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ABSTRACT

Motivation: Gaussian network model (GNM) is widely adopted to ana-

lyze and understand protein dynamics, function and conformational

changes. The existing GNM-based approaches require atomic coord-

inates of the corresponding protein and cannot be used when only the

sequence is known.

Results: We report, first of its kind, GNM model that allows modeling

using the sequence. Our linear regression-based, parameter-free, se-

quence-derived GNM (L-pfSeqGNM) uses contact maps predicted

from the sequence and models local, in the sequence, contact neigh-

borhoods with the linear regression. Empirical benchmarking shows

relatively high correlations between the native and the predicted with

L-pfSeqGNM B-factors and between the cross-correlations of residue

fluctuations derived from the structure- and the sequence-based

GNM models. Our results demonstrate that L-pfSeqGNM is an attract-

ive platform to explore protein dynamics. In contrast to the highly

used GNMs that require protein structures that number in thou-

sands, our model can be used to study motions for the millions of

the readily available sequences, which finds applications in modeling

conformational changes, protein–protein interactions and protein

functions.
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1 INTRODUCTION

Protein dynamics, which is associated with ever-present thermal
fluctuations of atoms and other types of motions that span
between rapid (picoseconds) vibrations and relatively slow

(microseconds to seconds) movements (Atilgan et al., 2001), im-
plements various important biological processes and functions
(Bakan and Bahar, 2009; Bahar and Rader, 2005). The X-ray

crystallography studies provide information about the thermal
motion, which is represented by the Debye–Waller temperature
factors or B-factors. B-factors are proportional to the mean

square fluctuations of atomic positions in a crystal due to the
thermal motion and positional disorder. They have been studied
from a variety of viewpoints in the context of protein function

(Bhalla et al., 2006; Jiang et al., 2011) and their relation with
conformational changes on protein–protein interactions

(Dobbins et al., 2008; Eisenmesser et al., 2005), to name just a

few. Consequently, the knowledge of B-factors provides import-

ant insights into the functional dynamics of proteins.

Several computational and physical models have been pro-

posed to predict the B-factors from protein structures (Erman,

2006; Halle, 2002), electron density maps (Ming et al., 2002) and

sequences (Schlessinger and Rost, 2005; Yuan et al., 2005; Zhang

et al., 2009). To overcome the high computational cost of mo-

lecular dynamic simulations (Rueda et al., 2007), several struc-

ture-based computational approaches, such as the coarse-grained

models including normal mode analysis (Bahar and Rader,

2005), elastic network model (ENM) (Yang et al., 2007a), pack-

ing density (Halle, 2002) and weighted contact number (Lin

et al., 2008) were developed. The ENMs, including the isotropic

Gaussian network model (GNM) (Bahar et al., 1997; Kundu

et al., 2002) and the anisotropic network model (Atilgan et al.,

2001), define spring-like interactions between residues that are

within a certain cutoff distance. They simplify the computation-

ally costly all-atom potentials into a quadratic function in the

vicinity of the native state, which allows the decomposition of the

motions into vibrational modes with different frequencies, which

are known as normal modes. They can determine the (concerted)

collective motions of residues that correspond to the lowest-fre-

quency modes comprising large parts of a given protein (Bahar

et al., 1999). Being simple and efficient, ENM and GNM have

been widely applied to study many motion problems, such as the

molecular mechanisms of the GroEL-GroES function (Keskin

et al., 2002), motor-protein motions (Zheng and Doniach,

2003) and general conformational changes and functions

(Bakan and Bahar, 2009; Haliloglu and Erman, 2009;

Haliloglu et al., 2008; Jiang et al., 2011; Kurkcuoglu and

Bates, 2010; Marcos et al., 2011; Srivastava and Granek, 2013;

Szarecka et al., 2007; Tuzmen and Erman, 2011; Wieninger et al.,

2011; Yang and Bahar, 2005; Yang et al., 2007b; Yang et al.,

2008; Zheng and Brooks, 2005; Zhu and Hummer, 2010;

Zhuravleva et al., 2007). Moreover, several variations of the clas-

sical ENMs (i.e.the classical GNMs and anisotropic network

models) (Atilgan et al., 2001; Kundu et al., 2002) have been de-

veloped for better modeling of protein dynamics (Erman, 2006;

Kim et al., 2011; Mendez and Bastolla, 2010; Song and Jernigan,

2007; Yang et al., 2009; Zheng, 2008, 2010). However, these

methods require the knowledge of protein structure, which

limits their applications to thousands of known structures, in

contrast to the millions of known non-redundant protein

sequences.

The sequence-based predictors use only the protein sequences

as their input and thus, they are suitable for the analysis of the*To whom correspondence should be addressed.
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chains with unknown structures. Yuan et al. (2005) applied sup-

port vector regression to predict the B-factors using position-

specific scoring matrix generated from the input sequence.

