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Abstract: As a detection method, X-ray Computed Tomography (CT) technology has the advantages
of clear imaging, short detection time, and low detection cost. This makes it more widely used
in clinical disease screening, detection, and disease tracking. This study exploits the ability of
sparse representation to learn sparse transformations of information and combines it with image
decomposition theory. The structural information of low-dose CT images is separated from noise
and artifact information, and the sparse expression of sparse transformation is used to improve
the imaging effect. In this paper, two different learned sparse transformations are used. The first
covers more organizational information about the scanned object. The other can cover more noise
artifacts. Both methods can improve the ability to learn sparse transformations to express various
image information. Experimental results show that the algorithm is effective.

Keywords: low dose CT; sparse representation; sparse transform; image decomposition theory

1. Introduction

The CT image technology has unique advantages and practical value [1–4]. CT im-
age has multi-level attributes compared with X-ray detection, and CT has high-density
resolution and sensitivity. It can clearly show the tissue characteristics and pathological
changes of some organs composed of soft tissue [5–7]. Because of its high resolution and
sensitivity, CT examination is superior to X-ray imaging examination. X-ray is more used
for bone examination, while CT examination covers almost all human body parts, such
as the brain, chest, blood vessels, and nervous system [8–10]. These advantages make CT
imaging technology occupy an irreplaceably important position in clinical examination, so
more and more disease diagnoses and treatments need CT examination for assistance.

There are three methods to improve the image quality of low-dose CT images obtained
in the low tube current situation, i.e., the restoration of projection data, iterative recon-
struction algorithm, and low-dose CT image post-processing [11–16]. The low-dose CT
image post-processing method takes the reconstructed low-dose CT image as the original
image. It takes an appropriate image processing algorithm to remove noise and artifacts,
improve image quality, and restore tissue information [17–20]. The purpose is to make the
image quality after processing as close as possible to the image quality of standard-dose CT.
Because there is no need to obtain the original projection data, this method can obtain the
experimental data more easily than the previous two methods without CT equipment or
original projection data. Moreover, the statistical iterative reconstruction algorithm needs
more storage space and more computing time in practical application. Simultaneously, the
image post-processing method can be offline processing with a higher application value.
Decreasing tube current or tube voltage during CT scans causes photon number loss that
adds additional noise to the projection data. The statistical law of noise basically conforms
to Gaussian distribution and composite Poisson distribution. However, in the process of
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image reconstruction, after continuous projection and back-projection transformation, the
noise mainly presents in the form of strip artifacts and unsteady speckle noise in low-dose
CT images. These noises and artifacts are difficult to remove under the premise of retaining
tissue details and edges.

In recent years, many algorithms and models have been used to restore low-dose CT
images in the field of sparse representation. Among them, the two most famous models
are the synthesis model and analysis model [21], also called Analytical Dictionary [22–25],
and synthesis dictionary in some works of literature. Because of the above model, many
processing algorithms related to low-dose CT images are proposed. For example, Xu
et al. [26] proposed a penalty-weighted least squares method. This method takes the super
complete composite dictionary as the regularization term. It applies dictionary learning
to 2D low-dose CT image reconstruction. The dictionary learning training set can be
obtained from the CT images reconstructed by filtering the back-projection algorithm in the
standard dose scene. The global dictionary can be trained by extracting two-dimensional
image blocks or an adaptive dictionary jointly estimated with low-dose CT images. The
global dictionary is better than the adaptive estimation dictionary in the low-dose scanning
scenario. Furthermore, several studies have proposed 3D CT reconstruction by learning
3D dictionaries from 3D image blocks or 3D/2D dictionaries extracted from slices along
the X-Y, the Y-Z, and the X-Z directions [27]. However, the post-processing of low-dose CT
images based on the above two models cannot guarantee the convergence of constraints.
Therefore, Zheng et al. proposed a low-dose CT image reconstruction algorithm based
on learning sparse transform to solve the convergence problem of the regularization term.
This algorithm proved the effectiveness of low-dose CT image processing based on learning
sparse transformation [28].

This paper’s main research content is the degradation of CT image quality in the scene
of low-dose CT scanning, which reduces tube current. The decrease of image quality is
mainly caused by the interference of noise and artifact caused by photon number reduction,
which affects clinical pathology diagnosis and analysis. A new image post-processing
method based on learning sparse transformation is proposed in this paper to solve the
above problem. This method combines the knowledge of sparse representation with the
image morphological component analysis method. The structure sparse and sparse noise
transform is constructed to represent the CT image differently to separate the information
and remove the noise and artifact. The experimental results show that the proposed
algorithm can effectively improve the quality of low-dose CT images and perform better in
the evaluation index.

