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Abstract: The contact spacer is the core component of flexible tactile sensors, and the performance of
this sensor can be adjusted by adjusting contact spacer micro-hole size. At present, the contact spacer
was mainly prepared by non-quantifiable processing technology (electrospinning, etc.), which directly
leads to unstable performance of tactile sensors. In this paper, ultrathin polyimide (PI) contact spacer
was fabricated using nanosecond ultraviolet (UV) laser. The quality evaluation system of laser
micro-cutting was established based on roundness, diameter and heat affected zone (HAZ) of the
micro-hole. Taking a three factors, five levels orthogonal experiment, the optimum laser cutting
process was obtained (pulse repetition frequency 190 kHz, cutting speed 40 mm/s, and RNC 3).
With the optimal process parameters, the minimum diameter was 24.3 ± 2.3 µm, and the minimum
HAZ was 1.8 ± 1.1 µm. By analyzing the interaction process between nanosecond UV laser and PI
film, the heating-carbonization mechanism was determined, and the influence of process parameters
on the quality of micro-hole was discussed in detail in combination with this mechanism. It provides
a new approach for the quantitative industrial fabrication of contact spacers in tactile sensors.

Keywords: laser micro-cutting; PI film; contact spacer; tactile sensor

1. Introduction

Flexible tactile sensors are widely used in electronic skin [1–3], robots [4–6], wear-
able devices [7–9], etc. Depending on the source of the signal, the tactile sensors are
classified into capacitive-type [10,11], piezoelectric-type [12,13], triboelectric-type [14]
and piezoresistive-type [15–18]. Among them, the piezoresistive tactile sensor has been
extensively studied for its advantages of simple structure, low manufacturing cost and
convenient signal processing. As one of the core components in piezoresistive tactile sen-
sors, a contact spacer acts as a regulator of sensitivity and test range. For instance, a 2 µm
thick rigid SiO2 layer was applied as contact spacer and the sensor achieved ultra-high
sensitivity of about 100–970 µA/kPa, but inflexibility limits its use scope [19]. In addition,
a polyvinyl pyrrolidone (PVP) nanowire mesh was used to isolate the silver-plated micro-
pyramids, creating a tactile sensor with an ultra-high sensitivity and ultra-wide detection
range [20]. A tactile sensor with adjustable sensitivity and test range was fabricated by
isolating the wrinkled polypyrrole (PVP) film through a polyvinyl alcohol (PVA) nanowire
mesh [21]. However, the insulating nanowire mesh prepared by electrospinning process
not only cannot quantify the size of single micro-hole, but also cannot uniformize the size
of multiple micro-holes. The quantitative manufacturing of contact spacers thus should
meet the following conditions: (1) flexible insulating film to isolate resistance, (2) ultra-thin
film (1–10 µm) to form micro-sized peak in the micro-hole during compression deformation
and (3) 5–100 µm diameter micro-hole can be fabricated quantitatively to form large contact
resistance in a single micro-hole during compression deformation.
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Polyimide (PI) film has many excellent properties such as flexibility, ultra-thin man-
ufacturing (≥3 µm), insulation, high temperature resistance, radiation-resistance, etc.,
making it an excellent raw material for contact spacers. Ultra-thin PI film thus can be used
to fabricate the contact spacer, and traditional machining methods such as stamping cannot
fabricate micro-holes in the film. Laser-based micro-nano manufacturing has been widely
used in various industries, such as metal organic framework (MOF) additive manufac-
turing [22], polydimethylsiloxane (PDMS) laser cutting in flexible electronics, laser direct
writing for interdigitated electrode [23,24], laser induced biodegradation [25–27], etc. [28],
laser micro-cutting thus may be a better method for preparing micro-holes through PI
films. Nanosecond lasers are widely used in industrial production due to their low cost
and high stability [29,30]. Ultraviolet (UV, 355 nm) laser has lower thermal ablation effect
on the substrate than other wavelengths of light, so it is more suitable for manufacturing of
organic materials to obtain smaller heat affected zones (HAZs) [31]. However, whether the
interaction mechanism between the PI film and the UV nanosecond laser is a photother-
mal process or photochemical process, or both, remains to be further investigated [32–34].
In addition, the mechanism of PI film decomposition under laser irradiation conditions is
still unclear, and the relationship between the thermal damage and the process parameters
needs to be further investigated.