Schlessinger and Rost (2005) proposed a neural network model

that uses evolutionary information and solvent accessibility that

are generated and predicted from the input chain, respectively.

Zhang et al. (2009) used the linear regression to investigate the

local impact of solvent accessibility on the residue flexibility.

Recently, Hirose et al. (2010) developed a random forest-based

model that uses the input sequence and the predicted secondary

structure and solvent accessibility, and Bornot et al. (2011) used

a sequence fragment matching-based approach to model the pro-

tein flexibility. Nevertheless, the main drawback of these se-

quence-based predictors is that they predict only the B-factor

values of the C� atoms, and they do not provide the information

about the collective motions.
Motivated by recent advances in high-throughput sequencing

and lagging of the current structure determination pipelines, a

sequence-based model would be invaluable to advance our

understanding of protein motion and flexibility. We address

this need by proposing a novel sequence-based GNM

(SeqGNM) that uses contact maps predicted from the sequences

with the NNcon method (Tegge et al., 2009). Furthermore,

inspired by a finding that strength of the relation between solvent

accessibility and flexibility of residues improves when considering

a local neighborhood in the sequence (Zhang et al., 2009) and the

development of the local contact density model (Halle, 2002), we

enhance SeqGNM by using a linear regression that quantifies

relation between the local predicted contacts and the flexibility.

We illustrate the benefits of the SeqGNM by applying it to pre-

dict B-factors and collective motions of residues. We demon-

strate that results from SeqGNM are comparable with the

outputs from the structure-based GNMs.

2 METHODS

2.1 Datasets and input data

We use a benchmark dataset that was developed in Yang et al. (2009) and

filtered using Protein Data Bank (PDB)-REPRDB (Noguchi and

Akiyama, 2003). It includes 972 protein chains extracted from the PDB

(Berman et al., 2000) that have length �60, pairwise sequence identity

�25% and high-quality (resolution �2.0 Å and R-factor �0.2) X-ray

structures (to derive reliable values of the native B-factors). Similarly,

as in Zhang et al. (2009), the average correlation coefficient (ACC) was

used to evaluate the performance of various models.

We use NNcon (Tegge et al., 2009) to predict contact maps from

protein chains, which are used as inputs to derive the SeqGNM.

Prediction of protein contact map is an active research topic, and a

number of residue–residue contact predictors have been developed

including SVMcon (Cheng and Baldi, 2007), NNcon (Tegge et al.,

2009), ProC_S3 (Li et al., 2011), DNCON (Eickholt and Cheng, 2012),

CMAPpro (Di Lena et al., 2012), CNNcon (Ding et al., 2013),

PhyCMAP (Wang and Xu, 2013) and so forth. We selected NNcon be-

cause only this method has a standalone version that can be used for

large-scale predictions and provides contact predictions for all residue

pairs in the input sequence; other predictors have no standalone versions

or output only a part of the inter-residue contact predictions, such as the

top L or L/2 predictions. The NNcon method limits the maximum size of

the input chain to 800 residues, and consequently, 21 chains from the

benchmark dataset that were longer than 800 were removed. The final

dataset includes 951 proteins and is named as PDB951.

We also prepared another independent (dissimilar to the proteins that

were used to build NNcon and in the PDB951 dataset that is used to

design models) dataset. This dataset includes sequences that were solved

by X-ray crystallography and that were deposited in PDB between

January 2012 and September 2013, i.e. after PDB951 dataset was col-

lected and after the NNcon method was released. Next, NCBI’s

BLASTCLUST (Altschul et al., 1997) with the local identity threshold

at 25% (�S 25) was applied to the union of this set, the PDB951 dataset

and the training dataset used to develop NNcon. The independent dataset

was constructed by selecting one chain with length between 60 and 800

residues, resolution �2.0 Å and R-factor �0.2 from each cluster that

contains no sequences from the PDB951 dataset and the training set

used in the NNcon method. Consequently, this dataset, called PDB748,

includes 748 chains that have local identity of at most 25% with each

other and also with the protein chains from the PDB951 dataset and the

NNcon’s training dataset. When testing on the PDB748 dataset, our

model is built using proteins from the PDB951 dataset. The PDB IDs

of chains included in the PDB951 and PDB748 datasets are provided in

the Supplementary Tables S2 and S3, respectively.

2.2 Calculation of normalized B-factors

Experimental B-factor of an atom is defined as 8�25u24 using the iso-

tropic mean square displacement, u2, averaged over the lattice. As the

B-factor values depend on the experimental resolution, crystal contacts

and the refinement procedures, they are normalized between structures.

