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Angiogenesis in Health and Disease
The blood vascular system is essential to the development and maintenance of tissues of multi-
cellular eukaryotes. Its roles include internal transport and delivery of oxygen and nutrients
and immune surveillance and trafficking of cells and molecules of the innate immune system
to sites of tissue damage. Formation of blood vessels occurs by two principal modes: assembly
of endothelial progenitor cells into vascular networks (vasculogenesis), which takes place pre-
dominantly in embryonic life, and the expansion of existing vascular systems by sprouting of
new blood vessels from existing ones (angiogenesis) [1]. Angiogenesis is a sequential process
guided by angiogenic cues, notably, hypoxia inducible factor (HIF)-1, vascular endothelial
growth factor (VEGF), fibroblast growth factor (FGF), angiopoietin-2, and chemokines
released by hypoxic, inflammatory, or neoplastic cells [1].

Whereas physiological angiogenesis is essential for normal tissue growth, remodeling,
and regeneration, dysregulated angiogenesis plays a pivotal role in disease states, including
cancer, inflammatory diseases, atherosclerosis, and diabetic retinopathy [2]. Importantly,
cancer cells can exploit angiogenesis to support their own proliferation and metastatic dis-
semination. This so-called tumor angiogenesis has been the focus of intense research, lead-
ing to the discovery of a novel class of antineoplastic drugs [3]. During infection,
angiogenesis is induced when microbial motifs are detected in concert with damage-associ-
ated molecular patterns. Specifically, bacterial ligands such as LPS and unmethylated CpG
activate mammalian Toll-like receptors (TLRs) 2, 4, 7, and 9, while adenosine, a danger sig-
nal that accumulates rapidly in ischemic or damaged tissues, synergizes with TLRs to induce
the synthesis and release of VEGF and recruitment of endothelial progenitor cells [4]. The
ensuing inflammatory angiogenic response facilitates the migration of leukocytes to infected
tissue and wound repair. Moreover, an emerging concept links angiogenesis to innate
immunity, implying that an adequate angiogenic response is required for control and clear-
ance of invading pathogens [5–7]. Intriguingly, some microbial pathogens manipulate the
host angiogenic response, either suppressing it to enhance their persistence in tissues or
hijacking angiogenesis for their own ends. Deciphering such interactions may uncover new
therapeutic targets for some of the most tenacious infectious diseases. In this mini-review,
we highlight examples where modulation of host angiogenesis has been shown to play an
important role in microbial pathogenesis.
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Regional Events at Infection Sites Control Microbial Sequestration
and Killing
The evolution of a circulatory system enables a systemic immune response but opens the way
for rapid dissemination of pathogens within the host. Rapid microbial dissemination is con-
trolled via early local events that wall off invading pathogens [8]. Microbial sequestration
addresses contrasting needs; it must enable migration of immune cells and antimicrobial mole-
cules into infected tissue while preventing pathogens from gaining access to the circulatory sys-
tem. Failure to achieve these goals results in microbial persistence or dissemination,
respectively. The early events that occur within hours of microbial invasion include triggering
of the complement cascade and platelet aggregation followed by the expression of adhesion
molecules (endothelial-leukocyte adhesion molecule [ELAM]-1, intercellular adhesion mole-
cule [ICAM]-1, and vascular cell adhesion molecule [VCAM]-1) on activated endothelial cells,
facilitating the influx of immune cells to infected tissue [9].

