, immunopathological
mechanisms, such as hypercytokinemia, contribute to the severest evolution of the IAV
infection [83–85]. The playing role of the polymorphisms of the genes encoding these
cytokines in the disease’s severity is not fully understood.

Cytokine production varies among individuals due to genetic factors, particularly
polymorphisms in important regulatory regions such as promoters [12,13,86]. The
role of polymorphisms in coding genes play in disease susceptibility and severity will
be discussed.

Although it has been reported that some genes involved in inflammation are associated
with respiratory diseases [87–92], investigations regarding genetic factors involved in the
susceptibility and severity are scanty. Two primary examples in inflammatory response
genes, where genetic variability is associated with an altered phenotype, are TNF-α and
IL-1β; both are pleiotropic modulators critical in regulating inflammation.

Since the initial discovery by Wilson et al. more than 20 years ago, using reporter
genes under the control of the two allele TNF promoters, it has been shown that TNF2
(TNF-238/A allele) is a much more potent transcriptional activator than the TNF1 common
allele (TNF-238/G allele) in a human B cell line [78], polymorphisms in the TNF promoter
region have been the subject of multiples studies. Genetic variations in the TNF promoter
region have been associated with a range of autoimmune [93–96], infectious [97–99], and
oncological diseases [100–102].

In a case-control analysis in a Mexican mestizo population, the TNF rs361525 (AA
genotype), rs1800750 (AA), and LTA (Lymphotoxin alpha) rs909253 (AG) were associated
with a higher risk of infection by pandemic influenza A H1N1 [103,104]. Although mortality
of the A H1N1 patients was higher than that of the influenza-like illness (ILI) patients,
only LTA rs909253 AG genotype showed a limited statistically significant association with
mortality, suggesting that being a carrier of heterozygous rs909253 genotype in the LTA
gene entails a poorer prognosis for this illness. Also, TNF rs1800629 GA and rs1800750 AA
were associated with the severity of the clinical behavior. The first study demonstrated that
the polymorphisms in genes related to the inflammatory response could be influencing the
risk of infection and death by influenza A H1N1 virus [103]. A possible mechanism may
be to form linkage disequilibrium between alleles, creating haplotypes that differentially
affect cytokines and chemokines’ expression and activity, thereby resulting in a severer
clinical course for the infection. Late, in the same population, the TNF-238 (rs361525) GA
genotype was associated with an increased risk of disease severity [104]. In contrast, the
TNF-308 (rs1800629) AA genotype was associated with influenza A H1N1 infection in an
Egyptian population [105], and the G allele with susceptibility to severe disease in another
Mexican population [23].

Another well studied pro-inflammatory protein/gene is IL-1β/IL1B; several studies
have provided evidence about the association of IL1B-511 (rs16944) with gastric cancer [106],
gastritis risk [107], including meta-analysis [108].

Studies in the Mexican population found the IL1B rs16944 AA genotype associated
with a high amount of leukocytes [103]. In contrast, the rs3136558 CC genotype was
associated with an increased risk, but rs16944 AG and rs3136558 TC were associated with a
decreased risk of infection [104]. In an Iranian population, the rs16944 was associated with
severe influenza disease [109]. In a Chinese population, the rs1143627 (IL1B) and rs17561
(IL1A) were found to be associated with susceptibility to A H1N1 pdm09 [110].



Viruses 2021, 13, 344 10 of 21

In humans, IL-1 exists in two forms, IL-1α (encoded by IL1A gene) and IL-1β (encoded
by IL1B gene), both genes located on chromosome 2 [111,112]. IL-1α and IL-1β are in-
flammatory cytokines that play essential roles in recruiting the immune and inflammatory
cells and developing adaptive immune responses [113]. In bronchoalveolar lavage fluids
and lung homogenates, there is an early increase in IL-1 in temporal association with
symptom presentation and lung pathology after infection with A/PR/8/34 H1N1 or A
H1N1 [22,114]. The rs17561 is a non-synonymous variant (Ala114Ser) in IL-1α protein [115],
suggesting that this genetic change may lead to a potential functional variation in host
susceptibility to A H1N1 pdm09. It has also been related to high C-reactive protein levels,
regulating the severe inflammatory response [116]. However, the exact mechanism needs
to be further studied.

During IAV infection, the immune response is triggered by the influenza virus ion
channel M2, an essential component for virus entry and replication, leading to the assem-
bly of the inflammasome in macrophages and dendritic cells (DCs) [117,118]. Then, the
inflammasome activation results in the cleavage of pro-IL-1β by caspase-1 and produces
the mature form of IL-1β [119]. IL-1β may act with IL-6 to induce IFN-γ production by
T cells [120] and promote RORγT expression and Th-17 polarization of CD4 T cells [121].
The Th-17 effector cells produced IL-17 and facilitated the recruitment of neutrophils and
inflammation [121].