2. Materials and Methods
2.1. Datesets
2.1.1. Equipment Introduction

There are three processes for CT equipment to generate images: data acquisition,
image reconstruction, and image display. The CT simulation image acquisition method
used in this paper can refer to [29].

Data acquisition refers to the process by which an X-ray with initial intensity is emitted
from an X-ray source and passes through the scanning object (such as the human body).
The detector receives the X-ray with intensity attenuation. The specific attenuation degree
is related to the nature of the scanned object and the path it passes. The radiation source
and the detector rotate at equal intervals during this period. The detector collects data
after scanning a circle around the object. Image reconstruction solves the attenuation
rate of X-ray after scanning the object. Because most tissues of the human body are
very close to that of water, most tissues’ attenuation coefficient increases the difference
between tissues. The concept of CT value is introduced. The unit is HU (Hounsfield).
H = 1000((µ−t− µ−w))/µ _w, where µ−t represents the attenuation rate of tissue, and
µ _w represents the attenuation rate of water.
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The mathematical expression of the CT image reconstruction process can be expressed
according to Lambert–Beer law [30]. Assuming that the object through which the X-ray
passes is a homogeneous material, as shown in Figure 1, the continuous representation of
the attenuation path L of the X-ray is as follows:

I = I0e−
∫

L µ(x,y)dL = I0e−yL (1)
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In the formula, the initial energy of the X-ray is I0, the X-ray energy received by the
detector at a rotation angle, that is I, µ(x, y) is the attenuation rate of tissues inside the
scanning object,

∫
L µ(x, y)dl is called radon transformation. Transformation is also known

as a projection of µ(x, y). Since computers operate in the form of a matrix, it is necessary to
discretize it, µi represents the attenuation coefficient after discretization, and ∆xi represents
the X-ray penetration path after discretization. For example, the representation after
discretization is as follows:

I = I0e−∑n
i=1 µi∆xi = I0e−yL (2)

2.1.2. Low Dose CT Image Simulation

When studying low-dose CT images, we often need to use the experimental data of
standard-dose CT and low-dose CT of the same individual for algorithm research or image
quality evaluation. However, in practice, if the subject is subjected to two consecutive
normal-dose CT examinations and low-dose CT examinations, the subject will receive
excessive X-ray radiation and increase the risk of cancer. Therefore, the low-dose CT
images used in this paper were generated by simulation.

There are many ways to simulate low-dose CT. The first method utilizes the GE Noise
Addition Tool from GE Healthcare, Waukesha, WI, USA) to simulate low-dose CT images.
This software tool generates sinograms from standard dose CT images and estimates
additional noise in the sinograms based on the reduced exposure dose. Although very
simple, this method is only applicable to CT images obtained by GE scanners, and is also
limited to specific suppliers [31].

The second method is to process the projection data when performing conventional-
dose CT scans. This method obtains its projection data directly from the CT equipment
and adds noise information to simulate the low-dose CT scan projection data. Although
this method can restore the most realistic low-dose CT situation, it is very difficult to
obtain projection data from CT equipment. This limitation raises the research threshold of
low-dose CT and is not conducive to the development of this field [13,32].

Finally, Won Kim C. et al., proposed a method that does not require the original
projection data, aiming at the difficulty of obtaining projection data for CT equipment. This
method measures the noise equivalent quanta (NEQ) and modulation transfer function



Sensors 2022, 22, 2883 4 of 17

(MTF) of CT systems under different combinations of target attenuation and tube current by
analyzing the noise power spectrum (NPS) of CT images obtained with a set of phantoms.
The noise equivalent quantum is positively correlated with the noise equivalent quantum,
which is characterized by representing the noise equivalent density of each CT image. The
modulation transfer function is negatively correlated with the dose, reflecting the texture
characteristics of the noise. These measurements were used to build a comprehensive CT
noise model including reduced X-ray photon flux, object attenuation, system noise, and
bowtie filters. They then used synthetic noise maps generated from reference CT images to
generate simulated noise signal maps for dose reduction conditions [33].