Following (Schlessinger and Rost, 2005; Zhang et al., 2009), the B-factors

of the C� atoms (C� atoms for Gly) for each chain were normalized as

B’¼(B-AVE)/�, where B is the native B-factor, AVE is the average native

B-factor in a given chain and � is the standard deviation of native

B-factors for all C� atoms (C� atoms for Gly) in a given chain.

2.3 Gaussian network model and parameter-free GNM

Each protein in GNM is modeled by an elastic network, where the

springs connecting the nodes represent the bonded and non-bonded inter-

actions between the pairs of residues located within a cutoff distance RC

(Kundu et al., 2002). Assuming that the fluctuations between residues are

isotropic and Gaussian, the potential of the network of N nodes (resi-

dues) is

VGNM ¼
�

2

XN
i, j

�ijðRij � R0
ijÞ

2
ð1Þ

where Rij andR0
ij are instantaneous and original distance vectors between

residues i and j, respectively, � is the force constant that is assumed to be

uniform for all network springs and �¼ (�ij) is the following Kirchhoff

matrix based on the contact information:

�ij ¼

�1, if i 6¼ j and R0
ij
� RC

0, if i 6¼ j and R0
ij
� RC

�
P
j:j6¼i

�ij, if i ¼ j

8>><
>>: ð2Þ

where R0
ij is the distance between residues i and j. Then, the mean square

fluctuation of the ith residue is given by

5�R2
i 4 ¼ ð3kBT=�Þ½�

�1�ii ð3Þ

where kB is the Boltzmann constant, T is temperature and � is a constant

scaling factor. The cross-correlation map, which includes the mean cor-

relations between residue fluctuations, is given by

5�Ri ��Rj4 ¼ ð3kBT=�Þ½��1�ij ð4Þ
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Furthermore, Yang et al. (2009) proposed parameter-free GNM

(pfGNM) that replaces the cutoff distance RC by introducing a more

physical concept of inverse power dependence for the residue–residue

interactions. In pfGNM, the elements of the Kirchhoff matrix are calcu-

lated as

�
pf
ij ¼

R�2ij if i 6¼ j

�
P
j:j6¼i

�
pf
ij if i ¼ j

8<
: ð5Þ

where Rij is the distance between residues i and j.

2.4 Sequence–based Gaussian network models

In this work, the GNM is calculated from the sequence-predicted contact

maps that are generated with the NNcon method (Tegge et al., 2009).

NNcon provides probability values Pij 2 [0, 1] that express the strength of

the contact between C� atoms (C� atoms for Gly) of residues i and j.

Similar to the classical GNM and the pfGNM, the corresponding two

types of the SeqGNMs are proposed. One is based on the probability

cutoff PC and the other directly uses the probability values to construct

the Kirchhoff matrix. The Kirchhoff matrix of the classical SeqGNM is

defined as

�Seq
ij ¼

�1, if i 6¼ j and Pij � PC

0, if i 6¼ j and Pij � PC

�
P
j:j 6¼i

�Seq
ij , if i ¼ j

8><
>: ð6Þ

and the Kirchhoff matrix of the parameter-free sequence-based pfGNM

(pfSeqGNM) is defined as

�pfSeq
ij
¼
�Pij, if i 6¼ j
�
P
j:j 6¼i

�pfSeq

ij
, if i ¼ j

(
ð7Þ

2.5 Linear regression models

As shown in Erman (2006), the Kirchhoff matrix � in GNM could be

written as �¼DþU, where D and U are the matrices of the diagonal

and off-diagonal elements, respectively. Furthermore, the inverse

��1¼ (DþU) �1 could be written in the form of Taylor series expansion:

��1¼D�1 – D�1U D�1þ . . .As a result, the diagonal component D�1

quantifies the main contribution of the local packing density to ��1. The

second term, D�1U D�1, provides a relatively weak contribution resulting

from the positional correlations among different residue pairs. Moreover,

Halle (2002) proposed the local density model, where only the contribu-

tions of diagonal terms are considered. Based on their findings (Erman,

2006; Halle, 2002), we use a linear regression model to investigate the

local impact of the diagonal terms of �pfSeq on the performance of

B-factor prediction. The flexibility of the ith residue, which is located at

the center of a window that defines local neighborhood, denoted as

B’-factor, is defined as

B̂0i ¼
Xh
k¼�h

wk�pfSeq
iþk, iþk þ b ð8Þ

where b is the intercept, weighs wk are determined using the least squares

fit between the estimated and the native B’-factor values and the window

includes 2 hþ1 residues, where h¼ 0,1,2, . . . . This linear model is empir-

ically shown to improve the B’-factor prediction when compared with the

case in which only the diagonal terms are used. Furthermore, the wk

weighs learned from the PDB951 dataset with optimal window size h

are used to construct a new Kirchhoff matrix, which is empirically

shown to improve the B’-factor predictions when compared with the

GNM that does not use this extension (see Section 3). This extended

model also allows the calculation of the cross-correlations of the residue

fluctuations. The Linear regression-based, parameter-free, Sequence-

derived GNM (L-pfSeqGNM) is defined as

�L-pfSeq
ij

¼

Ph
k¼�h

wk�pfSeq
iþk, jþk

, if i 6¼ j

�
P
j:j6¼i

�L�pfSeq

ij
, if i ¼ j

8>><
>>: ð9Þ

where �pfSeq
iþk, jþk

¼ 0 when iþ k � 0, jþ k � 0 or iþ k� Nþ 1, jþ k �

Nþ 1 and N is the length of the protein chain.

3 RESULTS

3.1 Impact of the contact prediction probability cutoffs on

the prediction of residue flexibility with SeqGNM

The NNcon method, which generates inputs for SeqGNM, pro-
vides predicted probability values for the residue–residue contacts.

Motivated by the assessments of the residue–residue contact pre-
dictions in Critical Assessment of Protein Structure Prediction

(CASP) (Monastyrskyy et al., 2011), NNcon (Tegge et al., 2009)
defines contacts between C� (C� for Gly) atoms using two thresh-

olds at 8 and 12 Å; other thresholds are not considered.We use the
classical GNM that applies binary contacts, where the contact

probabilities are binarized using varying cutoffs that are shown
on the x-axis in Figure 1. The ACC values between the predicted

and the native B’-factors (shown on the y-axis in Fig. 1) are higher
when defining the contacts at 12 Å, and thus, we select this defin-
ition throughout all subsequent results. Binarization of the prob-

abilities predicted by NNcon with cutoff at 0.3, i.e. a given pair of
residues is in contact when the probability40.3, leads to ACC

value equals 0.456, which indicates relatively good correlation.

3.2 Evaluation of the pfSeqGNM

Moreover, based on the work in Yang et al. (2009), we developed

the pfSeqGNM, where the original probability values, instead of
the binary values, are used as the inputs. The pfSeqGNM

method obtains ACC equals 0.493 based on the PDB951 dataset,
which improves by 0.04 over the classical SeqGNM. This con-

curs with Yang et al. (2009), where the structure-based param-
eter-free model, pfGNM, was shown to outperform the classical

structure-based GNM.

3.3. Use of local predicted contacts improves prediction of

residue flexibility with pfSeqGNM

Inspired by Erman (2006) and Halle (2002), we investigate
whether the local predicted contacts, i.e.contacts in a sequence

Fig. 1. The ACCs between the native B0-factors and the B’-factors pre-

dicted with the classical SeqGNM on the PDB951 dataset. The ACC

values are calculated for varying probability cutoffs
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window, contribute to the flexibility expressed using B’-factors.

We developed linear regression model that takes the predicted

probability values of contacts, i.e. the diagonal elements in the

Kirchhoff matrix in the window as its input to compute the B’-

factor value of the central residue. Figure 2 shows the ACC

values that quantify the correlations between the outputs of the

linear regression model and the native B’-factor values for the

window sizes (shown on the x-axis) between 1 and 21 residues.

These results are based on 5-fold cross-validation (CV) (Zhang

et al., 2009) (Fig. 2A) and 10-fold cross-validation (Fig. 2B) on

the PDB951 dataset. The results for the 5-fold CV and 10-fold

CV are similar. For the 5-/10-fold CV, the ACC values improve

from 0.479/0.478, which corresponds to the window size of one

when the local neighborhood is not used, to 0.516/0.515 that

corresponds to the window size of seven. Use of larger window

sizes does not lead to further improvements. Consequently, the

window size of seven is selected. The corresponding linear regres-

sion model, which is trained on the entire PDB951 dataset, is as

follows:

B̂0i ¼ 0:0579� �pfSeq
i�3, i�3 þ 0:0357� �pfSeq

i�2, i�2 þ 0:0512

� �pfSeq
i�1, i�1 þ 0:2722� �pfSeq

i, i þ 0:0722� �pfSeq
iþ1, iþ1

þ 0:0230� �pfSeq
iþ2, iþ2 þ 0:0569� �pfSeq

iþ3, iþ3 þ 0:0186

ð10Þ

where �
pfSeq
i, i is defined in Equation (7), and the window includes

three residues on both sides of the ith position. The regression

model has the largest coefficient for the central, ith residue,

which implies that, as expected, the contacts of this residue

have the strongest relation with its flexibility. The coefficients

for the neighboring residues are also positive, and they indicate

that the contacts of these residues have influence on the flexibility

of the ith residue.
We use this linear regression model to create a new Kirchhoff

matrix that is expressed in Equation (9), and the corresponding

GNM is referred to as the L-pfSeqGNM.