In this sense, the IL6 rs1818879 (GA) heterozygous genotype has been associated with
severe influenza A H1N1 virus infection. Compared with ILIs, patients with severe pA
H1N1 infections exhibit increased serum IL-5 and IL-6 levels [104].

According to a genetic association study, the IL8 rs4073 AA genotype is considered a
risk factor for influenza A H1N1 infected Egyptian patients [104], while in Mexican patients,
it was associated with a higher value for partial arterial oxygen pressure (PaO2) mmHg
(with PaO2 < 60 mmHg defined as a severe disease) [103]. Interestingly, the rs2275913 in
the IL17A gene was associated with both risk of influenza A H1N1 infection and more
severe disease [109]. In contrast, GG and AG genotypes were associated with seasonal
influenza A/H3N2 risk of infection in the Iranian population [122].

As previously stated, the IAV causes a severe pulmonary disease characterized by
intense leukocyte infiltration. Whereas the activation and recruitment of leukocytes are
essential to control infection, excessive activation of neutrophils and macrophages might
be harmful to the host [123,124]. Phosphoinositide-3 kinases (PI3Ks) are central signal-
ing enzymes involved in cell growth, survival, and migration [125]. Class IB PI3K or
phosphatidyl-inositol 3 kinase-gamma (PI3Kγ), mainly expressed by leukocytes, is in-
volved in cell migration during inflammation. The SNPs rs17847825 and rs2230460 (A and
T alleles, respectively) in the PIK3CG gene were significantly associated with protection
from severe disease using the recessive model in patients infected with influenza A H1N1
pdm09 [126]. Figure 4 shows a graphical summary of genetic polymorphisms and their
participation in IAV infection.
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Figure 4. Graphical summary of genetic polymorphisms and their participation in IAV infection. Created with BioRender.com.

4.5. HLA System Genetic Variants and Influenza A H1N1

The human leukocyte antigen (HLA) super-locus is a genomic region in the chromo-
somal position 6p21 that encodes the six classical transplantation HLA genes and at least
132 protein-coding genes that have essential roles in the regulation of the immune system
as well as some other fundamental molecular and cellular processes. This small segment of
the human genome has been associated with more than 100 different diseases, including
common diseases and various other autoimmune disorders [127]. The differential speci-
ficity, selectivity, and diversity of HLA directly reflects a fragile equilibrium between the
interplay of molecular defense mechanisms against foreign antigens and autoimmunity
acquired in the course of human evolution and migration. Selective combinations of HLA
class I alleles exert different disease progression effects of infectious or autoimmune ori-
gin [128]. HLA class I is involved in both innate (NK cells) and cell-mediated (CD8+ cells)
immune response, significantly contributing towards viral clearance and a decrease in the
severity of influenza infection [129–132]. Cellular immune response to influenza viruses in
adults is dominated by memory responses, as most individuals are repeatedly exposed
to circulating influenza strains (either by natural infection or vaccination) throughout
their lives. Seasonal changes in viral strains usually do not generate completely novel
T-cell epitopes, so HLA class I or II-restricted epitopes from previous influenza seasons
are present as identical or highly-homologous sequences in new seasonal influenza strains.
However, in the case of a new H1N1 strain, influenza A H1N1 pdm09 was a reassortment
of swine, human, and avian influenza A strains [133,134].

The HLA genetic association studies focusing on the role of susceptibility to influenza
A H1N1 are exceedingly scanty. Only two researches have documented specific HLA
alleles associated with influenza A H1N1 virus infection.