In this paper, nanosecond UV laser was chosen to fabricate the ultra-thin micro-hole
PI film contact spacer. However, the evaluation index of micro-holes quality, the influence
of process parameters on the evaluation index, and the interaction mechanism between UV
laser and PI films are yet to be investigated. Firstly, an evaluation system of micro-hole
based on roundness, diameter and size of the heat affected zone (HAZ) was established
by analyzing the morphology after the laser micro-cutting. Secondly, the influence of
process parameters was investigated by a 3-factor, 5-level orthogonal experiment to obtain
the optimal process parameters. Finally, the interaction mechanism based on heating-
carbonization was confirmed through the analysis of the products after laser micro-cutting
and used to analyze the influence of process parameters. It provides a new approach for
the quantitative industrial fabrication of contact spacers in tactile sensors.

2. Experiment Description
2.1. Laser Cutting System

As shown in Figure 1, the laser cutting system consisted of an industrial personal
computer (IPC), nanosecond UV laser, extender lens, scan mirror, focusing lens and support
platform. The nanosecond UV laser (Poplar-355-15A5, Huaray Precision Laser, Wuhan,
China) had a maximum power of 12 W and pulse width < 15 ns. The extender lens was
used to reduce laser processing power, because the diameter of laser spot expanded by the
expander lens was larger than the entrance diameter of the scan mirror. The scan mirror
(S10-355-D, SCANLAB, Pulheim, Germany) was used to control laser cutting path. The fo-
cusing lens (LINOS4401-402-000-20, QIOPTIQ, Gottingen, Germany) used in this study
had a focal length of 167 mm. The 5 µm ultra-thin PI film (Taobao online store) was pasted
on a piece of stainless steel, which was fixed on a motion platform. Output power of laser
can be adjusted by setting pulse repetition frequency (PRF) values, and the correspondent
relationship is shown in Table 1, where the power values are measured by power meter.
After the laser processing, each sample was ultrasonically cleaned in deionized water and
ethanol solution for 10 min in sequence, and then dried at room temperature.
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Figure 1. Experimental setup of PI film cutting process.

Table 1. Correspondent relationship between input PRF and output power.

Frequency (kHz) 100 120 140 160 180 200

Laser output power (W) 16.1 14.1 12.3 10.3 9.5 9.0
Actual cutting power (W) 0.159 0.137 0.121 0.102 0.94 0.89

2.2. Experiment Design of Laser Cutting Micro-Holes

According to previous experiments, the quality of micro-hole is mainly determined
by the following three process parameters: PRF, cutting speed (CS) and repetition number
of cuts (RNC). The nanosecond UV laser’s PRF could be varied from 50 to 200 kHz, the
CS could be varied from 0.1 to 10,000 mm/s, and the RNC could be increased indefinitely.
Higher cutting powers, slower cutting speeds and more RNC help to remove material
but can also lead to more defects such as large HAZ. Therefore, based on preliminary
test results, the specific PRF value varied from 160 to 200 kHz, the CS value varied from
10 to 50 mm/s, and the RNC value varied from 1 to 5. Furthermore, each parameter was
set to 5 arithmetic values within the range of variation, and their influences on the micro-
cutting quality was evaluated through orthogonal experiment of 3 factors and 5 levels.
The values and levels of the main process parameters are shown in Table 2, and the specific
process parameters are shown in Table 3.

Table 2. Micro-cutting process parameters and levels.