The whole simulation process is divided into two stages. The first step is to obtain the
parameters in the noise model. After the noise parameters are extracted by performing
multiple CT scans on a set of models, this paper calculates the noise power spectrum of the
acquired CT image data set, and estimates the NEQ and MTF of a set of noise based on the
noise power spectrum data set. Finally, the curve fitting technique is used to calculate the
noise equivalent quantum to finally determine various parameters in the noise model.

2.2. Methods

In the 1990s, Olshausen and Field [22] published a paper that explained the image
signal’s sparse expression from the biological point of view. We call the set of essential
functions a dictionary, so the sparse transformation of the signal is divided into two parts:
the dictionary’s construction the representation of sparse coding. According to the different
structures of dictionaries, they can be divided into analytic dictionaries and composite dic-
tionaries. However, compared with the lack of self-adaptability of the Analytical Dictionary
and the slow convergence speed of the synthesis dictionary, the learning sparsity applied
in this paper has a larger adaptive range and faster iteration speed.

2.2.1. Low Dose CT Image Processing Based on Learning Sparse Transform

Assuming that the original image is a matrix X of N× T, the sparse transformation is a
M×N dimensional matrix W. The image after sparse transformation M× T (sparse coding)
is Z and column sparse, the error of sparse representation is expressed as min

W,Z
‖WX− Z‖2

F,

where ‖ · ‖F is the Frobenius norm. When the sparse transformation matrix is unknown,
model the image signal sparse transformation solution is as follows

min
W,Z
‖WX− Z‖2

F s.t.‖Zt‖0 ≤ s ∀t (3)

where Zt is the t column of the Z matrix. The above formula can be interpreted as the
natural image or signal representing less non-zero elements in a certain transformation
domain. The remaining elements represent the edge error information of the image. Td
the sparse representation of the image signal X can be realized by continuously adjusting
W and Z. However, Equation (1) has a set of trivial solutions. That is, when W and Z
are all zero matrices, the constraint can also be satisfied. Adding a penalty term to the
sparse transformation solving model is necessary. In the classical synthesis dictionary
model, we can avoid the appearance of the trivial solution by the norm constraint of sparse
transformation W. However, this method cannot avoid non-full rank [34], so we need to
add a full rank constraint. The full rank constraint is a non-convex problem, which is not
easy to solve. Therefore, the sparse transformation matrix in Equation (1) is assumed to be
a square matrix for convenience. When W is a square matrix, (M = N), the equivalent full
rank constraint of W can be realized by the negative logarithmic determinant constraint [35].
Therefore, the sparse transformation of the image in Equation (1) can be further modeled
as follows:

min
W,Z
‖WX− Z‖2

F − λlogdet(W) + µ‖W‖2
F s.t.‖Zt‖0 ≤ s ∀ (4)
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where λ and µ are the penalty coefficients, respectively. According to machine learning
theory [36], the non-convex norm constraint L0 of the above formula can be replaced by the
norm constraint L1 to facilitate the solution.

min
W,Z
‖WX− Z‖2

F − λlogdet(W) + µ‖W‖2
F + η

T

∑
t=1
‖Zt‖1 (5)

where η is the sparse penalty term corresponding to 1 norm constraint. The purpose of the
model is to minimize the sparse error, control the sparsity degree of the matrix after sparse
transformation, and eliminate the problem that the sparse transformation matrix is not full
of rank.

2.2.2. Image Processing Algorithm Based on Learning Sparse Transform

The above learning sparse transform methods can be used for image denoising. The
noise of low-dose CT images consists of non-directional speckles. The artifact is strong,
the amplitude range is large, and the directionality is obvious. The direct application of
the above method has limited denoising effect. According to the image morphological
component analysis [37–40], a low-dose CT image can be equivalent to the sum of tissue
components and noise artifacts. There is a specific basis function for different components
that can sparse represent the component.

In contrast, the basis function cannot represent other components; that is, their cor-
responding basis functions can only represent different components. Therefore, different
components in low-dose CT images can be distinguished by constructing different ba-
sis functions. Therefore, in this section, the sparse transformation matrix corresponding
to the tissue component and the noise component is trained respectively to realize the
decomposition of image components and achieve a better denoising effect of low-dose
CT images.

According to the idea of image morphological component analysis [41], low-dose CT
images Xld can be divided into two parts: the image of tissue structure information Xhd
and the image of noise artifact information Xna. Therefore, low-dose CT images can be
represented as follows:

Xld = Xhd + Xna (6)

The result of CT image processing in this section is to recover the tissue structure
information image in low-dose CT image Xhd.

