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Identifying the lungs as a susceptible site for allele-
specific regulatory changes associated with type 1
diabetes risk
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Mark H. Vickers 1, Andreas W. Kempa-Liehr 5 & Justin M. O’Sullivan 1,2,4,6✉

Type 1 diabetes (T1D) etiology is complex. We developed a machine learning approach that

ranked the tissue-specific transcription regulatory effects for T1D SNPs and estimated their

relative contributions to conversion to T1D by integrating case and control genotypes

(Wellcome Trust Case Control Consortium and UK Biobank) with tissue-specific expression

quantitative trait loci (eQTL) data. Here we show an eQTL (rs6679677) associated with

changes to AP4B1-AS1 transcript levels in lung tissue makes the largest gene regulatory

contribution to the risk of T1D development. Luciferase reporter assays confirmed allele-

specific enhancer activity for the rs6679677 tagged locus in lung epithelial cells (i.e. A549

cells; C > A reduces expression, p= 0.005). Our results identify tissue-specific eQTLs for

SNPs associated with T1D. The strongest tissue-specific eQTL effects were in the lung and

may help explain associations between respiratory infections and risk of islet autoantibody

seroconversion in young children.
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Type 1 diabetes (T1D) is characterised by immune-mediated
destruction of insulin-producing pancreatic beta cells
leading to loss of insulin production and hyperglycaemia.

Population-level data has enabled genome-wide association stu-
dies (GWAS) that have identified ~60 genetic loci that are asso-
ciated with the risk of developing T1D1. In addition to the GWAS
studies, a number of highly phenotyped prospective birth cohort
studies have investigated potential early determinants of T1D
risk2–4. Notably, the transition from genetic risk to T1D onset is
hypothesised to require an environmental trigger event, such as
infection, in those individuals who go on to develop the disorder5.
However, the mechanisms responsible for this transition remain
poorly characterised, limiting strategies for optimising treatment
and furthering therapeutic development.

One hindrance to characterising the genetic mechanisms
responsible for T1D development is the finding that the majority
of SNPs are within intergenic regions of the genome. Previously,
we used information on the spatial organisation of the genome
(captured by Hi-C) to identify the tissue-specific gene regulatory
impacts (i.e. eQTLs) of SNPs associated with T1D6. Consistent
with our understanding of T1D pathology, we reported that the
differentially expressed genes were enriched for immune activa-
tion and response pathways6. However, this still did not provide
any important information into the relative contributions of
the tissue-specific gene regulatory effects we identified. Therefore,
we reasoned that we could use genotypes for T1D cases and
controls to machine learn the tissue-specific-expression scores for
T1D-associated variants. This approach would enable the ranking
of the tissue-specific regulatory changes that contribute to the
conversion of genetic risk to T1D pathology.

In the present study, we assigned SNPs associated with T1D to
the genes they modulate through Hi-C chromatin interactions
captured from primary tissues (i.e. pancreas and spleen) and
immortalised cells. We integrated a regularised logistic regression
model on European ancestry genotypes of T1D case and control
to identify transcriptional changes in the lung involving AP4B1-
AS1 and CTLA4 (associated with rs6679677) as the largest indi-
vidual contributors, through a gene regulatory mechanism, to the
conversion of the genetic risk for the development of T1D.
Finally, a plasmid-based luciferase reporter expression assay was
performed to validate the allele-specific enhancer activity of the
locus marked by rs6679677 in lung cells.

Results
T1D SNPs impact an extensive gene regulatory network. The
methodology used for the characterisation of the regulatory networks
for T1D-associated SNPs is summarised in Fig. 1. Briefly, we used the
CoDeS3D7 algorithm to analyse 313 T1D-associated SNPs (Methods
section and Supplementary Data 1) using Hi-C chromatin contact
libraries (Supplementary Data 2) and GTEx (v7) RNAseq data
(Methods section). The Hi-C libraries that were used in this study
included immortalized cell lines and primary human tissues (Sup-
plementary Data 2) and were chosen to ensure a range of known
possible interactions were included in the analysis. We define a spatial
eQTL as a SNP that tags a locus that: (1) physically interacts with a
gene; and (2) explains a fraction of the genetic variance of the
interacting gene transcription level. According to our definition, the
eQTL variant can sit anywhere within the genome. This includes
within the boundaries of the gene, as long as the gene is covered by ≥3
restriction fragments in the Hi-C library. This minimum connection
distance is determined by Hi-C resolution, which cannot distinguish
spatial connections between ligated contiguous restriction sites versus
an undigested restriction site. Of the 313 SNPs, 57 SNPs had no
identifiable eQTLs, resulting in 256 T1D-associated SNPs connecting

to 822 genes (1479 spatial eQTL-eGene associations; FDR q < 0.05;
Supplementary Data 3). As expected from our previous study6, the
822 genes were enriched for immune activation and response path-
ways (Supplementary Data 4).

The eQTL-eGene interactions were categorised as either: cis,
the eQTL and eGene are separated by a linear distance of ≤1Mb
on the same chromosome; or trans, eQTLs and their eGenes were
separated by >1Mb on the same chromosome or located on
different chromosomes. Notably, of the 256 T1D-associated SNPs
with spatial-eQTLs, 190 affected the trans-regulation of 361
genes, while 201 affected the cis-regulation of 493 genes. Some
genes (n= 32) were regulated by different eQTLs in both cis and
trans (e.g. TRIM26, RNF5, PSMB9 and NOTCH4; Supplementary
Data 3). Notably, the 112 trans-regulated genes (e.g. FOXP1,
CAMTA1 and ROBO2) we identified are enriched for being less
tolerant of inactivating (i.e. Loss-of-Function) mutations (Sup-
plementary Fig. 1 and Supplementary Data 5).