Process Parameters Unit Notation
Factor Levels

1 2 3 4 5

Pulse repetition frequency kHz PRF 160 170 180 190 200
Cutting speed mm/s CS 10 20 30 40 50

Repetition number of cuts —— CT 1 2 3 4 5
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Table 3. L25(53) orthogonal experiments.

NO. A B C PRF CS RNC

1 1 1 1 160 0.01 1
2 1 2 2 160 0.02 2
3 1 3 3 160 0.03 3
4 1 4 4 160 0.04 4
5 1 5 5 160 0.05 5
6 2 1 2 170 0.01 2
7 2 2 3 170 0.02 3
8 2 3 4 170 0.03 4
9 2 4 5 170 0.04 5

10 2 5 1 170 0.05 1
11 3 1 3 180 0.01 3
12 3 2 4 180 0.02 4
13 3 3 5 180 0.03 5
14 3 4 1 180 0.04 1
15 3 5 2 180 0.05 2
16 4 1 4 190 0.01 4
17 4 2 5 190 0.02 5
18 4 3 1 190 0.03 1
19 4 4 2 190 0.04 2
20 4 5 3 190 0.05 3
21 5 1 5 200 0.01 5
22 5 2 1 200 0.02 1
23 5 3 2 200 0.03 2
24 5 4 3 200 0.04 3
25 5 5 4 200 0.05 4

2.3. Characterization

The basic morphology of the micro-hole was observed by a laser scanning confocal
microscope (TCS SP8 X, Leica, Weztlar, Germany). In addition, a field emission scanning
electron microscope (FS-EM, FEI Sirion 200, Santa Clara, CA, USA) was used to observe
more detailed morphology and component analysis. The Raman spectra were carried out
on a Raman spectrometer (HORIBA Jobin Yvon, Paris, France) with a 30 mW He-Cd laser
of 532 nm. The thermogravimetric analysis (TGA) and differential thermal analysis (DTA)
were measured by synchronous thermal analyzer (STA PT1600, LINSEIS, Zerb, Germany),
that was carried out under air flow from room temperature to 800 ◦C at 10 min−1.

3. Results and Discussion
3.1. Quality Evaluation System of Laser Micro-Cutting

Firstly, the evaluation system of micro-hole quality was established based on morpho-
logical characteristics, and the eigenvalues of each sample in the orthogonal experiment
were extracted based on this system. Secondly, the influence of process parameters on
micro-hole quality was discussed by orthogonal analysis of the eigenvalues of each sample.
As shown in Figure 2, the typical micro-hole is not a perfect circle, and inscribed circle
of micro-hole d1 and circumscribed circle of micro-hole d2 can be drawn. In addition,
circumscribed circle d3 can be drawn outside the micro-hole due to the presence of the
HAZ. From the three-dimensional image of micro-hole measured by a laser scanning con-
focal microscope, it can be judged whether the micro-hole is through-hole (TH). According
to the values of d1, d2, and d3, evaluation indexes of the roundness, the diameter of the
micro-hole, and the size of the HAZ can be determined, and the calculation formulas are
as follows:

Roundness =
d2 − d1

2
(1)

Diameter =
d1 + d2

2
(2)
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Width of HAZ =
d3 − Dia

2
(3)
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Table 4. Experimental results L25(53) orthogonal experiments.

NO. PRF
(kHz)