3.4 Comparative evaluation of the sequence- and struc-

ture-based prediction of residue flexibility

Table 1 shows the ACC values between the native B’-factors and

B’-factors predicted with two structure-based methods, the clas-

sical GNM and the pfGNM, and with two sequence-based meth-

ods, pfSeqGNM and L-pfSeqGNM. The predictions were

performed on the PDB951 and PDB748 datasets, and the cor-
responding ACC values are reported in the upper triangle and

the lower triangle in Table 1, respectively. The ACC value of

pfGNM is better than that of GNM for both datasets, which

agrees with Yang et al. (2009). Similarly, ACC of L-pfSeqGNM

is higher than that of pfSeqGNM, which confirms that the local

predicted contacts contribute to the prediction of residue flexi-
bility. The strong correlation of 0.94 between pfGNM and GNM

implies that these two structure-based methods generate similar

results. Analogous similarity is observed between L-pfSeqGNM

and pfSeqGNM, for which the predictions are correlated with

ACC at 0.93. This is a consequence of the fact that the former
approach extends the latter on by using a linear model.

Importantly, the difference in the predictive quality between

structure-based and sequence based methods is relatively small.

The ACC of L-pfSeqGNM (0.52 and 0.53 on the PDB951 and

PDB748 datasets, respectively) is close to that of GNM (0.56 and

0.58), on both datasets showing moderate correlations between
the predicted and native B’-factors.

Moreover, the structure-based methods (GNM and

pfGNM) and the sequence-based methods (pfSeqGNM and
L-pfSeqGNM) have correlations at round 0.6, which suggests

that the sequence-based methods generate results that are rela-

tively similar to the structure-based methods. We plotted the

distributions of the correlation coefficient values of each se-

quence between the outputs of pfGNM and pfSeqGNM on
the PDB951 and PDB748 datasets; see Figure 3. We note that

the distributions for the PDB951 and PDB748 datasets are simi-

lar and that the majority of sequences have correlation coeffi-

cient values between 0.5 and 0.8, i.e. 83% of sequences in each of

the two datasets. Although the predictions generated by the

structure-based methods are better than those of the sequence-
based methods, the latter methods can be applied to a much

wider range of problems where the structural information is

unavailable.

3.5 Impact of the predictive quality of NNcon on the

prediction of residue flexibility with L-pfSeqGNM

The assessment of contact prediction uses two metrics, the ac-
curacy (Acc) and the coverage (Cov), which are widely used to

Table 1. The ACCs between the native B’-factors (NBF) and the B0-fac-

tors predicted by the structure-based GNM and pfGNM methods, and

by the sequence-based pfSeqGNM and L-pfSeqGNM methods

Method NBF GNM pfGNM pfSeqGNM L-pfSeqGNM

NBF 1 0.557 0.593 0.493 0.517

GNM 0.584 1 0.940 0.592 0.589

pfGNM 0.621 0.941 1 0.635 0.627

pfSeqGNM 0.497 0.576 0.623 1 0.927

L-pfSeqGNM 0.526 0.587 0.625 0.927 1

Note: The predictions were performed on the PDB951 and PDB748 datasets; the

corresponding ACC values are reported in the upper and the lower triangle, respect-

ively. The results in the last column, i.e. the ACCs between B0-factors predicted by

L-pfSeqGNM and other methods, are based on the 5-fold cross-validation on the

PDB951 dataset; the results using 10-fold CV are not shown, as they are virtually

identical.

Fig. 2. Strength of the relation between native B’-factors and the B’-fac-

tors predicted using the linear regression model computed from the local

predicted contacts, which is measured with the ACCs (y-axis). The ACC

values are calculated for varying window sizes (x-axis) based on 5-fold

cross-validation (panel A) and 10-fold cross-validation (panel B) on the

PDB951 dataset
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evaluate the contact predictions in the CASP and the recent

studies (Di Lena et al., 2012; Eickholt and Cheng, 2012; Li

et al., 2011; Tegge et al., 2009). The accuracy is defined as the

number of correctly predicted residue–residue contacts divided

by the total number of top L/5 or L contact predictions, where L

is the length of the protein in residues. The coverage is the

number of correctly predicted residue–residue contacts divided

by the number of true contacts. The contact evaluation is com-

monly divided into three categories: short-range contacts for

which residue separation in sequence is �6 and512, medium-

range contacts with separation �12 and 524 and long-range

contacts that are defined as having separation �24 residues.