The microenvironmental conditions at the site of infection are characterized by low oxygen
pressure and high concentrations of lactate and reductive metabolites. This is especially true if
the local vasculature is directly disrupted by infection. The heterodimeric transcription factor
HIF-1 is the pivotal regulator of angiogenesis and myeloid cell function under hypoxic condi-
tions. HIF-1α levels are dynamically controlled by oxygen-dependent prolyl hydroxylase
domain (PHD) proteins that regulate HIF stability [10]. Moreover, HIF-1 and NF-kB signaling
are strongly interdependent, with intact NF-kB signaling shown to be required for hypoxic
HIF-1 induction [11,12]. HIF-1 activation is observed in infections with bacteria, viruses,
fungi, and protozoa [13]. Interestingly, hypoxia-independent activation of HIF-1α is induced
by iron deprivation, suggesting that bacterial siderophores may also trigger this pathway [14].
Myeloid aggregation, motility, invasion, and bacterial killing are critically dependent on HIF-
1α, which allows myeloid cells to function under conditions of low oxygen pressure by switch-
ing to glycolytic metabolism [15]. In sum, HIF-1 activation of VEGF signaling and angiogene-
sis likely act in concert with myeloid cell activation and trafficking to keep tissue-invasive
pathogens in check.

Some Pathogens Enhance Host Angiogenesis to Support Infection
Infection-associated angiogenesis has been described in diverse infections caused by bacteria,
viruses, protozoa, and fungi (Table 1). Conceptually, infectious angiogenesis may be classified
as either direct induction of host angiogenesis by pathogen-derived molecules or angiogenesis
driven by a nonspecific host inflammatory response. Both Bartonella henselae and Kaposi sar-
coma-associated herpesvirus (KSHV) induce rampant angiogenesis, resulting in severe illness
in persons with deficient cellular immunity, such as patients with AIDS. The B. henselae adhe-
sin A (BadA) and type IV secretion system VirB/D4 mediate bacterial endothelial cell adher-
ence and uptake followed by activation of a proangiogenic phenotype, thereby expanding the
host cell habitat of this pathogen [16]. KSHV expresses several factors that either directly acti-
vate the formation of blood vessels (viral interleukin 6 [vIL-6], vCCL-1, and vCCL-II) or indi-
rectly activate cell pathways, leading to angiogenesis (vGPCR, vFLIP, K1, K15, KSHV
miRNAs) [17]. Virus-driven angiogenesis enables propagation of KSHV by recruiting unin-
fected endothelial lineage and hematopoietic cells for further infection and reactivation of
KSHV in latently infected cells [18].

M. tuberculosis, the causative agent of tuberculosis, has not been found to produce bacterial
angiogenic factors, yet its ability to survive and persist in the host is intimately related to patho-
logical angiogenesis [6,19].M. tuberculosis elicits the formation of dense cellular aggregates
(granulomas) that wall off the pathogen. The presence of viable mycobacteria within
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macrophages in granulomas triggers VEGF-dependent tumor–like angiogenesis associated
with dysfunctional (leaky) blood vessels. Dysregulated angiogenesis further limits perfusion of
the granuloma core, exacerbating hypoxia and causing caseating necrosis, a hallmark of this
infection (Fig 1). Pathological angiogenesis may be an important cause of inadequate delivery
of antibiotic drugs and immune cells to the center of the granuloma, necessitating multidrug
combinations and protracted treatment courses to eradicate the disease [6,19].

Attenuation of Host Angiogenesis Creates Sequestered Niches
Where Pathogens Persist
Inhibition of angiogenesis during infection interferes with tissue healing and facilitates a hyp-
oxic and/or necrotic milieu that compromises immune function and favors pathogen persis-
tence (Table 1). A. fumigatus produces life-threatening pulmonary infection in
immunocompromised individuals, principally patients with hematological malignancies and
recipients of hematopoietic stem cell transplantation [20]. In the setting of profound neutrope-
nia, airborne spores (conidia) are inhaled into pulmonary alveoli, where they germinate and
form tissue-invasive filaments (hyphae) that bore through the alveolar–capillary barrier and
invade pulmonary arterioles [20]. Angioinvasion is associated with endothelial injury, tissue

Table 1. Notable pathogens associated with modulation of host angiogenesis.

Pathogens associated with pro-
angiogenesis

Mechanisms discovered References

Bartonella henselae Reprogramming of human myeloid cells towards a tumor-associated macrophage–like
proangiogenic phenotype.

[32]

Bartonella adhesin A (BadA) mediates binding to fibronectin, adherence to endothelial cells, and
secretion of VEGF.