CS
(mm/s) RNC Roundness

(µm)
Diameter

(µm)
Width of

HAZ (µm) TH

1 160 10 1 2.143 33.794 3.972 No
2 160 20 2 1.822 31.410 3.646 No
3 160 30 3 1.342 30.707 3.426 Yes
4 160 40 4 0.980 31.419 3.295 Yes
5 160 50 5 0.705 32.304 3.503 Yes
6 170 10 2 1.480 31.314 3.562 No
7 170 20 3 1.217 29.144 3.187 Yes
8 170 30 4 1.085 28.474 3.093 Yes
9 170 40 5 0.907 28.481 2.725 Yes
10 170 50 1 0.875 31.279 3.136 No
11 180 10 3 1.062 27.393 3.059 Yes
12 180 20 4 0.915 29.560 3.018 Yes
13 180 30 5 0.825 26.846 2.959 Yes
14 180 40 1 0.793 24.364 2.688 No
15 180 50 2 0.668 25.051 3.074 No
16 190 10 4 1.068 29.613 2.806 Yes
17 190 20 5 0.923 27.342 2.662 Yes
18 190 30 1 0.778 25.649 2.551 No
19 190 40 2 0.670 22.806 1.848 No
20 190 50 3 0.612 24.565 2.191 No
21 200 10 5 0.985 35.492 3.272 Yes
22 200 20 1 0.760 32.618 2.681 No
23 200 30 2 0.640 30.433 2.797 Yes
24 200 40 3 0.603 27.494 2.930 Yes
25 200 50 4 0.473 30.883 2.772 Yes

3.2. Variance Analysis of the L25(53) Orthogonal Experiments

Range is the difference between the maximum values and the minimum values of the
experimental results. Range analysis can quickly determine the optimal level of a single
factor and the optimal level combination of multiple factors in an orthogonal experiment.
When the evaluation index is the roundness, the results of the range analysis of each
parameter parameter are shown in Table 5 and Figure 4a. The parameter parameter PRF
has a range R1 of 0.706 µm for the evaluation index R. As the value of the PRF increases,
the roundness value decreases continuously, and the best R is obtained at lever 5 (200 kHz).
The range R2 and R3 of the process parameters CS and RNC are 0.681 and 0.201 µm,
respectively. As the values of CS and RNC increase, the value of R also decreases, and the
roundness is optimal at a cutting speed level of 5 (50 mm/s) and a cutting number level of
5 (5). Therefore, in this orthogonal experiment, the optimal R can be obtained when the
parameter parameter combination is 5-5-5. As shown in Table 4, the through-hole can be
obtained when the parameter combination is 5 (200 kHz) - 5 (50 mm/s) - 4 (4). Therefore,
for the optimum parameter parameter combination 5(200 kHz) - 5(50 mm/s) - 5 (5), the
through-hole can also be obtained in the case of only increasing RNC compared with the
parameter parameter combination 5-5-4. In the range analysis of the orthogonal experiment,
the larger the value of the range R, the greater the influence of the process parameters on the
evaluation index. Comparing the values of R1, R2 and R3, it is known that RNC, CS and PRF
have an increased influence on the roundness of micro-hole in this orthogonal experiment.
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Table 5. Range analysis table based on roundness evaluation.

PRF (kHz) CS (mm/s) RNC

K1 1.398 1.348 1.070
K2 1.113 1.127 1.056
K3 0.853 0.934 0.967
K4 0.810 0.791 0.904
K5 0.692 0.667 0.869

Optimal level 5 5 5
Rj 0.706 0.681 0.201

Order of range R1 > R2 > R3
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The interactive diagram obtained through the interactive analysis can show how
the relationship between a parameter parameter and an evaluation indicator depends on
the value of the second parameter parameter. Figure 4b shows the interactions between
each parameter parameter for roundness. The interaction analysis between the process
parameters corresponding to the optimal roundness (200 kHz-50 mm/s-4) shows that
(1) when the PRF level is 200 kHz, the interaction between CS and PRF is smaller than
other PRF levels, and the interaction is smallest when the CS level is 50 mm/s. (2) When
the PRF level is 200 kHz, the interaction between RNC and PRF is small compared to other
PRF levels, but the interaction is greatest when the RNC level is 5. (3) When the CS level
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is 50 mm/s, the interaction between RNC and CS is smaller than the other CS level, and
when the RNC level is 5, the interaction is larger than other RNC levels.

