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Abstract

Telomeres are chromosome end structures and are essential for maintenance of genome stability. Highly repetitive
telomere sequences appear to be susceptible to oxidative stress-induced damage. Oxidation may therefore have a severe
impact on telomere integrity and function. A wide spectrum of oxidative pyrimidine-derivatives has been reported,
including thymine glycol (Tg), that are primarily removed by a DNA glycosylase, Endonuclease III-like protein 1 (Nth1). Here,
we investigate the effect of Nth1 deficiency on telomere integrity in mice. Nth1 null (Nth12/2) mouse tissues and primary
MEFs harbor higher levels of Endonuclease III-sensitive DNA lesions at telomeric repeats, in comparison to a non-telomeric
locus. Furthermore, oxidative DNA damage induced by acute exposure to an oxidant is repaired slowly at telomeres in
Nth12/2 MEFs. Although telomere length is not affected in the hematopoietic tissues of Nth12/2 adult mice, telomeres
suffer from attrition and increased recombination and DNA damage foci formation in Nth12/2 bone marrow cells that are
stimulated ex vivo in the presence of 20% oxygen. Nth1 deficiency also enhances telomere fragility in mice. Lastly, in a
telomerase null background, Nth12/2 bone marrow cells undergo severe telomere loss at some chromosome ends and cell
apoptosis upon replicative stress. These results suggest that Nth1 plays an important role in telomere maintenance and
base repair against oxidative stress-induced base modifications. The fact that telomerase deficiency can exacerbate
telomere shortening in Nth1 deficient mouse cells supports that base excision repair cooperates with telomerase to
maintain telomere integrity.
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Introduction

All eukaryotic linear chromosome ends consist of complex

nucleoprotein structures, called telomeres. Telomeres are com-

posed of tandem repeat sequences 59-(TTAGGG)n-39 whose

lengths vary from about 10 kbps in humans to up to 100 kbps

in mice. In mammals, telomere DNA is bound by the shelterin

complex, including telomere repeat binding proteins TRF1,

TRF2, and POT1 [1]. Telomeres prevent recombinogenic

chromosome ends from inducing chromosomal rearrangements

that destabilize the eukaryotic genome. Telomere attrition

(shortening) or other forms of telomere dysfunction can evoke an

ATM- or ATR- dependent DNA damage response that results in

53BP1 and c-H2AX foci formation at telomeres, Chk1 and Chk2

phosphorylation, and the induction of cell cycle arrest, senescence,

or apoptosis [2].

Telomere maintenance involves telomerase extension and

telomere recombination, replication, and capping [3]. It is also

affected by other factors, the most notable being oxidative stress

[4]. Telomere length decreases after each cell division, due to the

inability of DNA polymerases to completely replicate DNA ends.

However, telomerase counteracts telomere shortening by replen-

ishing telomeric repeats. Telomerase is a ribonucleoprotein

complex composed of telomerase reverse transcriptase (Tert) and

an RNA component (Terc) [3]. In telomerase null mice, telomere

length gradually decreases to a critical length, which activates a

DNA damage checkpoint primarily in highly proliferating organs,

such as bone marrow [5]. Recent data suggests that telomeres pose

a challenge to replication machinery, resulting in defects similar to

aphidicolin-induced fragile sites possibly caused by replication fork

stalling [6,7]. It has been suggested that the shelterin component,

TRF1, might recruit BLM or RTEL helicases to telomeres,

thereby helping to resolve G-quadruplex structures that may

inhibit telomere replication [7].

Telomeric DNA appears to be more susceptible to damage as a

result of exposure to exogenous physical and chemical agents, such

as oxidants [8–12]. For example, single stranded breaks (SSBs) and

base damage preferentially occur in telomeres in human cells with

oxidative stress [8,9]. Furthermore, oxidant-induced telomeric

DNA damage triggers a persistent DNA damage response [12].