[16]

The type IV secretion system VirB/D4 translocates several Bartonella effector proteins (Beps)
into the cytoplasm of infected endothelial cells, resulting in uptake of bacterial aggregates,
inhibition of apoptosis, and activation of a proangiogenic phenotype.

[33]

Mycobacterium tuberculosis Mycobacteria induce abnormal leaky granuloma-associated angiogenesis, which promotes
mycobacterial growth and increases spread of infection to new tissue sites.

[6,19]

Candida albicans C. albicans stimulates vascularization in infected brain and kidney abscesses and activates
endothelial cell genes involved in chemotaxis and angiogenesis.

[34,35]

Kaposi Sarcoma Herpesvirus (KSHV) KSHV expresses molecules that directly activate the formation of blood vessels: viral interleukin
6 (vIL-6), vCCL-1, vCCL-II, vGPCR, vFLIP, K1, K15, and KSHV miRNAs.

[17,18]

Cytomegalovirus (CMV) CMV-secreted pUL7 carcinoembryonic antigen-related cell adhesion molecule (CEACAM)–
related protein induces angiogenesis in endothelial cells via STAT3/ERK1/2 activation and IL-6
secretion.

[36]

Hepatitis C virus (HCV) HCV-mediates hepatic angiogenesis by stabilizing cellular HIF-1α via the NF-κB pathway to up-
regulate VEGF and other proangiogenic factors.

[37]

Human papillomavirus (HPV) HPV E6 protein inhibits p53 and stabilizes HIF-1α to up-regulate VEGF, favoring formation of
new blood vessels and increasing permeability of existing blood vessels.

[38]

Schistosoma mansonii S. mansonii soluble egg metabolites induce hepatic neovascularization by up-regulating
endothelial cell VEGF as well as directly inducing endothelial cell proliferation, migration, and
sprouting.

[39–41]

Pathogens associated with inhibition
of angiogenesis

Bacillus anthracis Bacillus anthracis protective antigen (PA) inhibits VEGF and basic fibroblast growth factor
(bFGF)-induced endothelial cell angiogenesis.

[42]

Pseudomonas aeruginosa P. aeruginosa hemolytic phospholipase C at picomolar concentrations is selectively lethal to
endothelial cells and inhibits angiogenesis.

[43]

Aspergillus fumigatus Down-regulation of HIF-1α, VEGF-A, bFGF, and VEGF receptors 1 and 2 is dependent on A.
fumigatus secondary metabolism under the transcriptional regulation of LaeA.

[7,24]

doi:10.1371/journal.ppat.1005479.t001
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Fig 1. Modulation of angiogenesis in tuberculosis and invasive aspergillosis. A. Vascular endothelial growth factor (VEGF)-mediated, host-induced
pathological angiogenesis inM. tuberculosis granulomas restricts perfusion of the granuloma core and attenuates antituberculosis drug efficacy of rifampicin
(RIF). B. Treatment with the angiogenesis-inhibiting drug bevacizumab (Beva) reverses pathological angiogenesis, enhances perfusion of the granuloma
core, and synergizes with rifampicin. C. A. fumigatus hyphae invade pulmonary arterioles and induce intravascular thrombosis. The compensatory
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factor expression, triggering of the coagulation cascade, and platelet activation [21]. Collec-
tively, these processes impair vascular perfusion of Aspergillus-infected lung tissue, producing a
necrotic core where fungal hyphae proliferate abundantly, surrounded by a peripheral zone of
alveolar hemorrhage (Fig 1) [22]. The importance of adaptation to hypoxia for A. fumigatus
pathogenesis is underscored by work showing that deletion of the SrbA gene, which is essential
for survival in hypoxic environments, renders A. fumigatus nonvirulent [23]. Invasive pulmo-
nary aspergillosis is associated with a rapid increase in tumor necrosis factor (TNF)α transcrip-
tion in mouse lungs but down-regulation of angiogenesis mediators that are normally induced
by this cytokine: VEGF, FGF, and their receptors [24]. Uncoupling of inflammatory mediators
and angiogenesis is further evident in reduced microvascular density around necrotic pulmo-
nary lesions [7,25]. Inhibition of angiogenesis is mediated by A. fumigatus secondary metabo-
lites, chiefly gliotoxin, under the transcriptional control of LaeA [24]. Attenuated angiogenesis
likely perpetuates tissue hypoxia and limits trafficking of immune cells and antifungal drugs
into the site of Aspergillus infection [5,20]. Thus, the vasculopathy of invasive aspergillosis
plays a pathogenic role by restricting innate immune cell traffic to the site of infection and opti-
mizing local growth conditions for the fungus.