At this time, the low-dose CT image post-processing algorithm model based on
learning sparse transform is as follows:

min
Xld,t

λ‖Xhd + Xna −Xld‖2
2+‖WhdPjXhd − Zhd

t ‖2
2+‖WnaPjXna − Zna

t ‖2
2 s.t.‖Zt‖0 ≤ s ∀t (7)

Among them, Zt =
[
Zhd

t , Zna
t

]
. Whd and Wna represent the standard dose CT image

and noise information image sparse transformation matrix, respectively. The specific
solution method is the optimal gradient descent method from the standard CT image and
CT noise image sets. For the N × N operator of extracting image block Pj, the image is cut
into image blocks for processing, realizing parallel processing. Zhd

t and Zna
t represent the

sparse representation coefficient of tissue structure Xld and noise artifact, respectively.
Step 1: the formula of the sparse coefficient of organizational structure information

Zhd
t is as follows:

Zhd
t =

{
WhdPjXld,

∣∣WhdPjXld
∣∣
2 ≥ η

0,
∣∣WhdPjXld

∣∣
2 < η

(8)
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Step 2: the solution formula of noise artifact sparse coefficient Zna
t is as follows:

Zna
t =

{
WnaPjXld,

∣∣WnaPjXld
∣∣
2 ≥ η

0,
∣∣WnaPjXld

∣∣
2 < η

(9)

Step 3, organize the image of structure information Xhd and noise artifact information
Xna to obtain the derivation of (5)

[
Xhd
Xna

]
= H−1

 λXld +
K
∑

i=1
(WhdPj)

TZhd
t

λXld +
K
∑

i=1
(WnaPj)

TZna
t

 (10)

H =

 λI +
K
∑

i=1
(WhdPj)

TWhdPj λI

λI λI +
K
∑

i=1
(WnaPj)

TWnaPj

 (11)

The solution process of sparse transformation matrix W and sparse coefficient Z is
shown in Figure 2.
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2.3. The Construction Method of Learning Sparse Transformation

The performance of the discriminative learning sparse transformation model is closely
related to the discernible sparse transformation matrix. The training data for learning the
discriminative sparse transform is from the fan beam-scanning heart trunk phantom CT
images that were reconstructed by filtered back projection. The noise characteristics of
different CT equipment are different, so the sample data and experimental data must come
from the same CT equipment. In order to make the tissue structure sparse transformation
matrix Whd and the sparse noise transformation matrix Wna better express the tissue
information and noise information, the standard-dose CT image and the noise CT image
generated by the difference between the standard-dose CT image and the simulated low-
dose CT image are used to train the sparse transformation matrix.

1. The standard-dose projection data was obtained by simulating the fan beam scanning
with the CT image of the sample standard dose;

2. Based on the NEQ and MTF characteristics of CT equipment, a Gaussian noise model
is constructed to simulate the low dose projection data;

3. The filtered back-projection algorithm is used to reconstruct the low-dose CT image
of the sample from the low-dose CT projection data;

4. The CT noise image is obtained by subtracting the sample standard-dose CT image
and the sample low dose CT image.

After the sample data construction is completed, the standard dose CT images are
processed to reduce the calculation cost, as shown in Figure 3. Next, noise CT images were
extracted according to the image block’s specific size. Finally, the alternating algorithm for
sample image blocks obtains the discriminative sparse transformation matrix.
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3. Experiments and Results
3.1. Dataset and Experimental Environment

This paper’s test data are low-dose CT images obtained by simulating the heart trunk
phantom CT data’s fan-beam scanning scene [42–44]. This study used simulated images,
so it may not be as effective as expected in a clinical setting. The image is different from the
sample image compare to the classical CT reconstruction algorithm filtering back projection
(Hanning window), image post-processing algorithm based on (Discrete Cosine Trans-
form) DCT [45], and penalty weighted least square reconstruction method based on edge-
preserving regularization (EP), where EP expression is R(x) = ∑NP

j=1 ∑k∈Nj
κjκk ϕ

(
xj − xk

)
.

It is used to control the neighborhood range. κj and κk are the parameter of excitation noise
equalization, and ϕ(t) , δ2(∣∣ t

δ |−log(1+| tδ
∣∣)).

The experimental hardware environment is core i5, 3.7GHz, six-core CPU, 16GB mem-
ory. The software environment is the Linux system and MatLab programming platform.