Although it has been proposed that G-rich telomeric sequence

may be more susceptible to oxidative DNA damage [13–15], a

wide spectrum of oxidized pyrimidine-derivatives, e. g. 5-hydro-

xycytosine (5-OH-Cyt), 5-hydroxyuracil (5-OH-Ura), and Tg has

also been reported [16,17] and may exist at telomeres. For

example, thymine is relatively rich in telomere repeats and could
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be modified into Tg by oxidation, and Tg might potentially

hamper DNA replication [18–20]. Furthermore, oxidative base

lesions in telomere substrates reduce the binding of telomere

binding proteins to telomere DNA [21,22], which may, in turn,

affect telomere maintenance.

Non-bulky oxidative base lesions are primarily repaired by the

base excision repair (BER) pathway, and the first step in BER is

carried out by a DNA glycosylase, which recognizes and removes

damaged bases [23]. Mammalian cells express several glycosylases

with overlapping but distinct specificity for various base lesions

[23]. For example, 8-oxoguanine DNA glycosylase 1 (Ogg1)

mostly recognizes oxidized guanine lesions, e.g. 8-oxoG, while

Nth1 primarily recognizes oxidized bases other than 8-oxoG, e.g.

5-OH-Cyt, 5-OH-Ura and Tg [23,24]. Nth1 is highly expressed

during early and mid-S phase, suggesting that it plays a role in

replicative repair [25]. Ogg1 deficiency results in the accumulation

of oxidative 8-oxoG lesions in telomeres and attenuates telomere

integrity [22,26]. However, it is unclear if other types of oxidative

base lesions might accumulate at telomeres and if ablation of their

repair could affect telomere maintenance. Here, we utilize Nth1

null mice to evaluate these probabilities.

Results

Elevated level of Endonuclease III-sensitive DNA lesions
at telomeres in Nth1 deficient mouse tissues and primary
MEFs

To determine if oxidative base lesions accumulate at telomeres,

genomic DNA was isolated from wild-type and Nth12/2 mouse

kidneys and primary MEFs, treated with Endonuclease III, and

measured for Endonuclease III-sensitive lesions at telomeres using

a quantitative telomere PCR method [27]. E. coli Endonuclease

III has similar substrate specificity profiles as mammalian Nth1

and primarily excises oxidized bases including 5-OH-Cyt, 5-OH-

Ura and Tg, resulting in abasic sites and subsequently single

strand breaks (SSBs) [23] that impair PCR kinetics. The more

base lesions are at telomeres, the more DNA nicks are generated

by Endonuclease III treatment and hence the higher Ct values

are produced. To eliminate interference by other potential DNA

replication blocking lesions, e.g. spontaneous DNA strand breaks

at telomeres, a duplicate mock digestion was set up for each

corresponding sample in which Endonuclease III was excluded.

Endonuclease III-sensitive lesions in a sample were normalized by

comparing PCR kinetics in the mock- and Endonuclease III-

treated samples, i.e. change in cycle threshold (DCt = Ct treated -

Ct mock) [27]. A standard curve for Endonuclease III-sensitive

lesions was generated using synthetic telomere oligonucleotides

containing various numbers of Tg lesions (Figure S1A and Table

S1) and was used to calculate the relative numbers of

Endonuclease III-sensitive lesions per kilobase of telomeric

DNA in each sample as described by O’Callaghan et al [27].

As shown in Figure S1B, mock- and Endonuclease III-treated Tg-

free telomere oligonucleotides yield comparable Ct values. In

contrast, Endonuclease III-treated Tg-containing telomere oligo-

nucleotides show higher Ct values in comparison to mock-treated

Tg-containing telomere oligonucleotides (Figure S1B). Similarly,

mock-treated genomic DNA from wild-type and Nth12/2 mice

have comparable Ct values, while Endonuclease III-treated

Nth12/2 mouse genomic DNA displays higher Ct values than

Endonuclease III-treated wild-type mouse genomic DNA (Figure

S1C). These observations support that difference in PCR kinetics

in mock- and Endonuclease III-treated mouse genomic DNA

samples is due to cleavage of Endonuclease III-sensitive lesions in

the DNA strand.