When the evaluation index is the diameter of the micro-hole, the results of the range
analysis of each parameter parameter are shown in Table 6 and Figure 5a: (1) The param-
eter parameter PRF has a range R1 of 5.932 µm, and the optimum parameter parameter
level is 4 (190 kHz); (2) the parameter parameter CS has a range R2 of 4.608 µm, and the
optimum parameter parameter level is 4 (40 mm/s); (3) the parameter parameter RNC has
a range R3 of 1.680 µm, and the optimum parameter parameter level is 3 (3). As shown in
Table 4, the through-hole can be obtained when the parameter parameter combination is
5 (200 kHz) - 4 (40 mm/s) - 3 (3). Therefore, for the optimum parameter parameter combi-
nation 4 (190 kHz) - 4 (40 mm/s) - 3 (3), the through-hole can also be obtained in the case
of only reducing the output power compared with the parameter parameter combination
5-4-3. Comparing the values of R1, R2 and R3, it is known that RNC, CS and PRF have an
increased influence on the diameter of micro-hole in this orthogonal experiment. For the
combination of process parameters (190 kHz - 40 mm/s - 3) corresponding to the optimal
diameter of the micro-hole, it can be known from the interaction analysis in Figure 5b:
(1) when the PRF level is 190 kHz, the interaction is smallest when the CS level is 40 mm/s.
(2) When the PRF level is 190 kHz, the interaction is relatively small when RNC level is 3.
(3) When the CS level is 40 mm/s, the interaction is middle when the RNC level is 3.

Table 6. Range analysis table based on diameter of the micro-hole.

PRF (kHz) CS (mm/s) RNC

K1 31.927 31.521 29.541
K2 29.738 30.015 28.203
K3 26.643 28.422 27.861
K4 25.995 26.913 29.990
K5 31.384 28.817 30.093

Optimal level 4 4 3
Rj 5.932 4.608 1.680

Order of range R1 > R2 > R3

Similarly, when the evaluation index is the size of the HAZ, the results of the range
analysis of each parameter parameter are shown in Table 7 and Figure 6a: (1) the param-
eter parameter PRF has a range R1 of 1.157 µm, and the optimum parameter parameter
level is 4 (190 kHz); the parameter parameter CS has a range R2 of 0.637 µm, and the
optimum process parameter level is 4 (40 mm/s); the parameter parameter RNC has a
range R3 of 0.047 µm, and the optimum parameter parameter level is 3 (3). As shown in
Table 4, the through-hole can be obtained when the parameter parameter combination is
5 (200 kHz) - 4 (40 mm/s) - 3 (3). Therefore, for the optimum parameter parameter combi-
nation 4 (190 kHz) - 4 (40 mm/s) - 3 (3), the through-hole can also be obtained in the case
of only reducing the output power compared with the parameter parameter combination
5-4-3. Comparing the values of R1, R2 and R3, it is known that RNC, CS and PRF have an
increased influence on the diameter of micro-hole in this orthogonal experiment. For the
combination of process parameters (190 kHz - 40 mm/s - 3) corresponding to the optimal
size of HAZ, it can be known from the interaction analysis in Figure 6b: (1) when the PRF
level is 190 kHz, the interaction is smallest when the CS level is 40 mm/s. (2) When the
PRF level is 190 kHz, the interaction is relatively small when RNC level is 3. (3) When the
CS level is 40 mm/s, the interaction is relatively large when the RNC level is 3.
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Table 7. Range analysis table based on size of the HAZ.