Machine learning identifies transcriptional changes in the lung
as being involved in the conversion of risk to T1D. Based on
our eQTL analysis, we determined that T1D SNPs form an
integrated gene regulatory network across tissues and immune
cell types. We reasoned that we could use a machine learning
approach to integrate the tissue-specific spatial eQTL-eGene
associations with thousands of individual genotypes from large
T1D cohorts to convert population-level risk (i.e. GWAS SNPs)
to individualised risk (i.e. the burden for an individual’s
genotype).

We trained and validated the predictive accuracy of a
regularised logistic regression predictor (Methods section and
Supplementary Fig. 2), which predicts the T1D disease status.
This model was used to estimate the additive tissue-specific
contribution of the spatial eQTLs within genotypes from
individuals who developed T1D (WTCCC; 1960 T1D cases and
2933 controls). Individual genotypes were weighted using the
tissue-specific spatial eQTL effect sizes from the CoDeS3D
analysis (Supplementary Data 3). Of the 313 T1D-associated
SNPs, 253 were present within each of the WTCCC genotypes
(Supplementary Data 6). Of the 253 SNPs, 224 had identifiable
eQTLs, connecting to 758 eGenes (6307 tissue-specific eQTL
effects).

Essential feature selection was performed using the
Mann–Whitney U test8 (selected 2048 data features from 6307
eQTL features and 29 SNP features with unknown eQTL effects)
and lasso regularisation of the logistic regression. The regularisa-
tion parameter was optimised by sampling 80% of the WTCCC
derived eQTL dataset, identifying optimal hyperparameters from
this sample, and evaluating the performance of the algorithm on
the remaining 20% using the optimal hyperparameters. In order
to identify optimal hyperparameters, the selected 80% of data
were divided into 10 subsets, with each subset having approxi-
mately the same number of samples. For every hyperparameter
value, the prediction model was trained repeatedly on 9 subsets
and evaluated on the remaining subset until every subset had
been used for evaluation once. The optimal regularisation
parameter was selected based on the AUC (model 1). Applying
this model to the validation data (20% of the WTCCC derived
eQTL dataset) resulted in an AUC of 0.76, which is acceptable for
our purpose of developing an interpretable machine learning
model, which identifies the top-performing predictors from
additive tissue-specific contributions of the spatial eQTLs within
genotypes from individuals who developed T1D. In order to
quantify the uncertainty of the model performance subjective to
different splits of the WTCCC data into training and test sets, we
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sampled 50 different training and test sets by repeating a 5-fold
internal cross-validation of the WTCCC data a total of 10 times.
This experiment generated 50 out-of-sample AUC values from 50
different T1D regularised logistic regression predictors created
with model 1’s optimised hyperparameters. Each predictor was
trained on a different subset comprising 80% of the WTCCC data
and evaluated on the remaining 20% (Fig. 2; Supplementary
Data 7 and Methods section). The 50 out-of-sample AUCs varied
between 0.712 and 0.771 with a mean of 0.747 and a standard
deviation of 0.14 (Supplementary Fig. 3). Internal cross-validation
is a standard practice in machine learning9 and showed that
model 1 predictor, which was fitted with optimised hyperpara-
meters, generalises well across different subsets of WTCCC
derived eQTL data.

Tissue-specific contributions to the T1D risk were extracted
from each of the 50 T1D regularised logistic regression predictors
as the sum of the absolute values of the model weights associated
with each tissue. We then ranked the tissue-specific contributions
to the 50 regularised logistic regression predictors. This ranking
identified the lung as the top average contributor to the relative
risk (case:control) of developing T1D. Across all 50 regularised
logistic regression predictors, the lung explained a mean of 13.6%
(standard deviation of 2.51%) of the relative risk of developing
T1D (Fig. 2; Supplementary Data 8).

CTLA4 contributes to the risk associated with the lung and
testes. When training our T1D regularised logistic regression
predictors, we identified a split distribution for the lung that was
dependent upon the lasso regularisation inclusion or exclusion of
the rs3087243-CTLA4 cis-acting (i.e. <1Mb apart) spatial eQTL
within the two tissues where it was identified (i.e. lung or testes;
Supplementary Fig. 4). Since lasso regularisation retains only one
of a group of highly correlated features, we sought to validate the

possibility that rs3087243-CTLA4 has notable effects on the
contribution of the lung and testis to T1D risk.