In a Mexican-mestizo population, a lower frequency of A*24:02:01 allele in patients
compared to asymptomatic contacts was found [135], suggesting a possible protective
effect. This result disaccords with a previous study where the A*24 serogroup (A24 family)
correlates positively with severe A H1N1 infection and mortality [136]. Nevertheless,
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this information was acquired by employing database analysis of conserved proteomic
regions-based experimental predictions of HLA binding affinity, showing that HLA alleles
preferentially target conserved regions of viral proteins, phenomena known as HLA tar-
geting efficiency [137]. The study did not consider HLA-restricted NK cell-mediated viral
clearance, which may have introduced a certain degree of bias. The HLA-A*24 subtype is a
potential ligand for KIR3DL1, rendering an inhibitory NK signal [138], probably reducing
the immune system over-reactivity to influenza A H1N1 pdm09 virus, which is known
to contribute to the significant pathobiology of the disease [139]. A*24:02 is in linkage
disequilibrium with B*39:01 [140], which possesses high targeting efficiency scores. A*24
comprises a large portion of the world population; this allele family is more common in
some indigenous groups and constitutes more than half of the global population, especially
in Asian countries and several Native American populations [141]. There is variability
in the A*24 frequencies in Mexican mestizos depending on the Amerindian contribution
and the region studied [142]. In this study, only 8.33% of the patients had any allele of the
A*24 serotype, whereas the contact subjects reach 18% (A*24:02:01) [135]. The overall allele
frequency of A*24:02 in Mexican mestizos is 16.4% [142]. Recently, a cross-HLA allele T cell
response against the influenza A virus peptides were detected among both HLA-A11(+)
and HLA-A24(+) donors. Furthermore, cross-responses were found in the entire HLA-
A3 supertype population (including HLA-A11, -A31, -A33, and -A30). The cross-allele
antigenic peptides within the peptide pool were identified and characterized, and the
crystal structures of the major histocompatibility complex (MHC)-peptide complexes were
determined. The subsequent HLA-A24-defined cross-allele peptides recognized by the
HLA-A11(+) population were shown to bind to the HLA-A*1101 molecule slightly [143]. In
a preliminary study, the HLA-A*11 and HLA-B*35 alleles were found conferring suscepti-
bility to influenza A (H1N1) in the Northeast India population pdm09 [144]. A*02 subtypes
are considered a general protection factor against influenza A H1N1 infection [145].

The HLA dataset contains six A*68 alleles, and two belong to different supertypes:
A*68:01 to the A3 supertype and A*68:02 to the A2 supertype. No association was found
with A*68:02:01 to A H1N1/09 infection, while A*68:01:01, despite its low frequency (<2%),
was only present in patients [135]. This is in concordance with the HLA targeting efficiency
study results showing that A*68:01 subtypes correlate positively with A H1N1 pdm09
mortality rates but not A*68:02 [136]. The potential impairment of HLA-A*68:01-restricted
CD8+ T cells to mount robust immune responses was recently investigated, demonstrating
the immunodominance potential of influenza-specific CD8+ T cells presented by a risk
HLA-A*68:01 molecule, and advocates for priming CD8+ T cell compartments in HLA-
A*68:01-expressing individuals for establishment of pre-existing protective memory T
cell pools.

Higher frequencies of B*39:06:02 and B*51:01:05 were observed in subjects suffering
from influenza A H1N1. Despite high targeting efficiency scores, B*39:06:02 (Bw6) allele
frequency was higher in A H1N1 patients than asymptomatic contacts, which could be due
to selective pressure exerted by certain KIR-HLA combinations favoring under-reactivity
of NK cells. Interestingly, the allele B*39:06 has been observed in several Amerindian
populations with a frequency of around 5% [140] and possesses a high targeting efficiency
score [136]. In contrast, B*39:01:01, another Bw6 supertype, showed a protective effect;
this observation may be due to strong linkage disequilibrium with A*24:02 existing in
Amerindian populations. A higher frequency of B*51:01:05 was also found in influenza
A H1N1 patients. Another allele, HLA-B*51:01:01, an ancestral allele of Amerindian
origin [140], had low frequency in A H1N1/09 patients, suggesting a possible protective
role. In contrast with the HLA-A alleles, the HLA-B alleles bind more efficiently with
the A H1N1 viral proteins’ conserved regions. Molecular subtypes of HLA-B*39 (B*39:01
and B*39:06), common in Amerindian populations, are associated with severe disease
forms [136], which may be a result of these alleles in linkage disequilibrium with another
region within or close to the HLA locus.
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Despite its shallow frequency in the Mexican population, a high C*03:02:01 was
observed in Mexican influenza A H1N1/09 patients [140]; however, this was not statistically
significant after Bonferroni correction. On the other hand, C*03:03:01, C*03:04:01, and
C*07:01:01 showed low frequency in the influenza patients group. Compared to HLA-A or
HLA-B, HLA-C is less polymorphic and presents a more restricted repertoire of peptides
and low cell surface expression [146–148]. A proportionally higher frequency of KIR2DL1
C2− C1+ and KIR2DL3 C1+ was reported in ICU A H1N1/09 patients (indigenous and
nonindigenous), relative to healthy controls [139].