Sensors 2022, 22, 2883 8 of 17

3.2. Visual Effect Analysis of CT Image

During the discriminative sparse transformation training, the sample data are also
5 CT images of the heart torso phantom. Three of them are used for training and two are
used for testing. The image blocks are extracted according to the size and step size of 1. In
the process of solving the alternating iteration algorithm, the number of iterations is set to
1000, the sparse threshold η is set to 126, and the sum of penalty coefficients λ is equal µ as
5.85× 1015. As shown in Figure 4, the results of sparse structural transformation and noise
sparse transformation are displayed. The size of each transformed image block is 8× 8.
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After the training of sample data, for the test data, the number of incident photons Q0
used in the experiment is 105, 104, and 5× 103 respectively. According to the corresponding
relationship between the number of incident photons and the dose, the above three incident
photon numbers are divided into three grades: Level 1—all most low-dose scanning; Level
2—standard low-dose scanning; Level 3—extremely low-dose scanning;

The proposed algorithm is compared with the FBP algorithm, EP iterative reconstruc-
tion algorithm, DCT based low-dose CT image post-processing algorithm, and dictionary-
learning (DL) iterative reconstruction algorithm. The experimental results are shown from
the global effect map, local organization enlarged image, and difference diagram, as shown
in Figures 5–7.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 18 
 

 

   

(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Experimental results of incident photon number 10ହ. (a) real image; (b) FBP reconstruc-
tion image; (c) EP iterative reconstruction image; (d) DCT image post-processing; (e) DL iterative 
reconstruction; (f) learning sparse transform. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Image of difference of incident photon number 10ହ. (a) EP iterative reconstruction; (b) 
DCT image post-processing; (c) DL iterative reconstruction algorithm; (d) learning sparse transform. 

Figure 5. Experimental results of incident photon number 105. (a) real image; (b) FBP reconstruc-
tion image; (c) EP iterative reconstruction image; (d) DCT image post-processing; (e) DL iterative
reconstruction; (f) learning sparse transform.



Sensors 2022, 22, 2883 9 of 17

Sensors 2022, 22, x FOR PEER REVIEW 9 of 18 
 

 

   

(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Experimental results of incident photon number 10ହ. (a) real image; (b) FBP reconstruc-
tion image; (c) EP iterative reconstruction image; (d) DCT image post-processing; (e) DL iterative 
reconstruction; (f) learning sparse transform. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Image of difference of incident photon number 10ହ. (a) EP iterative reconstruction; (b) 
DCT image post-processing; (c) DL iterative reconstruction algorithm; (d) learning sparse transform. 
Figure 6. Image of difference of incident photon number 105. (a) EP iterative reconstruction; (b) DCT
image post-processing; (c) DL iterative reconstruction algorithm; (d) learning sparse transform.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 18 
 

 

   
(a) (b) (c) 

   

(d) (e) (f) 

Figure 7. Image of the difference of incident photon number 10ସ. (a) real image; (b) FBP reconstruc-
tion; (c) EP iterative reconstruction; (d) DCT image post-processing; (e) DL iterative reconstruction; 
(f) learned sparse transformation. 

The global effect map shows the overall effect of the experimental results; the local 
tissue enlarged image is used to observe the difference of the detailed information of the 
tissue structure. For the details that are difficult to be identified by the naked eye, the 
difference is shown by calculating the difference with the standard dose image, in which 
blue represents the minimum difference and red represents the maximum difference: the 
colder the color is, the closer it is to the standard measurement. The relatively complex 
tissue part in the middle of the CT image is selected for local magnification (Figures 8–10) 
to facilitate each algorithm’s performance when the tissue structure is complex. 

The complex organizational structure algorithm performance is shown in Figures 11 
and 12. 

3.3. Quantitative Index Analysis 
The quantitative index evaluation criteria adopted in this paper are RMSE (HU) and 

(Structural Similarity) SSIM [46] to analyze the effect quantitatively. The values of three 
different incident photon numbers are shown in Table 1. Figure 13 shows the local CT 
value curve. The quality of each algorithm’s results is evaluated according to the proxim-
ity between the algorithm result curve and the standard dose image curve. In Figure 13, 
SDI is ‘Standard Dose Image’, FBP is ‘Filtered Back Projection’, LST is’ Learning sparse 
transformation’. 