To test the effects of specifically removing the rs3087243-CTLA4
feature, we created two alternative weighted WTCCC genotype
T1D-eQTL models in which this eQTL was removed from either
the lung or the testis within the weighted WTCCC genotype T1D-
eQTL matrix. The AUCs and tissue-specific contributions from 50
T1D predictors with the optimised hyperparameters from each of
the alterative matrices were evaluated by two-sided t-test and
Bayesian methods (Supplementary Figs. 5 and 6; ref. 10). The
inclusion or exclusion of the rs3087243-CTLA4 spatial eQTL
within the lung or testes had a strong impact on the lungs’
predicted contribution to T1D risk. No other tissues were affected,
consistent with the rs3087243-CTLA4 spatial eQTL only being
detected in the lung and testes. The lung rs3087243-CTLA4 eQTL
contributed an average of 4% to T1D risk (Supplementary Data 9).
The lung eQTL involving rs3087243 and CTLA4 is also notable as:
(1) rs3087243 has been linked with progression from single to
multiple autoantibodies in the TrialNet PTP cohort11; (2) CTLA4
encodes an immunoglobulin protein crucial for modulating T cell
function and mediating autoimmunity and (3) immune interven-
tion trials targeting CTLA4 have reported significant but short-
term positive metabolic outcomes12.

Predictions from the first model were confirmed using a second
model with more features. To enable more precise estimations of
relative risk for data features, a second T1D regularised logistic
regression predictor (model 2) (134 tissue-specific eQTL effects across
GTEx tissues and six SNPs with unknown eQTLs) was created
(Methods) and trained with the optimised hyperparameters using the
full WTCCC cohort (in-sample AUC= 0.774). (Model 2 differed
from model 1, which used an 80:20 split for internal WTCCC vali-
dation.) Model 2 was validated against the UK Biobank (UKBB)

Fig. 1 Overview of the method used to rank the tissue-specific transcription regulatory effects of genetic variants associated with the development of
T1D. SNPs associated with T1D were analysed (CoDeS3D) to identify the interacting loci, which were then tested for eQTLs within GTEx. This resulted in a
map of T1D-eGenes across multiple human tissues. The T1D genes were subsequently used to perform logistic regression to identify key tissues for T1D
pathogenesis. Luciferase assays were used to test the final predictions.
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(30 subsets of T1D datasets of 415 cases and 578 controls). Model 2
achieved a mean AUC= 0.754 (Table 1 and Fig. 3a [Kernel density
estimate] and Fig. 3b [posterior estimation results from the Bayesian
analysis]; Supplementary Data 10) and was used to rank the eQTLs
that impacted the lung contribution to T1D risk (Supplementary
Data 11). It should be noted that model 2 excluded the rs3087243-
CTLA4 eQTL, which contributed an average of 4% to T1D risk in the
50 T1D regularised logistic regression predictors (calculated with the
optimised hyperparameters of model 1; see above). The major con-
tributor eQTL (rs6679677) downregulated AP4B1-AS1 transcript
levels in cis (i.e. rs6679677 and AP4B1-AS1 are <1Mb apart) in the
lungs and conferred a 13.3% contribution to the T1D regularised
logistic regression predictor. This was comparable to the mean pre-
dictor weighting (13.6%) of the 50 models created with model 1’s
hyperparameters. Notably, rs6679677 also downregulates AP4B1-AS1
expression in whole blood samples (eQTLGen; Supplementary
Data 12) and modulates the expression of genes associated with

immune regulation, including FOXP3, CTLA4, IL2RA and SLAMF1
in whole blood (eQTLGen; http://www.eqtlgen.org 13; Supplementary
Data 12).

Fig. 2 Tissue-specific contributions of the 50 T1D regularised logistic regression predictors. The distributions were created from the 50 T1D regularised
logistic regression predictors that were created using the optimised hyperparameters of model 1. These regularised logistic regression predictors integrated
four different forms of biological information: GWAS or fine-mapping; Hi-C; eQTL and genotype data. SNPs denote T1D-associated SNPs for which no
eQTLs were identified. The X axis is the total value of the model weights (no units).

Table 1 A summary from the Bayesian analysis of the
validation AUCs from the model 2 predictor on the 30 UK
Biobank dataset.

Mean SD HPD_2.5% HPD_97.5%

μ 0.754 0.002 0.749 0.758
σ 0.011 0.002 0.009 0.014

Uninformed prior distribution was normal with mean ~U(0,1) and stand deviation
~HalfNormal(std= 0.01).
μ mean of the simulations (1000) from the model created using 30 AUC prediction results, σ
standard deviation from the simulations,Mean simulated data mean, SD standard deviation, HPD
highest posterior density interval, AUC area under the curve.
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Regulatory changes in the HLA locus contribute to the risk of
developing T1D in both models. The HLA region is strongly
associated with the development of T1D, accounting for 40–50%
of the familial aggregation14. We observed spatial eQTLs invol-
ving HLA (Supplementary Data 13) within models 1 and 2. The
notable HLA spatial cis-acting eQTLs involved SNPs rs2251396-
PSORS1C1, rs2251396-MICA, rs3129889-HLA-DRB5 and
rs9268645-HLA-DQB2 and were observed as contributing to the
risk of developing T1D in multiple tissues (e.g. adrenal gland,
transverse colon, small intestine, spleen, left heart ventricle, sun-
exposed skin, testis and thyroid).