Genomic DNA from Nth12/2 kidney tissue and MEFs has

about 2-fold and 1.8-fold more Endonuclease III-sensitive DNA

lesions at telomeres, compared to that from wild type (Figure 1A

and B). However, Endonuclease III-sensitive DNA lesions in an

amplicon within a non-telomere locus (the 36B4 gene) are

comparable in wild-type and Nth12/2 kidney tissue and MEFs,

in contrast to those within telomeric repeats (Figure S2). Thus,

Nth1 deficient mouse cells harbor a higher density of Endonuclease

III-sensitive DNA lesions at telomeres. These results are consistent

with previous reports that oxidative 8-oxoG lesions and single

strand breaks preferentially accumulate at telomeres in mamma-

lian cells [8,9].

To determine if ablation of Nth1 function affects oxidative base

repair kinetics at telomeres, wild-type or Nth12/2 primary MEFs

were treated with an oxidant, benzo[a]pyrene that induces

oxidative modifications at DNA [28]. Primary MEFs were exposed

to 5 mM benzo(a)pyrene for 24 hours and then recovered for

8 hours. Immediately after exposure (0 hour), an approximately 2-

fold increase in the number of Endonuclease III-sensitive DNA

lesions is detected at telomeres in wild-type and Nth12/2 MEFs,

compared to that in untreated MEFs. Persistent Endonuclease III-

sensitive DNA lesions are detected at telomeres during the

recovery period in Nth12/2 MEFs, while they return to the basal

levels in wild-type MEFs within 8 hours after exposure is

terminated (Figure 1B). These data suggest that Nth1 plays an

important role in repairing Endonuclease III-sensitive DNA

lesions in telomeres in vivo.

Higher incidence of fragile telomeres in Nth1 deficient
mouse cells

Defective telomere replication associates with aberrant telo-

meres characterized by split signals or multiple signals at a

telomere [7] (Figure 2A). These aberrant structures are described

as fragile telomeres and are found in cells treated with low doses of

aphidicolin (a specific inhibitor of DNA polymerases) and in cells

deficient in the shelterin proteins and/or other proteins required

for telomere replication [7,29–33]. Oxidized bases might impede

Author Summary

Oxidative stress causes DNA base damage that is mainly
repaired by base excision repair pathway, where a DNA
glycosylase initiates the recognition and removal of
specific base damage. Mammalian telomeres are com-
posed of repetitive purine and pyrimidine bases, TTAGGG,
which are prone to damage by oxidation. Though
previously we have shown that oxidative damage to a
purine base, guanine (G), affects telomere integrity,
damage to other telomere bases, e.g. a pyrimidine base,
thymine (T), may also occur and potentially disrupt
telomere maintenance. In order to test this hypothesis,
we utilize a mouse model lacking Endonuclease III-like
protein 1 (Nth1), a DNA glycosylase that primarily
recognizes and excises oxidative thymine and other
pyrimidine damage. We show that Nth1 deficient mouse
cells have higher levels of oxidative base damage at
telomeres and display multiple telomere defects including
telomere loss. Our studies support that besides oxidative
guanine damage, other oxidative base damage can
interfere with telomere maintenance. These results may
be relevant to understanding how oxidative base damage
and inefficient DNA repair contribute to telomere loss,
aging and cancer susceptibility in humans and other
mammals.