Table 2 shows the predictive performance of the NNcon

method for short, medium and long-range contact prediction

on the PDB951 dataset. The accuracy (Acc) values for the dis-

tance cutoff of 8 Å are close to the results reported in recent

studies (Di Lena et al., 2012; Eickholt and Cheng, 2012; Li

et al., 2011; Tegge et al., 2009), but are markedly lower than

those of 12 Å case. For the distance cutoff of 12 Å, especially

when considering top L predictions, NNcon yields accuracy of

0.750 and coverage of 0.467 for short-range contact, accuracy of

0.481 and coverage of 0.311 for medium-range contact. This

result supports our finding that the predicted contacts defined

at 12 Å result in better B-factor prediction than the cutoff of 8 Å.
Similarly as in the recent works (Eickholt and Cheng, 2012;

Eickholt et al., 2011), we also calculated the number of contact

predictions that are close to a true contact. A predicted contact is

considered correct if a true residue–residue contact is within ��
residues for small values of �. For example, for �¼ 1, a predicted

contact (i,j) is assumed correct if a true contact is at positions

(i,j), (i� 1,j), (i,j� 1) and (i� 1, j� 1). Table 2 lists the predictive

performance of NNcon on the PDB951 dataset for �¼ 1 and

�¼ 2. The results demonstrate that if an offset by one or two

residue is allowed (�¼ 1 or 2), both the accuracy and the cover-

age are improved by a substantial margin. In the case of assessing

the top L contact predictions and when �¼ 2, the NNcon pre-

dictor yields relatively high accuracies of 0.991, 0.857 and 0.639

for the short-, medium- and long-range contacts, respectively.

We note that GNM and its variations use the local, in the se-

quence, residue–residue contacts. The fact that the contact pre-

dictions are rather accurate when allowing small offsets, which

are within the range of the residues used by these methods,

explains the relatively high correlations between the native

B-factors and the B-factors predicted by the sequence-based

L-pfSeqGNM, and between the outputs of structure-based

pfGNM and sequence-based pfSeqGNM. Similar observations

are true when evaluating the NNcon predictor on the PDB748

dataset; see Supplementary Table S1.
Figure 4 shows scatter plots of the average accuracy of the

NNcon predictor (i.e. the average over the three accuracy values

for the short, medium and long contacts for each chain) and the

ACC values between the native B’-factors and the B’-factors

predicted by L-pfSeqGNM on the PDB951 dataset. The figure

demonstrates lack of a strong linear relation between these two

metrics when considering evaluations for both the top L/5 pre-

dictions (Fig. 4A) and for the top L predictions (Fig. 4B). The

corresponding Pearson correlation coefficients between the aver-

age accuracies of NNcon and the ACC values of L-pfSeqGNM

for the top L/5 predictions and top L predictions are 0.15 and

0.19, respectively. Moreover, although the NNcon accuracies

have a wide range of values, from low at about 	0.1 to high

values close to 0.9, the corresponding ACC values of

L-pfSeqGNM are always fairly high, i.e. significant majority of

the values are above40.4. These observations demonstrate that

the proposed here sequence-based L-pfSeqGNM method does

not rely on the high quality of contact maps predicted by

NNcon. Our method can predict B-factors with good predictive

quality even when the predictions from NNcon have relatively

low accuracy; this could be explained by the results in Table 2

that suggest that correct contacts can be found with a small

offset in the sequence. A similar relation of the ACC values of

Table 2. The predictive performance of NNcon for short, medium and

long-range contact predictions on the PDB951 dataset with the distance

cutoffs of 8 Å and 12 Å, respectively

Evaluation criteria Contact

range

8 Å 12 Å

Acc Cov Acc Cov

Top L/5 Short 0.408 0.253 0.892 0.111

Medium 0.321 0.153 0.642 0.084

Long 0.199 0.029 0.463 0.017

Top L/5, �¼ 1 Short 0.776 0.511 0.980 0.124

Medium 0.560 0.304 0.864 0.116

Long 0.362 0.054 0.650 0.024

Top L/5, �¼ 2 Short 0.923 0.606 0.999 0.127

Medium 0.715 0.371 0.922 0.126

Long 0.447 0.068 0.712 0.027

Top L Short 0.203 0.620 0.750 0.467

Medium 0.170 0.398 0.481 0.311

Long 0.119 0.088 0.352 0.062

Top L, �¼ 1 Short 0.581 0.998 0.949 0.603

Medium 0.407 0.883 0.765 0.507

Long 0.260 0.196 0.558 0.099

Top L, �¼ 2 Short 0.826 1.000 0.991 0.631

Medium 0.555 0.973 0.857 0.570

Long 0.351 0.265 0.639 0.114

Note: Value of � determines an offset by � positions in the sequence that is allowed

to consider a given prediction correct.