Figure 7. Image of the difference of incident photon number 104. (a) real image; (b) FBP reconstruction;
(c) EP iterative reconstruction; (d) DCT image post-processing; (e) DL iterative reconstruction;
(f) learned sparse transformation.



Sensors 2022, 22, 2883 10 of 17

The global effect map shows the overall effect of the experimental results; the local
tissue enlarged image is used to observe the difference of the detailed information of the
tissue structure. For the details that are difficult to be identified by the naked eye, the
difference is shown by calculating the difference with the standard dose image, in which
blue represents the minimum difference and red represents the maximum difference: the
colder the color is, the closer it is to the standard measurement. The relatively complex
tissue part in the middle of the CT image is selected for local magnification (Figures 8–10)
to facilitate each algorithm’s performance when the tissue structure is complex.

The complex organizational structure algorithm performance is shown in Figures 11 and 12.
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3.3. Quantitative Index Analysis

The quantitative index evaluation criteria adopted in this paper are RMSE (HU) and
(Structural Similarity) SSIM [46] to analyze the effect quantitatively. The values of three
different incident photon numbers are shown in Table 1. Figure 13 shows the local CT
value curve. The quality of each algorithm’s results is evaluated according to the proximity
between the algorithm result curve and the standard dose image curve. In Figure 13,
SDI is ‘Standard Dose Image’, FBP is ‘Filtered Back Projection’, LST is’ Learning sparse
transformation’.
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Figure 10. Experimental results of incident photon number 5× 103. (a) Real image; (b) FBP recon-
struction; (c) EP iterative reconstruction image; (d) DCT image post-processing; (e) DL iterative
reconstruction; (f) learning sparse transform.
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Table 1. RMSE (HU) and SSIM of different algorithms.

Incident Photon
Umbers FBP EP Iterative

Reconstruction

Post-
Processing of
DCT Image

DL Iterative
Reconstruction

Algorithm

Learning Sparse
Transformation

RMSE
105 59.3 26.4 26 25.7 25.8
104 74.1 39.5 38.4 33.5 38.3

5 × 103 88 49.3 49.2 39.8 44.3

SSIM
105 0.82 0.95 0.985 0.984 0.983
104 0.545 0.891 0.94 0.966 0.955

5 × 103 0.472 0.884 0.927 0.958 0.937

We use SI (MKS) or CGS as the primary unit in the experimental results. Imperial units
can be used as secondary units (in parentheses). For example, one can write “15 Gb/cm2

(100 Gb/in2)”. An exception is when English units are used as identifiers in trade, such
as “3 1

2 -in disk drive”. We avoid combining SI and CGS units, such as current in amperes
and magnetic field in oersteds, as this often leads to confusion because equations do not
balance dimensionally.

4. Discussion

1. When the number of incident photons is lower, there are some strip artifacts and
speckle noises in the FBP algorithm (Figure 6b). A little speckle noise artifact is
left in EP iterative reconstruction algorithm (Figure 6c), while low-dose CT image
post-processing algorithms based on DCT (Figure 6d), DL dictionary iterative re-
construction algorithm (Figure 6e), and learning sparse transform image processing
algorithm (Figure 6f) perform well in removing strip artifacts and noises. However,
in a similar position of the organizational structure, the lower tissues of Figure 6c–f
show a smooth transition. This smooth transition makes it difficult to distinguish the
organizational structure.

Figure 7 shows the difference between the effect picture of each algorithm and the
standard dose image. In Figure 7b–d, some light blue spots are evenly distributed in the
region of interest. It corresponds to the realization of speckle noise in Figure 6c. However,
in Figure 7c, more red areas appear at the edge of the organizational structure, indicating
a large difference in the region. There are no large areas of blue spots and red areas
in Figure 8b,d, and their color distribution is similar. Therefore, compared with the EP
iterative reconstruction algorithm, the proposed algorithm can remove speckle noise in the
low-dose scene and has no obvious advantage compared with the DCT low-dose CT image
post-processing and the DL iterative reconstruction algorithm.

2. In the scene of low-dose scanning with the number of incident photons, Figure 8
shows that the image reconstructed by the classical FBP algorithm (Figure 8b) has
a lot of uneven speckle-noise many strip artifacts. It makes the tissue nodes fuzzy
and seriously interferes with the disease diagnosis. EP iterative reconstruction algo-
rithm (Figure 8c) and low-dose CT image post-processing calculation based on DCT
(Figure 8d), the DL iterative reconstruction algorithm (Figure 8e), and the learning
sparse transform image post-processing algorithm (Figure 8f) are superior at eliminat-
ing strip artifacts. However, for speckle noise, other algorithms still have different
degrees of noise retention after processing except for the DL iterative reconstruction
algorithm.