Nth1 Deficiency Affects Telomere Integrity
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DNA replication [18–20] and perturb telomere-bound TRF1 [21]

thereby disrupting telomere replication. Consistent with the

hypothesis, the incidence of fragile telomeres is found to be higher

in Nth12/2 primary MEFs and bone marrow cells than that in

wild-type controls (Figure 2B–2D). Fragile telomeres are also

evident in Ogg12/2 mouse bone marrow cells (Figure S3). Lastly,

low-dose aphidicolin treatment enhances the numbers of fragile

telomeres in wild-type cells, but not significantly in Nth12/2 cells

(Table 1), supporting the idea that low doses of aphidicolin and

Nth1 deficiency might influence telomere replication and hence

fragility via the same mechanism. Collectively, these results suggest

that oxidized bases and/or Nth1 deficiency affect telomere

replication.

Higher incidence of genomic and telomeric DNA damage
foci in Nth1 deficient mouse cells

Persistent oxidative base lesions may cause stalling of DNA

replication leading to DNA damage signaling and double strand

breaks (DSBs) at telomeres [34]. Oxidative base lesions may also

inhibit the binding of telomere binding proteins to telomeric DNA

[21] and ultimately their ability to mask telomeres from triggering

Figure 1. Detection of oxidative DNA base lesions at telomeres
in mice. Genomic DNA is detected for Endonuclease III-sensitive DNA
lesions per kilobase of telomeric DNA by a modified quantitative
telomere PCR method. (A) Endonuclease III-sensitive DNA lesions in
wild-type and Nth12/2 mouse kidney (n = 6 mice). (B) Endonuclease III-
sensitive DNA lesions in primary MEFs (untreated) or MEFs exposed to
5 mM Benzo(a)pyrene for 24 hours followed by recovery for 0 hour or
8 hours. Each sample is analyzed in triplicate. Error bars denote
standard deviation. P-values are calculated using a Student’s t-test and
adjusted using Benjamini-Hochberg False Discovery Rate-controlling
method [57]. P-values,0.05 are statistically significant using the above
method.
doi:10.1371/journal.pgen.1003639.g001

Figure 2. Fragile telomeres in wild-type and Nth12/2 mouse
cells. (A) Examples of fragile telomeres by telomere-FISH analysis. (B–D)
Percentage of fragile telomeres in primary MEFs (4 MEF lineages),
freshly isolated bone marrow cells (11 mice), and bone marrow cells
that are stimulated in culture (10 mice). At least 60 metaphases/sample
are counted. Error bars indicate standard deviation. P-values are
calculated using a Student’s t-test.
doi:10.1371/journal.pgen.1003639.g002

Table 1. Quantification of fragile telomeres in wild-type and
Nth12/2 mouse bone marrow cells and primary MEFs treated
with a low dose of aphidicolin.

Fragile telomeres (%)

Bone marrow Untreated Aphidicolin (0.2 mM)

Wild type 2.9160.48 6.2361.1* P = 0.02

Nth12/2 4.6260.58*P = 0.0004 4.1661.5

Primary MEFs Untreated Aphidicolin (0.2 mM)

Wild type 3.461.1 8.3660.28*P = 0.03

Nth12/2 6.260.65* P = 0.02 6.8262.5

Values indicate percentage of fragile telomeres. Bone marrow cells (6 mice) and
MEFs (4 lines) are treated with aphidicolin for 16 hours. At least 50 metaphases
are counted.
*denotes P-values that yield significant difference compared with wild type
(untreated).
doi:10.1371/journal.pgen.1003639.t001

Nth1 Deficiency Affects Telomere Integrity
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a DNA damage response [2]. 53BP1 foci formation, a marker for

DSBs or DNA damage signal [2,35], was therefore examined to

assess DSBs or a DNA damage response in the genome and

telomeres of wild-type and Nth12/2 primary MEFs. The distri-

bution of cells with different numbers of total 53BP1 foci were

measured by indirect immunofluorescence (IF), and telomeric

53BP1 foci were then identified by IF-telomere FISH. A greater

fraction of Nth12/2 MEFs has 10–25 or .25 53BP1 foci (24% and

10%, respectively) in comparison to wild-type MEFs (10% and

0%, respectively) (Figure 3A). In addition, more Nth12/2 MEFs

have $3 telomeric 53BP1 foci in comparison to wild-type MEFs

(21% and 2%, respectively) (Figure 3B). These results demonstrate

that ablation of Nth1 function causes genomic and telomeric

damage foci formation. Similar results were obtained in the wild-

type and Nth12/2 bone marrow cells that were stimulated in

culture (Figure S4).