Validation of lung cell allele-specific enhancer activity of locus
marked by rs6679677. Our results indicate that eQTL
(rs6679677) downregulates AP4B1-AS1 transcript levels in the
lung. Therefore, we performed a luciferase enhancer assay to
experimentally validate that the top-ranked eQTL (rs6679677)
marks an allele and tissue-specific enhancer. DNA sequences
flanking rs6679677 (i.e. 74 bp 5′ – ref/alt allele – 75 bp 3′
[chr1:114303734-114303884; GRCh37]) were cloned into the 3′
UTR of a minimal TATA-box promoter and luciferase gene
construct to test whether the cloned sequence contain enhancer
elements for gene expression (Methods section and Supplemen-
tary Fig. 7)15. Transient transfection of the plasmid vector

containing the reference locus (i.e. the major allele for rs6679677)
resulted in a fold increase in luciferase activity when compared to the
control vector in A549 (lung) and HepG2 (liver) cells (~11 and ~5
fold increase, respectively). This is consistent with the existence of
H3K9ac histone modifications at the locus tagged by rs6679677 in
both the lung and liver tissues (see HaploReg; https://pubs.broad
institute.org/mammals/haploreg/haploreg.php). Notably, a significant
allele-specific reduction in enhancer activity (i.e. nucleotide change
from C>A) was observed only in the A549 cells (p= 0.005 [two-
sided t-test]; Fig. 4), consistent with the identification of an eQTL
involving this locus in the lung but not the liver. Collectively, these
results support the allele-specific enhancer activity for the locus
marked by rs6679677 in the lung.

Discussion
In the present study, we have used a logistic lasso regression
model to integrate T1D case and control genotypes with spatial
eQTL data to predict the relative tissue-specific contributions for
the conversion of genetic risk to T1D. The regularised logistic
regression models generated in this manuscript were validated by
both internal cross-validation (model 1) which is standard
practice in machine learning9 and external cross-validation using
the different cohorts (model 2). Notably, the discussion refers
to conclusions drawn from model 2, with the most stringent

Fig. 3 Validation of AUC results from Model 2 on the 30 UK Biobank test dataset. a Kernel density estimate (KDE) plot of the 30 AUC results
(mean= 0.754; SD= 0.0011. [X axis: AUC, Y axis: frequency of AUC values (%)]. b The posterior estimation results from the Bayesian analysis (1000
iterations of model simulation) of the 30 AUCs. From the Bayesian estimation, there was a 95% chance that the mean (µ) AUC was between 0.749 and
0.758, and its SD (σ) was between 0.009 and 0.014. SD standard deviation, AUC area under the curve, HPD highest posterior density interval. Uninformed
prior distribution was normal with mean ~ U(0,1) and standard deviation ~ HalfNormal(std= 0.01). [X axis: mean AUC and standard deviation of AUC, Y
axis: posterior distribution].
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cross-cohort validation. Model 2 was validated across two inde-
pendent case–control cohorts and identified the lungs and a cis-
acting eQTL involving rs6679677 as the largest single contributor
of the risk for developing T1D. Our results agree with observa-
tions by Gamazon et al.16, who used LD score regression to
identify the lung as the top tissue influencing T1D disease
development. These observations are consistent with an envir-
onmental event impacting the largest single interface between the
body and environment to precipitate the development of
T1D17–19. Moreover, our results are consistent with the associa-
tion of respiratory infections (i.e. influenza-like illness) with an
increased risk of islet autoantibody seroconversion in
young-onset T1D study cohorts19,20. Collectively, our results
demonstrate that tissue-specific approaches can improve our
understanding of disease aetiology, potentially aiding therapeutic
development in preventing T1D onset.

It is widely recognised that the vast majority of measurable
genetic risk for T1D is associated with the HLA region and
polymorphisms of the class II HLA DQ, DR and DP genes14.
Typically these effects are ascribed to polymorphisms within the
HLA genes that affect the shape of the peptide-binding grove and
the scope of the peptides that can bind to the allele and thus
be presented on the cell surface14. Our analysis focused on

identifying and ranking the tissue-specific regulatory changes and
thus does not capture variants that change the function or
structural properties of a gene-encoded protein. Therefore, it is
notable that the HLA locus variants that were retained within our
models (rs3129889-HLA-DRB5 and rs9268645-HLA-DQB2)
regulated the expression of DRB and DQB alleles. In addition,
rs2251396 was associated with the expression of PSORS1C1,
which has been associated with T1D21. Similarly, rs2251396 was
associated with the expression of MICA, which has previously
been identified as part of an extended HLA haplotype that
associates with TID risk22, Collectively these observations support
the hypothesis that changes in HLA gene expression contribute
to T1D risk, in addition to the recognised role for HLA
polymorphisms.

In the lung, our eQTL analysis revealed a marked association
between rs6679677 and the expression of AP4B1-AS1. The allele-
specific enhancer activity of the rs6679677 tagged region in lung
cells was confirmed using a plasmid-based luciferase assay.
However, rs6679677 also: (1) has eQTLs with AP4B1-AS1 and
immune regulation genes (i.e. FOXP3, CTLA4, IL2RA and
SLAMF123–26) in whole blood; (2) has been associated with the
development of multiple persistent autoantibodies (including islet
autoantibody), but not progression to T1D development in the
TEDDY prospective cohort27; (3) has been associated with the
development of other autoimmune disorders (i.e. juvenile idio-
pathic arthritis and rheumatoid arthritis)28,29 and (4) was
reported as the top non-HLA SNP associated with T1D from
WTCCC studies30. Collectively, these results support an impor-
tant molecular role for the locus tagged by rs6679677 in a lung-
specific increase in the risk of T1D development. However, our
results do not prove the effect is exclusively due to the impact on
lung cells. As such, future work should dissect if the lung-specific
regulatory impact of rs6679677 contributes to the mechanism of
T1D risk.