Fig. 3. The distributions of CC values between the outputs of pfGNM

and pfSeqGNM for individual sequences on the PDB951 and PDB748

datasets. The frequencies/fractions of sequences are shown using CC

values binned using 0.1 wide intervals
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L-pfSeqGNM with the average Acc values of NNcon is true on

the PDB748 dataset, see Supplementary Figure S1.

3.6 Sequence-based determination of collective residue

motions

One of the key advantages of the SeqGNM is its ability to gen-

erate the cross-correlations of residue fluctuations and to de-

scribe the correlated motions of residues in a given protein,

particularly when the structure of this protein is unknown. The

cross-correlations express the strength of the collective motions

for a given pair of residues. They are useful in understanding

long-range propagation of motion and large domain movements,

which are relevant to protein function. Their applications have

been recently widely explored (Bahar et al., 1999; Doruker et al.,

2006; Jiang et al., 2011; Marcos et al., 2011). The cross-

correlation between any two residues is computed from the

Kirchhoff matrix. We compute the ACCs of the cross-

correlations of residue fluctuations for all pairs of methods

among the considered four GNMs on the PDB951 and

PDB748 datasets; see Table 3. The ACC values are 40.7 for

both datasets, which indicates that the cross-correlation matrices

generated by the four methods are similar. At the same time, the

SeqGNMs, i.e.pfSeqGNM and L-pfSeqGNM, can be used to

explore the collective motions for proteins with unknown struc-

tures, which allows for a wider range of applications and targets.

3.7 Case studies

We demonstrate and compare predictions of the considered se-

quence- and structure-based GNMs for three proteins: bovine

�-lactoglobulin (�lg, PDBid: 1B8E, chain A) (Oliveira et al.,

2001), histamine-binding protein from female brown ear

Rhipicephalus appendiculatus tick (Ra-HBP, PDBid: 1QFT,

chain A) (Paesen et al., 1999) and the quorum-sensing protein

TraM (PDBid: 1UPG, chain A) (Vannini et al., 2004). �lg is a

prominent member of the lipocalin family, a large group of pro-

teins involved in the transport of small hydrophobic molecules,

and has been widely used for protein-folding dynamics and ag-

gregation modeling (Arnaudov and de Vries, 2006; Bello et al.,

2011, 2012; Krebs et al., 2009) due to its abundant availability in

bovine milk. Ra-HBP binds histamine with high affinity and

specificity, and the histamine binding proteins are currently

investigated as potential therapeutic agents for the treatment of

various diseases (Mans, 2005). TraM protein inhibits the activity

of its associated LuxR-type transcription factor TraR in several

different microbial taxa, and is often required to maintain the

quorum-sensing mechanism in the inactive state (Chen et al.,

2006, 2007). Ra-HBP shares the same family (i.e. retinol binding

protein-like) in the Structural Classification of Proteins (SCOP)

database (Murzin et al., 1995) and has low-sequence identity

[525%, measured with BLASTCLUST (Altschul et al., 1997)]

with the �lg protein. Moreover, �lg and Ra-HBP have similar

B’-factor profiles, whereas the B’-factor profile of the third pro-

tein Tram is different from these two proteins, where �lg and the

Ra-BHP have several flexible segments and TraM is mostly rigid.
Figure 5 compares the native B’-factor (normalized native

B-factor) profiles and the B’-factors predicted with GNM,

pfGNM, pfSeqGNM and L-pfSeqGNM. For �lg, the correl-

ation coefficient values between the native B’-factors and the

B’-factors predicted with GNM, pfGNM, pfSeqGNM and

L-pfSeqGNM are 0.624, 0.648, 0.610 and 0.611, respectively.

The coefficients are 0.861, 0.858, 0.558 and 0.658, respectively,

for the Ra-BHP. These two results taken together suggest that

the proposed SeqGNMs can produce different and high-quality

B’-factor profiles for proteins in the same family but with differ-

ent sequences. Similarly high values of coefficients that equal

0.651, 0.654, 0.788 and 0.769, respectively, were obtained for

the TraM protein. These case studies demonstrate that all four

B’-factor prediction models correctly identified the flexible re-

gions (regions with the high-positive B’-factor values) and the

rigid regions (with low-negative B’-factor values) along the

three sequences.
Figures 6, 7 and 8 show correlation maps of residue fluctu-

ations that are computed with the GNM (panel A), pfGNM

(panel B), pfSeqGNM (panel C) and L-pfSeqGNM (panel D)

methods for the three proteins. The colors range between red

(which denoted strong positive correlations) and blue (strong

negative correlations). Currently, there are no experimentally

derived correlation maps, except for the diagonal terms that cor-

respond to the B-factors, which could be used as a reference.

However, the similarity between the four maps (for each of the

three proteins) indicates that the SeqGNMs provide a viable al-

ternative to the maps generated from the structure.