To further explore the relationship between DNA damage foci

formation and DNA replication, wild-type and Nth12/2 primary

MEFs were cultured in the presence of a low dose of aphidicolin

(0.2 mM). After exposure to aphidicolin for 16 hours, the fraction

of wild-type MEFs with .25 53BP1 foci is significantly increased

(0% versus 18%; untreated versus treated) (Figure 3A). Aphidicolin

treatment also increases the fraction of wild-type cells with $3

telomeric 53BP1 foci (2% versus 15%, untreated versus treated)

(Figure 3B). Conversely, replication stress only moderately

enhances the fraction of Nth12/2 cells with .25 53BP1 foci

(24% versus 63%, untreated versus treated) (Figure 3A) and the

fraction of Nth12/2 cells with $3 telomeric 53BP1 foci (20%

versus 27%, untreated versus treated) (Figure 3B). Hence,

replication stress significantly enhances telomere DNA damage

in wild-type cells, but, to a lesser extent in Nth12/2 cells,

supporting our hypothesis that Nth1 deficiency and low doses of

aphidicolin may cause similar replication defects, thereby contrib-

uting to DNA damage foci formation in the genome and the

telomeres.

Persistent DNA damage may trigger phosphorylation of DNA

damage checkpoint effector proteins, Chk1 and Chk2 [35].

Because Nth12/2 primary MEFs display an increase in genomic

and telomeric 53BP1 foci, we examined Nth12/2 primary MEFs

for the presence of phosphorylated forms of Chk1 and Chk2 by

Western blot analysis. Despite the presence of DNA damage foci,

Chk1 and Chk2 phosphorylation is not detected in Nth12/2

primary MEFs (Figure S5). High-dose aphidicolin (5 mM) and

gamma irradiation (10 Gy) induce DSBs and Chk1 and Chk2

phosphorylation in mammalian cells [36,37], and these treatments

cause Chk1 and Chk2 phosphorylation in Nth12/2 primary MEFs

(Figure S5). Thus, the DNA damage check point response is intact

in Nth12/2 primary MEFs. Collectively, these results suggest that

the levels of DNA damage in Nth12/2 mouse cells might not be

high enough to evoke a persistent DNA damage response.

Nth1 is involved in telomere length maintenance in mice
As shown above, Nth1 deficiency leads to telomere fragility and

telomere DNA damage. These defects may affect telomere length

maintenance or distribution. We therefore examined telomere

length in wild-type and Nth12/2 mice by telomere-FISH. Flow-

FISH analysis reveals that average telomere length does not

undergo a significant change in Nth12/2 hematopoietic tissues, i.e.

bone marrow and spleen (Figure S6A). Similar results are obtained

by Q-FISH analysis of metaphase spreads of freshly isolated wild-

type and Nth12/2 bone marrow cells (Figure S6B). It is noteworthy

that marginal fluctuation in telomere length (lengthening or

shortening) is occasionally observed in Nth12/2 hematopoietic

tissues (data not shown).

We also investigated if an increase in cell proliferation or

oxidative stress could exacerbate telomere defects in Nth12/2

hematopoietic cells. Mouse bone marrow cells were stimulated by

interleukin 6 and stem cell factor in culture in the presence of 20%

oxygen. Under these conditions, Nth12/2 cells show reduced

telomere signal intensity compared to wild-type cells (Figure 4).

Thus, replication and/or oxidative stress can induce telomere

attrition in the absence of Nth1.