The algorithm proposed in this paper (Figure 9d) retains the tissue’s edge information.
It displays a better effect for removing speckle noise than EP iterative reconstruction
algorithm (Figure 9a) and the DCT image post-processing algorithm (Figure 9b). The DL
iterative reconstruction algorithm (Figure 9c) can effectively remove speckle noise. The
point noise has a good removal effect, but the tissue edge is too smooth in the red circle.
It makes the tissue boundary not clear enough. In the difference diagram (Figure 10), the
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light blue spots in the ROI of Figure 10a–d decrease in turn, and Figure 10c appears in the
middle complex tissue structure. Light blue spots are consistent with the local enlarged
image (Figure 9c).

3. In the scene with very low-dose scanning, Figure 11 shows that the image recon-
structed by the FBP algorithm (Figure 11b) contains a lot of speckle noise and strip
artifacts. Part of the organizational structure information is also indistinguishable
between the EP iterative reconstruction algorithm (Figure 11c) and the low-dose CT im-
age post-processing algorithm based on DCT (Figure 11d). The image post-processing
algorithm (Figure 11f) also performs well for removing strip artifacts. However, the
speckle noise still exists. The DL iterative reconstruction algorithm (Figure 11e) can
remove the noise and artifacts well. However, the degree of over-smoothness will
also increase.

The noise in Figure 12a,b,d is not removed completely. However, the edge information
of organizational structure is retained. The edge information of organizational structure in
Figure 12c is eliminated along with the noise. The color distribution of each sub-image in
the difference diagram of Figure 13 is consistent with the visual observation.

Therefore, in the low-dose and very low-dose scenes, the learning sparse transform
image post-processing algorithm proposed in this paper can achieve a better denoising
effect than FBP algorithm, EP iterative reconstruction algorithm, and low-dose CT image
post-processing algorithm based on DCT, and also requires less time than the DL iterative
reconstruction algorithm, which needs training and does not need to obtain projection data.

To sum up, this paper conducted experiments with the learning sparse transform image
post-processing algorithm in three different dose scenarios, as shown in Figures 8f, 10f and 13f.
By comparing different groups of experiments, the experimental results show that the
algorithm has a better denoising effect than EP iterative reconstruction and DCT image post-
processing algorithm. Moreover, compared with the DL iterative reconstruction algorithm,
the algorithm does not appear to over-smooth phenomena in the organization structure’s
complex part. Moreover, it has a faster calculation speed than iterative calculation.

In the quantitative index analysis, we can make the following observation: by observ-
ing the two-table data, with the decrease of the dose, the RMSE value of each algorithm
shows an increasing trend, which shows that the denoising ability of various algorithms is
weakening with the increase of noise, and the SSIM index also decreases with the decrease
of dose, indicating that the recovery ability of organization details of various algorithms
is also poor. Simultaneously, the exponential performance of learning sparse transform
is better than FBP, EP iterative reconstruction algorithm, and DCT image post-processing
algorithm, but not as good as the DL iterative reconstruction algorithm learning prior
information.

5. Conclusions

This paper proposes a low-dose CT image post-processing method based on learning
sparse transform. The image post-processing method does not need to obtain the real
projection data. The method reduces the research threshold, can realize offline processing,
and is easy to use. Affected by image morphological component analysis, low-dose CT im-
ages can be decomposed into tissue structure and noise images. Then, the structure sparse
representation matrix and noise sparse representation matrix are proposed to represent the
two parts of the image and realize the purpose of denoising. In the experimental stage,
phantom data were used as sample and experimental data. Each group’s experimental
results were analyzed using visual effects and quantitative indicators under different in-
cident photon numbers (representing different radiation doses). The proposed algorithm
has better image quality from the visual effect than the traditional filter back-projection
algorithm. Furthermore, it performs well in the quantitative index. Finally, the influence of
parameter selection on image quality is also shown.

After adding a prior image information constraint, the method improves the expressive
ability of prior information, and can reconstruct better image effects. In addition, this
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method avoids the dependence of classical prior image compressive sensing reconstruction
and discriminative feature representation models on prior images, as well as the registration
and matching problems of prior images and reconstructed images from different sources.
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