AP4B1-AS1 is located in a genomic region that is recognised as
being strongly associated with autoimmune disorders1. PTPN22,
which is on the antiparallel DNA strand to AP4B1-AS1, encodes a
lymphoid-specific intracellular phosphatase (LyP) from the non-
receptor class 4 subfamily of the protein-tyrosine phosphatases
that acts as a critical negative regulator of T cell activation and T
cell receptor signalling pathways31. Notably, rs6679677 down-
regulates AP4B1-AS1 expression in whole blood samples. Simi-
larly, C1858T-rs2476601 (in complete linkage with rs6679677)
has been linked with reduced protection against the influenza
virus32. Therefore, we propose that future studies should ascertain
the regulatory roles of rs6679677 on AP4B1-AS1 in T cells, par-
ticularly in response to viral infections in the lungs. We contend
that this will help untangle the genetic mechanisms that connect
respiratory infections and the induction of islet autoantibodies
that have been observed in young children19,20.

This study has limitations. Firstly, the genetic data used in the
analyses is predominantly from people of European ancestry,
which limits the immediate translation of our findings to popu-
lations with different genetic structures (e.g. variable haplotypes
in this region). Secondly, thirty SNPs identified as being asso-
ciated with T1D did not have identifiable eQTLs in any of the
GTEx tissues studied, consistent with the presence of alternative
methods or developmental stages through which SNPs can
mediate their effects on phenotypes. Thirdly, not all of the eQTLs
we identified were represented in the individual genotypes we
analysed (i.e. SNPs were unable to be imputed), meaning we
could have missed effects. Fourthly, the reporter assay does not
take into account the genomic context through which chromatin
looping influences the enhancer-promoter interactions that
mediate transcriptional activity33. Fifthly, the use of a lung cancer
cell line may limit the interpretation of the transcriptional control

Fig. 4 rs6679677 is an allele-specific enhancer (i.e. nucleotide change
from C>A) in lung (A549) but not liver (HepG2) epithelial cells. The
locus tagged by rs6679677 was cloned within the 3′ UTR of a luciferase
gene driven by a minimal promoter and transiently transfected into A549
and HepG2 cells. The relative enhancer activity for the ref and alt versions
of the rs6679677 locus was calculated compared to the empty control
vector (pMRAdonor2). Relative luminescence units (RLU) for the luciferase
assay were normalised using the absorbance values for the beta-
galactosidase assay. Results were plotted as the percentage of the
ref_alleles enhancer activity (mean ± SD). Transfection experiments were
repeated three times across n= 3 or n= 9 technical replicates in HepG2
(liver) and A549 (lung) cells, respectively. Representative results are
shown for one transient transfection of A549 and HepG2 cells. Two-sided
t-test was used for independent mean evaluation.
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of genes in normal lung tissue. Lastly, most of the spatial chro-
matin interactions were identified from immortalized cancer cell
lines or primary tissues. By contrast, the eQTL associations were
primarily obtained from post-mortem samples taken from a
cross-sectional cohort (20–70 years of age). Therefore, it is pos-
sible that the Hi-C interactions and eQTL sets were not repre-
sentative of the tissues in which they were tested. Nevertheless,
the reproducibility of the prediction model across independent
cohorts supports the utility of the approach and its use with
expanded datasets for T1D and other immune and non-immune
diseases.

The novelty of the approach we undertook lies in: (1) the
integration of T1D-associated SNPs with their tissue-specific
eQTLs (in both cis and trans); (2) interpreting individual case and
control genotypes in terms of these tissue-specific eQTL effects;
(3) including effects from variants that do not have detectable
eQTLs in the reference library that is used in the assay and (4) the
application of machine learning to select and rank the tissue-
specific eQTL effects that confer disease risk. This approach
moves T1D research away from a candidate gene approach to
include gene regulatory changes, including within the HLA locus,
as possible contributors to the risk of developing T1D. However,
all results are putative until they are followed up by integrative
empirical methods that prove the link between gene expression in
the lung and other tissues, and the conversion of T1D risk.

In conclusion, our work provides insights into the role of
variation in gene regulation in the risk of developing T1D. The
transcriptional changes (including AP4B1-AS1 and CTLA4) we
identified in the lung may help explain the reported association
between respiratory infections and risk of islet autoantibody
seroconversion reported in young children.

Methods
Identification of genetic variants associated with the development of T1D. In
total, 313 genotyped and imputed SNPs associated with T1D, and those associated
with time-to-event development of islet autoimmunity and T1D, were retrieved
from the GWAS catalogue (www.ebi.ac.uk/gwas, downloaded 8 February 2019;
p-value 1 × 10−5), prospective studies27, 34–36, TrialNet PTP cohort11, adult-onset37

and GRS prediction studies38–40 (Supplementary Data 1). All genomic positions for
SNPs and genes are annotated according to reference human genome hg19/
GRChr37.

Identification of SNP-gene pairs and expression QTL associations in human
tissues. The Contextualizing Developmental SNPs in three-dimensions algorithm
(CoDeS3D7) was used to identify genes that physically interact with loci marked by
the T1D-associated SNPs. Briefly, the CoDeS3D modular python scripts integrate
Hi-C contact libraries from published sources (Supplementary Data 2) to identify
spatial co-localisation of two DNA fragments, with one fragment marking the
queried SNP. Gene-containing restricted fragments that are in physical contact
with fragments containing the queried SNPs are identified as spatial pairs to the
SNPs. Finally, the resultant spatial SNP-gene pairs are queried in the Genotype-
Tissue Expression database (GTEx) to identify SNPs that are associated with
transcript levels of genes through physical interaction at FDR < 0.057.