PRF (kHz) CS (mm/s) RNC

K1 3.568 3.334 3.005
K2 3.140 3.039 2.985
K3 2.960 2.965 2.959
K4 2.412 2.697 2.996
K5 2.890 2.935 3.024

Optimal level 4 4 3
Rj 1.157 0.637 0.047

Order of range R1 > R2 > R3
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According to the range analysis results of the orthogonal experiment, the effect of each
parameter parameter on the diameter of micro-hole and HAZ was approximate, and the
minimum diameter and HAZ were obtained at the same parameter level combination of
4(190 kHz) - 4(40 mm/s) - 3(3). As shown in Table 5, the roundness corresponding to each
parameter parameter at this parameter level was 0.810 µm (PRF), 0.791 µm (CS), 0.976 µm
(RNC), respectively. In the combination of parameter level to obtain the best roundness, the
roundness corresponding to each parameter parameter was 0.692 µm (PRF), 0.667 µm (CS),
0.869 µm (RNC). Although the parameter level combination (5-5-5) that achieves the best
roundness was inconsistent with this parameter level combination (4-4-3), the roundness
difference of each parameter parameter was more than 0.13 µm. Therefore, parameter
level combination of 4(190 kHz) - 4(40 mm/s) - 3(3) was selected as the optimal parameter
level combination of laser micro-cutting in this study. It should be emphasized that in this
parameter parameter combination, the interaction of PRF-CS and PRF-RNC is small, and
the interaction of CS-RNC is large.

3.3. Mechanism of Laser Micro-Cutting

In order to determine how the process parameters affect the quality of the micro-holes,
it is important to understand the interaction mechanism between the nanosecond UV laser
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and the ultra-thin PI film. Figure 7 shows the typical morphology of the micro-hole before
and after cleaning. As shown in Figure 7a, after the laser micro-cutting, a circular area
having a diameter of several tens of micrometers is formed through the PI film, the material
in the micro-hole is not completely removed and a layered halo appears around this circular
area. As shown in Figure 7b, the layered halo around the micro-hole disappeared after
cleaning and the material in the micro-hole was removed, indicating that by-products of
laser cutting could be removed.
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Further, the product of the laser micro-cutting was analyzed by Raman spectra and
energy dispersion spectrum (EDS). Before cleaning, as shown in Figure 7a, the A-D points
were selected from the inside of the micro-hole to the periphery of the layered halo for
Raman analysis. There are no other peaks except the D band and the G band of point
A at 1356 and 1594 cm−1 (Figure 8a), which indicates that the main component in the
micro-hole after laser micro-cutting is carbon [35,36]. For the Raman spectra from point
B to point D, there are no obvious peaks nor carbon peaks, which indicates that there are
no new chemical bonds generated in the layered halo, and the carbon is not sputtered out
from the micro-hole. According to the EDS analysis of these points, as shown in Table 8,
the carbon content (97.99%) is much higher than the other positions, which further confirms
the above-mentioned laser carbonization process.Micromachines 2021, 12, x FOR PEER REVIEW 13 of 16 
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Table 8. The atomic percentage in the designated area in Figure 7 before and after cleaning.

Atomic Percentage C O N

Point A 97.99 0.86 1.15
Point B 73.37 19.51 7.12
Point C 81.88 12.93 5.19
Point D 71.64 20.94 7.42
Point A1 73.44 19.38 7.18
Point B1 70.87 20.69 8.44
Point C1 72.58 19.56 7.86

After cleaning, as shown in Figure 7b, the point A1 on the inner wall of the micro-hole,
the point B1 on the HAZ, and the point C1 outside the HAZ were selected for Raman and
EDS analysis. There are no obvious peaks or carbon peaks on the Raman curve in Figure 8b,
indicating that the composition of each position is basically the same after cleaning. Points
A1, B1, and C1 have little difference in elemental content (Table 8), further indicating that
there is no significant difference in the material surrounding the micro-hole after cleaning.