A relatively low frequency of the A*02:01:01-B*35:01:01-C*04:01:01 haplotype was
observed among the A H1N1/09 patients. This specific HLA haplotype represents more
than 2.5% in the control group and has been found only in Hispanic and Mexican popula-
tions [140,142] with the resolution employed in this study. An increase in the frequency of
A*68:01:02-C*07:02:01 haplotype in the patients’ group was also observed, a relevant find-
ing since linkage disequilibrium is very high in the region, rendering potential haplotypes
and can potentially amplify the disease risk.

An analysis of the LIFT cohort [149] found that Indigenous Australians display a re-
stricted and distinctive HLA profile confirming previous published serological studies [150].
Trough molecular HLA typing verified the predominant frequencies of HLA-A*02:01, 11:01,
24:02, 34:01 and HLA-B*13:01, 15:21, 40:01/02, 56:01/02. Such restriction in HLA diversity
and HLA usage is likely to have arisen from an evolutionary bottleneck that established a
small ancestral pool with limited HLA diversity. As HLA alleles’ variability evolves rapidly,
it is intriguing that there is a high degree of conservation in Indigenous Australians [149].
This could be partly explained by limited mixing with other populations, long-term adapta-
tion to local pathogens, and minimal exposure to new pathogens that might drive selection
and/or the emergence of new variants. Before European contact in the eighteenth century,
limited or no influenza exposure may explain a low prevalence of protective HLA variants
for influenza [149]. Also, serologically-defined HLA-A2-homozygous lymphocytes, in
contrast to heterozygous lymphocytes, did not synthesize detectable influenza virus RNA
or protein after exposure to the virus. HLA-A2-homozygous lymphocytes (including both
homozygous and heterozygous donors) did internalize infectious viruses but were not
susceptible to lysis by autologous virus-specific cytotoxic T lymphocytes (“fratricide”). A
similar intrinsic resistance to influenza virus infection was observed with HLA-A1- and
HLA-A11-homozygous lymphocytes and HLA-B-homozygous lymphocytes, suggesting
that a significant proportion of individuals within a population that is characterized by
common expression of HLA class I alleles may possess lymphocytes that are not susceptible
to influenza virus infection and thus to mutual virus-specific lysis [151].

Besides, it has been recently described that an SNP (rs2071888/G allele and GG
genotype) in TAPBP (TAP binding protein or Tapasin), a critical cofactor required for the
assembly of HLA class I with exogenous peptides obtained by intracellular degradation
through proteasome, is associated with a higher risk for Influenza A H1N1 virus infection
in a Mexican mestizo population, suggesting a critical role of the antigen presentation
process in the development of the disease [152].

Finally, the lack of a universal vaccine against all serotypes of influenza A viruses
and the recent progress on T cell-related vaccines against influenza A virus illustrate
HLA-restricted cytotoxic T lymphocytes’ critical role in anti-influenza virus immunity.
However, the diverse HLA alleles among humans complicates virus-specific cellular immu-
nity research. Elucidation of cross-HLA allele T cell responses to influenza virus specificity
requires further detailed work.

5. Conclusions

In recent years, several lines of evidence have determined that the role of host fac-
tors in genetic susceptibility to Influenza A Virus infection displays an essential part in
the appropriate immune response to the virus, determining the outcome of infection.
Numerous genes participate in diverse mechanisms against the viral response, such as
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pro-inflammatory pathways, complement activation, processing and antigen presentation,
and intracellular control of viral replication; genetic variants in these genes could generate
an abnormal function or decreased levels of the molecules, leading to higher viral replica-
tion and an exaggerated immune response to IAV infection. The evidence suggests that
a variety of genetic variants can contribute to susceptibility to other influenza A strains
(such as H3N2), not only A H1N1, since they share a similar structure, surface proteins,
and genetic components that induce the same immune response. However, despite this
amount of evidence, genetic susceptibility markers that are not linked to immunity have
not been widely studied, probably because the efforts to study the molecular mechanisms
are focused on elucidating the pathogenesis of IAV infection. So, this could be an essential
field for future investigations.

Unfortunately, the evidence of the SNPs in the host genetic susceptibility to IAV
is still inconsistent, and this can be partially explained by the differences in the genetic
background of the populations around the world, especially in those that are considered as
mestizo populations with a rich genetic variability, which is a product of the years of genetic
recombination between ancestral Amerindian, Caucasian, African, and Asian populations.
In this context, more collaborative research is required to provide a better understanding of
the genetic determinants of the biological mechanisms of host susceptibility, which could
result in early prevention, better diagnostic methods, and directed-therapy interventions at
populations with a higher risk for developing a more severe form of the disease to offer a
better prognosis in the future.
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