In the present study, spatial interactions were identified in Hi-C chromatin
contact libraries captured from: (1) immortalized cell lines that represent the
embryonic germ layers (i.e. HUVEC, NHEK, HeLa, HMEC, IMR90, KBM7 and
K562); (2) B-cell derived lymphoblastoid cell line (GM12878) and (3) primary
human tissues (i.e. spleen and pancreas) (Supplementary Data 2). These published
libraries were chosen to ensure a wide range of known interactions and were
analysed in aggregate within the pipeline to address a lack of tissue-specific Hi-C
interactions captured within ‘relevant’ published Hi-C libraries. The identified
putative spatial interactions aggregated from different Hi-C libraries were utilised to
select tissue-specific eQTL effects. Of note, the summary statistics for the CoDeS3D
run include the Hi-C cell line/tissue in which the interaction was observed
(Supplementary Data 3; column= cell lines). The regulatory potential of the spatial
connections was identified by incorporating eQTL information from 44 human
tissues (Genotype-Tissue Expression database [GTEx] v7; www.gtexportal.org)41.
Spatial eQTLs were deemed significant and recorded if the q < 0.05 after correcting
for multiple testing using the BH procedure42. Finally, genes whose transcript levels
were associated with a spatial-eQTL were denoted as eGenes. The eQTL-eGene
interactions were defined as either: cis, the eQTL and eGene are separated by a
linear distance of ≤1Mb on the same chromosome; or trans, eQTLs and their

eGenes were separated by >1Mb on the same chromosome or located on different
chromosomes.

Genotype imputation for T1D cases and controls. Genotypes from T1D cases
(2000) and controls (3000) were obtained from the Wellcome Trust Case Control
Consortium (WTCCC)30. SNPs within individual genotypes were converted to
rsIDs and genomic positions mapped (GRCh37, hg19). PLINK (v1.90b6.2, 64-bit)
was used for quality control. Genotypes were cleaned using the Method-of-
moments F coefficient estimate to remove homozygosity outliers (F values <−0.04
or 0.025 < F values). Related individuals were identified and removed using pro-
portion IBD (PI_HAT > 0.08). Ancestry outliers (identified by principal compo-
nent analysis [PCA] plotting), individuals with sex genotype errors (identified by
PLINK), or individuals with missing genotype data (missing rate > 5%) were also
removed. Finally, SNPs that were not in Hardy–Weinberg Equilibrium (p < 10−6)
or had a minor allele frequency <1% were removed before SNP data imputation
(Sanger imputation server; https://imputation.sanger.ac.uk)43. PLINK and bcftools
(version: 1.9) were used in the imputation data preparation specified by Sanger
imputation service43. Following imputation, the T1D genotype data was cleaned to
remove SNPs with an: impute2 score <0.3; missing data rate >5% or a minor allele
frequency <1%.

Creation of a weighted WTCCC genotype T1D-eQTL matrix. The machine
learning only used SNPs (quantified or imputed) that did not have any missing
data across the cohort and thus were present within each of the genotypes that were
used. From the total 313 T1D SNPs included in the study, 253 SNPs were present
within each of the WTCCC genotypes (Supplementary Data 6). Of these 253 T1D
SNPs, 224 had detectable eQTLs, connecting to 758 eGenes (6307 tissue-specific
eQTL effects). The tissue-specific eQTL normalised effect size for each T1D-
associated SNP within the imputed WTCCC genotypes was extracted from the
GTEx eQTL summary table of significant eQTLs (Supplementary Data 3). The
normalised effect size for each tissue-specific eQTL was weighted by the number of
alternative alleles at the eQTL SNP position in each individual’s genome. The 30
T1D-associated SNPs that were not eQTLs were unweighted, using solely SNP
allele count from the imputed genotype.

Generation, training and validation of the regularised logistic regression
models. In order to identify the optimised predictor model parameters, the weighted
WTCCC genotype T1D-eQTL matrix was randomly split (80:20) by python numpy-
permutation into two groups that contained case and control genotype data for model
training and validation. The Mann-Whitney U test8 (tsfresh version 0.12.044) was
used to select the individual feature columns within the 80% training dataset that were
the most relevant attributes for predicting the T1D status (i.e. the relevant subset;
FDR= 0.2)45. The relevant subset was then used to train a multiple logistic algorithm
(Scikit-learn version 0.21.346;) implemented with elastic net regularisation using the
SAGA solver to predict T1D disease status. The training was optimised using a Grid
Search algorithm with 10-fold cross-validation to identify the best predictor with the
optimised parameters (model 1). Hence, model 1 was created from 80% of the data
with the optimised parameters (hyperparameters: C= 1, l1_ratio= 1, max_iter= 500,
penalty= ‘elasticnet’, random_state=1, solver= ‘saga’).

We used prediction performance (AUC) to enable us to identify the best
performing models for subsequent use. Prediction performance (measured by area
under the curve [AUC]) for model 1 was tested using the relevant subset from
within the 20% validation dataset. The optimal hyperparameter l1_ratio=1
effectively reduces the elastic net regularisation to a lasso regularisation. We used
Elastic net regularisation and found via hyperparameter optimisation that the limit
case of lasso regularisation was the most performant.