As shown in Figure 9, to analyze the dynamic change course of PI during laser heating,
thermogravimetric analysis was performed on this ultra-thin PI film. According to the TGA
curve, the plateau period is within 460 ◦C, and then the reaction period begins. Moreover,
the thermal degradation process of PI film, a thermosetting material, is mainly one-step
degradation. Thus, the weight loss step can be attributed to the carbonization process of
the sample. As shown in the DTA curve, the temperature difference between the sample
and the reference during heating (∆T) is always less than zero, indicating that the PI film
continues to absorb heat during thermal decomposition. The DTA curve has a peak at
619 ◦C, when the heat absorption rate is the highest and the weight loss rate is also the
highest. In combination with the analysis of Figures 7 and 8 and Table 8, PI is carbonized at
high temperature and remains on the inner wall, and the short-chain polyimide component
is sputtered outside the micro-hole. In addition, because of thermal diffusion, wrinkles as
shown in Figure 2 are produced around the micro-hole.
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With heating-carbonization as the core, the influence of the laser micro-cutting pro-
cess parameters on these evaluation indexes was discussed. The nanosecond UV laser
carbonizes the PI film by high temperature on a circular cutting path to form a micro-hole,
and the carbonized material remains in the micro-hole. Short-chain polyimide molecules
that are partially decomposed but not yet charred will sputter on the outside of the mi-
cropores to form a halo. These products can be removed by cleaning, and a wrinkled
HAZ formed by thermal diffusion can be clearly observed. Under the conditions of other
process parameters unchanged: (1) the higher the PRF value, the lower the output power
and the smaller the carbonization diameter of the spot; (2) the faster the CS, the less heat
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accumulation effect, and the smaller the carbonization diameter of the spot; (3) the more
RNC, the more times the material is removed by the heat accumulation effect, and the larger
the carbonization area. Experiment results of roundness analysis shows that lower output
power and higher CS are beneficial to reduce the heat accumulation effect, which helps to
improve the roundness of the micro-holes. In addition, more RNC is conducive to sufficient
carbonized material in the same path, thus improving the roundness of the micro-hole
too. Lower output power and faster cutting speeds help to form smaller carbonization
diameter of the spot, resulting in smaller micro-hole diameters, but may also result in the
inability to carbonize the material. The best process parameters should be achieved with
a small carbonization diameter and fast cutting speeds, while orthogonal experiments
help to quickly screen out the best combinations (4-4-3). At the same time, the smaller the
diameter of the carbonized region, the smaller the area affected by thermal diffusion (HAZ),
as shown in the experiment results of diameter and HAZ analysis of the micro-holes.

3.4. Fabrication of the Ultra-Thin PI Film Contact Spacer

As shown in Figure 10, an ultra-thin PI contact spacer with an average circle center
distance of 50 µm was fabricated using the optimal parameter parameter combination
(4-4-3). In the randomly selected 10 samples, the average and variance of the roundness,
diameter, and HAZ are 0.6 ± 0.3, 24.3 ± 2.3, 1.8 ± 1.1 µm. The SEM morphology shows
that the micro-holes are evenly distributed on the PI film, and there are no obvious defects,
such as non-through holes and irregular shapes, etc.
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4. Conclusions

The contact spacer is the core component that regulates the measurement range and
sensitivity of tactile sensors. Using nanosecond UV laser commonly used in industry,
the interaction mechanism between laser and ultra-thin PI film was first studied, and
the influence of laser process parameters on micro-cutting quality was explored by an
orthogonal experiment. Finally, the ultra-thin PI film contact spacer was successfully
fabricated, which laid the foundation for the industrial production of the tactile sensor.
Specific conclusions are as follows:

The high temperature generated by the spot carbonizes the PI film and partially stays
in the micro-hole. The short-chain polyimide component is sputtered outside the micro-
hole during the laser micro-cutting. Thermal diffusion during laser micro-cutting causes
wrinkles around the micro-hole.

In the orthogonal experiment of this study, with the increase of PRF, CS and RNC
values, the circularity of micro-hole was gradually optimized, and the optimum roundness
was obtained at a parameter level of 5(200 kHz) - 5(50 mm/s) - 5 (5).

In the orthogonal experiment of this study, the effect of each parameter parame-
ter on the diameter of micro-hole and HAZ was approximate. The minimum diameter
(24.3 ± 2.3 µm) and HAZ (1.8 ± 1.1 µm) were obtained at the same parameter level of
4(190 kHz) - 4(40 mm/s) - 3(3).
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