Table 3. The ACCs between the cross-correlations of residue fluctuations

generated by the four considered GNMs on the PDB951 and PDB748

datasets; the corresponding ACC values are reported in the upper triangle

and the lower triangle, respectively

Method GNM pfGNM pfSeqGNM L-pfseqGNM

GNM 1 0.810 0.717 0.716

pfGNM 0.813 1 0.955 0.960

pfSeqGNM 0.715 0.954 1 0.993

L-pfSeqGNM 0.716 0.960 0.993 1

Note: The results in the last column, i.e. the ACCs between the cross-correlations of

residue fluctuations generated by L-pfSeqGNM and other methods are based on the

5-fold cross-validation; the results based on the 10-fold CV are not shown, as they

are virtually identical

Fig. 4. The scatter plots of the average ACC values (x-axis) from NNcon

and ACC values (y-axis) from L-pfSeqGNM with the contact cutoff of

12 Å for top L/5 contact predictions (panel A) and top L predictions

(panel B). Each point corresponds to one protein from the

PDB951dataset
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Although these three case studies should not be taken as typ-

ical, they demonstrate (in agreement with our benchmarking re-

sults) that SeqGNMs could be applied to provide useful

prediction of the B’-factors and correlation maps, and that

these predictions have comparable quality with the predictions

obtained from the structure-based GNMs.

4 DISCUSSION

The B-factors reflect the residue fluctuations and static, dynamic

and lattice disorders. However, they depend on the experimental

resolution, crystal contacts and refinement procedures, which is

why the B-factor profiles of homologous protein are shown to be

correlated with each other with the ACC of 0.80 (Yuan et al.,

2005). This constitutes an approximate upper limit for the pre-

diction of the B-factor values, which applies to the considered

GNM-based models. Yang et al. (2009) have recently proposed a

new distance-dependent (parameter-free) GNM in which residue

pairs are weighted by the inverse square of their distances. This

pfGNM method had been shown to outperform the classical

distance cutoff-based GNM in prediction the B-factors. Here,

the proposed SeqGNM methods, pfSeqGNM and

L-pfSeqGNM, predict the B-factors with comparably (to the

structure-based method) high correlations equal 0.49 and 0.52

on the PDB951 dataset, and 0.50 and 0.53 on the PDB748

Fig. 5. The native B’-factors and the B’-factors predicted with the GNM,

pfGNM, pfSeqGNM and L-pfSeqGNMmethods for (A) �-lactoglobulin

(PDBid: 1B8E, chain A), (B) the histamine-binding protein Ra-HBP

(PDBid: 1QFT, chain A) and (C) the quorum-sensing protein TraM

(PDBid: 1UPG, chain A)

Fig. 6. The maps of the cross-correlations of residue fluctuations for the

�-lactoglobulin protein (PDBid: 1B8E, chain A) computed with (A)

GNM, (B) pfGNM, (C) pfSeqGNM and (D) L-pfSeqGNM methods.

The colors range between red (strong positive correlations) and blue

(strong negative correlations)

Fig. 7. The maps of the cross-correlations of residue fluctuations for the

histamine-binding protein Ra-HBP (PDBid: 1QFT, chain A) computed

with (A) GNM, (B) pfGNM, (C) pfSeqGNM and (D) L-pfSeqGNM

methods. The colors range between red (strong positive correlations)

and blue (strong negative correlations)

Fig. 8. The maps of the cross-correlations of residue fluctuations for the

quorum-sensing protein TraM (PDBid: 1UPG, chain A) computed with

(A) GNM, (B) pfGNM, (C) pfSeqGNM and (D) L-pfSeqGNMmethods.

The colors range between red (strong positive correlations) and blue

(strong negative correlations)
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dataset, respectively. We demonstrate that the pfGNM is also

advantageous for our sequence-based approach, i.e. we show

that the pfSeqGNM outperforms the classical SeqGNMs.

Furthermore, motivated by the findings concerning the impact
of local contact density and local solvent accessibility on the

residue flexibility expressed with the B-factors (Halle, 2002;

Zhang et al., 2009), we use linear regression to model the rela-

tion between the local predicted contacts and the residue

flexibility. This led to the development of an improved

pfSeqGNM that uses the local contacts, which is called

L-pfSeqGNM. Our empirical results suggest that this model pro-

vides useful predictions of the residue flexibility and the collective

residue motions.

The key advantage of the SeqGNM is that it can be applied to

proteins with unknown structures and known sequences, which

number in millions. In contrast, the existing and widely adopted

structure-based GNMs are limited to a much smaller subpopula-

tion of proteins with known structure. Our model finds numer-

ous applications in modeling of protein motion, conformational

changes, protein–protein interactions and protein functions, to

name just a few.
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