To calculate a measure of the variation in AUCs of the modelling with the
optimised parameters; we undertook ten repeats of 5-fold cross-validation of model
generation and validation using the Scikit-learn RepeatedKFold algorithm46,
starting with the random generation of the 80:20 training:validation data sets and
without Grid Search optimisation. This resulted in 50 T1D logistic regression
predictors derived using the same general parameters as model 1.

Calculation of tissue-specific contributions to T1D risk. The 50 T1D regularised
logistic regression predictors created from the 10 repeats of 5-fold cross-validation
were used to test the predictive power of tissue-specific eQTL effects on individual
genotype risk scores. Tissue-specific contributions to the T1D risk were extracted
from each predictor as the sum of the absolute values of the weights associated with
each tissue.

Validation of the importance of the lung eQTLs in UK Biobank data (model 2).
A second model (Supplementary Fig. 2) was created and trained using the full
WTCCC training dataset with the optimised parameters. This model did not use
the 80:20 split that was used in model 1. The predictor was then validated using 30
cohorts of 993 individual samples (415 cases and 578 controls) derived from the
UK Biobank (Supplementary Data 9).

The 415 cases were selected, using a modification of Sharp et al.39, from the UK
Biobank imputed (487,411 individual samples) BGEN format dataset using the
following criteria:
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(1) European Caucasian by genetic clustering methods
(2) Clinical diagnosis of diabetes at ≤ 20 years of age
(3) On insulin within 1 year from the time of diagnosis
(4) Still on insulin at the time of recruitment
(5) Never self-report as having type 2 diabetes (T2D)
(6) All SNPs included in the model 2 predictor were present within each

individual’s imputed genotypes

The 578 control individual samples, without missing data for any of the SNPs
included in the model 2 predictor, were randomly selected from the healthy
controls within the UK Biobank data for each of the 30 test datasets. The genotype
data for the 993 case and control UK Biobank samples in each test dataset was used
to build a weighted eQTL-genotype matrix as outlined for model 1.

Reporter assay methodology for validating the regulatory effects of genetic
sequences. Luciferase reporter assays (Supplementary Fig. 7) were performed
using a modification of15. Briefly, DNA sequences flanking rs6679677 (i.e. 74 bp
5′–ref/alt allele – 75 bp 3′ [chr1:114303734-114303884; GRCh37]) containing the
reference and alternative sequences) were synthesised by Integrated DNA Tech-
nologies (IDT). To ensure compatibility with the pMPRA vectors (pMPRA1
[Addgene: plasmid #49349] and pMPRAdonor2 [Addgene: plasmid #49353]), each
sequence was designed using the following template: 5′-ACTGGCCGCTTCACTG-
var-GGTACCTCTAGAAGATCGGAAGAGCGTCG-3′ (i.e. var denotes the 150 bp
sequence to be assayed) (Supplementary Fig. 7). The variable region (var) was
separated by a pair of KpnI (GGTACC) and XbaI (TCTAGA) restriction sites to
enable directional insertion of a reporter gene. PCR amplification was performed
using primer sequences (MPRA_SfiI_F [forward], MPRA_SfiI_R [reverse]; Sup-
plementary Data 13) to add two distinct SfiI (GGCCNNNNNGGCC) tails to enable
directional ligation of the oligonucleotide into pMPRA1 (Supplementary Fig. 7).
An aliquot of the amplification product was electrophoresed (2% agarose, 100 V,
45 min) to visualise and verify that the product was the correct size (~200 bp) and
that there were no non-specific amplification products. PCR amplicons were
digested with SfiI (50 °C, 2 h), purified (QIAquick PCR Purification Kit; Qiagen)
and quantified by Nanodrop.

pMPRA1 was linearised by digesting with SfiI (50 °C, 2 h), electrophoresed
(0.8% agarose, 60 V, 1 h), the 2.5 kb linearised vector backbone excised, gel purified
(ZymocleanTM Gel DNA Recovery Kit; Zymo Research) and quantified by
Nanodrop.

SfiI-digested oligonucleotides (100 ng) were mixed with linearised pMPRA1
vector backbone (50 ng) and ligated by T4 DNA ligase (1U, 16 °C, min) to create
pMPRA1: rs6679677_ref and pMPRA1: rs6679677_alt. The ligation reaction was
stopped by heating (65 °C, 20 min).

pMPRA1:rs6679677_ref and pMPRA1:rs6679677_alt were amplified and selected by
transformation in competent E. coli DH5-alpha cells (Mix & Go competent cells)
according to the manufacturer’s instructions (www.zymoresearch.com/). Briefly,
competent E. coli DH5-alpha cells (100 μL) were thawed on ice before the addition of
ligation products (1-5 μL), gentle mixing (by flicking) and incubation on ice (5min).
Immediately following incubation on ice, the transformed competent cells (100 μL) were
spread onto pre-warmed LB agar plates supplemented with ampicillin (100 µg/mL) and
incubated (37 °C, overnight). Single colonies were picked and inoculated into
LB:Ampicillin media (5ml containing 100 μg/mL Ampicillin) and incubated (37 °C,
overnight) with shaking (~200 rpm). Plasmid DNA was extracted using a QIAprep Spin
Miniprep Kit, according to the manufacturer’s instructions. Plasmids were Sanger
sequenced (Massey Genome Service; Massey University) using RVprimer3 (forward)
and EBV-rev (reverse) primers in (Supplementary Data 13) to confirm the sequences of
the inserts.

pMPRA1:rs6679677_ref, pMPRA1:rs6679677_alt were linearised with KpnI (10
U, 37 °C, 1 h) and purified using the QIAquick PCR Purification Kit (Qiagen).
Samples were subsequently digested with XbaI (10 U) in the presence of Shrimp
Alkaline Phosphatase (1 U, 37 °C, 2 h) prior to heat-inactivation (65 °C, 5 min) and
purification using the QIAquick PCR Purification Kit (according to the
manufacturer’s instructions).