Modulation of Host Angiogenesis as a Therapeutic Target in
Infections
The concept of angiogenesis modulation as a novel microbial virulence factor suggests the
potential for attenuating pathogenicity using vascular-active molecules. Cancer research has
produced numerous monoclonal antibodies and small molecules that target VEGF and its
receptor (VEGFR) [3,26,27]. Originally thought to deprive tumors of their vascular supply,
these agents are now believed to increase perfusion and alleviate hypoxia by normalizing
tumor vasculature [27]. Similarly, angiogenesis modulators have little if any direct antimicro-
bial activity but act synergistically with conventional antimicrobials by enhancing drug delivery
to the anatomical site of infection.

This idea has been explored in a rabbit model ofM. tuberculosis infection and a zebrafish
model ofMycobacterium marinum infection [6,19]. Inhibition of angiogenesis using bevacizu-
mab, an anti-VEGF-A monoclonal antibody [6], and VEGFR tyrosine kinase inhibitors
SU5416 and pazopanib [19] prevented the formation of abnormal ectopic blood vessels around
mycobacterial granulomas, improved granuloma perfusion, and decreased necrotic tissue vol-
ume, bacterial burden, and dissemination without directly affecting mycobacterial growth in
vitro (Fig 1) [6,19]. Moreover, pazopanib treatment alone significantly increased survival in the
M.marinum zebrafish model, and SU5416 potentiated the activity of the first-line antitubercu-
losis drug rifampicin [19].

In contrast, the vasculopathy of invasive aspergillosis is reversed following repletion of
proangiogenic factors [7]. Treatment with VEGF and FGF alone significantly increased sur-
vival in a neutropenic mouse model of invasive pulmonary aspergillosis, and both growth fac-
tors acted synergistically with the antifungal drug amphotericin B to enhance survival and
decrease pulmonary fungal burden (Fig 1) [7]. FGF enhanced the generation of CD31-positive
vessels and was associated with neutrophil infiltrates around A. fumigatus infection sites. Inter-
estingly, FGF had a more potent effect on mouse survival and fungal burden than did VEGF, a

angiogenic response is down-regulated by gliotoxin (GT) and other fungal secondary metabolites, further limiting perfusion of infected tissue with the
antifungal drug amphotericin B (AmB). D. Treatment with proangiogenic growth factors VEGF and fibroblast growth factor (FGF) counteracts the action of
gliotoxin and enhances the influx of polymorphonuclear leukocytes and antifungal drugs to the site of infection.

doi:10.1371/journal.ppat.1005479.g001
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fact consistent with the association of VEGF with immature and hyperpermeable blood vessels
[7].

These preliminary findings should be viewed within the context of the grand challenges to
healthcare presented byM. tuberculosis and A. fumigatus [28,29].M. tuberculosis infects one-
third of the world’s population and is the second greatest cause of infectious mortality world-
wide [29]. Currently, treatment involves complex multidrug regimens lasting months, which
many patients do not tolerate. Moreover, extensive resistance to antituberculosis drugs has
emerged in some parts of the world [29]. Invasive aspergillosis is lethal in about one-third of
patients [30], and resistance to voriconazole, the foremost drug used to treat this infection, is
spreading across Europe and Asia [31]. Vascular targeted therapies may herald the prospect of
more effective antimicrobial drug delivery, allowing shorter, simpler treatment regimens and
more efficient pathogen clearance.
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