A luc2 open reading frame (ORF) was prepared from pMPRAdonor2 (1 μg) by
KpnI (20 U) XbaI (20 U) double digestion (37 °C, 1 h), electrophoresis (0.8%
agarose, 60 V, 1 h) and gel purification of the 1.7 kb band using the ZymocleanTM

Gel DNA Recovery Kit (Zymo Research).
The luc2 open reading frame was cloned into the KpnI and XbaI digested

pMPRA1:rs6679677_ref, pMPRA1:rs6679677_alt plasmids, transformed and
selected as described earlier. The resultant plasmids (pMPRA1:luc_rs6679677_ref,
pMPRA1:luc_rs6679677_alt) were Sanger sequenced (Massey Genome Service;
Massey University) using the luciferase primer in (Supplementary Data 14) to
confirm the luc2 gene insertion.

HepG2 and A549 cell lines were purchased directly from the American Type
Culture Collection (ATCC) and used at an early passage number. All cell lines
tested negative for mycoplasma contamination and no commonly misidentified cell
lines were used in the study. A549 (lung epithelial carcinoma; ATCC) and HepG2
(human liver carcinoma; ATCC) cells were maintained in DMEM and RPMI 1640
(ThermoFisher), respectively, supplemented with 10% fetal bovine serum, 1%
GlutaMAX and 1% penicillin/streptomycin at 37 °C in a humid incubator purged

with 5% CO2. Cells were routinely tested for mycoplasma contamination. For
transfection, ~1.0 × 105 cells were seeded in a single well of a 24-well plate, followed
by the addition of 500 μL of the appropriate complete media. On the day of
transfection (24 following cell plating), ~75% confluent wells were co-transfected
with luciferase plasmid DNA (i.e. 800 ng of pMPRA1:luc_rs6679677_ref,
pMPRA1:luc_rs6679677_alt, or pMPRAdonor2 luciferase control) and a beta-
galactosidase control plasmid (200 ng) using lipofectamine 3000 (ThermoFisher;
according to the manufacturer’s instructions).

At 48 h following transfection, cells were lysed using the Glo lysis buffer
(Promega) and luciferase activity assessed using the ONE-GloTM Luciferase Assay
System (Promega) in a VarioskanTM LUX multimode microplate reader
(according to the manufacturer’s instructions). For the beta-galactosidase assay,
20 µl beta-galactosidase reagent (i.e. 0.2 M phosphate buffer (pH 7.4), 2 mM
MgCl2, 100 mM β-mercaptoethanol and 1.3 mg/ml ortho-Nitrophenyl-β-
galactoside) was added to 20 µl of transfection cell lysate (prepared using the Glo
lysis buffer) in a 96 well plate and incubated at 37 °C for 30 minutes. The
absorbance was then read at 420 nM in a VarioskanTM LUX multimode
microplate reader following the manufacturer’s instructions.

Statistics and reproducibility. All statistical testing was performed using R
software (version v3.6.3)47, Scikit-learn (version 0.21.346;), tsfresh (version
0.12.044) and pymc3 (version 3.848;). Visualisation for the luciferase luminescence
was performed using GraphPad Prism (v8.4.3).

Data security and code management is the foundation of reproducible and
reliable data analyses. Datasets that were received or downloaded from original
sources were individually maintained in read-only and write-protected directories
on secured cloud server. Programme code was preserved after producing validated
results and the code was named with appropriate functional and step sequential
information. Version control (git) was also employed to protect script integrity
across the analysis step directories.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets generated for this study are included in the article as Supplementary Data. The
Supplementary Data and the source data of Fig. 4 are available in figshare with the identifier
[doi: 10.17608/k6.auckland.15071226]49. This study makes use of data generated by the
Wellcome Trust Case-Control Consortium30, The Genotype-Tissue Expression (GTEx)
Project and the UK Biobank Resource (Application Number 51306). The genotype data
fromWellcome Trust Case and Control Consortium and UK Biobank are restricted to share
by the data sharing agreements. Please refer to the organisations to obtain the genotype data.
All other data related to this study are available from the corresponding author on
reasonable request.

Code availability
CoDeS3D pipeline is available at: https://github.com/Genome3d/codes3d-v1. Python
scripts used for machine learning are available at: https://github.com/Genome3d/
T1D_logistic_lasso_predictor.git/ and Zenodo with the identifier [doi: 10.5281/
zenodo.5152705]50. Python version 3.7.3 was used for all the python scripts. PLINK
(v1.90b6.2, 64-bit) and bcftools version: 1.9 were used for SNP data cleaning and
processing.
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