Nth1 and telomerase cooperate in telomere
maintenance

Telomerase is primarily responsible for telomere lengthening in

Ogg1 deficient S. cerevisiae [22]. While most human somatic and

primary cells express a low or an undetectable level of telomerase

[38–40], mouse cells from most laboratory strains constitutively

express a high level of telomerase [41]. As a consequence, the

impact of Nth1 deficiency on telomere integrity could be masked

by telomerase in mouse cells. To explore this possibility, Nth1

knockout mice were crossed into a strain lacking the telomerase

Figure 3. DNA damage foci in wild-type and Nth12/2 primary
MEFs. 53BP1 foci at genome or telomeres are detected by IF and IF-
telomere FISH, respectively. (A) Percentage of wild-type and Nth12/2

cells with various numbers of 53BP1 foci in the genome. (B) Percentage
of wild-type and Nth12/2 cells with greater than or equal to three
53BP1 foci that colocalize with telomere DNA. APH: cells treated with
0.2 uM aphidicolin for 16 hours. (C) A representative Nth12/2 cell
showing telomeric DNA (red) and 53BP1 foci (green). N = 4 mice, at least
100 cells/sample are counted. Error bars indicate standard deviation. P-
values are calculated using a Student’s t-test and adjusted using
Benjamini-Hochberg False Discovery Rate -controlling method. P-
values,0.05 are statistically significant using the above method.
doi:10.1371/journal.pgen.1003639.g003
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reverse transcriptase, Tert to generate Nth1+/+Tert2/2 and Nth12/

2Tert2/2 mice. The bone marrow cells from Nth1+/+Tert2/2 and

Nth12/2Tert2/2 mice were examined for telomere length and

DNA damage foci by Q-FISH and IF-telomere FISH, respective-

ly. Nth12/2Tert2/2 mice have shorter telomere length than

Nth1+/+Tert2/2 mice (Figure 5A). Both Nth1+/+Tert2/2 and

Nth12/2Tert2/2 mice have detectable telomere signal free ends

(SFEs), but remarkably, SFEs are significantly increased in

Nth12/2Tert2/2 mice (7.2161.4%) in comparison to

Nth1+/+Tert2/2 mice (2.161.1%), a phenotype that is not observed

in the telomerase proficient background (Figure 5B and 5C).

Furthermore, there are more genomic and telomeric c-H2AX foci

in Nth12/2Tert2/2 mice, compared to Nth1+/+Tert2/2 mice

(Figure 5D and 5E). These results provide evidence that

telomerase deficiency exacerbates telomere defects in Nth1

deficient cells.

Critically short telomeres can evoke a DNA damage response

and result in cell apoptosis in highly proliferative organs [5,42,43].

We therefore examined for the presence of phosphorylated forms

of Chk1 and Chk2 in Nth1+/+Tert2/2 and Nth12/2Tert2/2 mouse

cells by Western blot analysis (Figure S7A). Nth1+/+Tert2/2 and

Nth12/2Tert2/2 mouse cells display Chk1 and Chk2 phosphor-

ylation (Fig. S7A), indicating that critically short telomeres in these

telomerase null mice induce a DNA damage response. Despite the

presence of higher number of critically short telomeres, the

frequency of apoptosis is not elevated in Nth12/2Tert2/2 bone

marrow cells (Figure S7B). Thus, the numbers of critically short

telomeres have not reached its critical mass to influence cell

viability in Nth12/2Tert2/2 mice. Although the basal level of

apoptosis is comparable in Nth1+/+Tert2/2 and Nth12/2Tert2/2

cells, a higher percentage of apoptosis is observed in

Nth12/2Tert2/2 cells than in Nth1+/+Tert2/2 cells after release

from replication arrest induced by hydroxyurea (HU), an inhibitor

of ribonucleotide reductase and therefore the synthesis of dNTP

(Figure S7B, left panel). However, aphidicolin treatment causes

similar increase in apoptosis in Nth1+/+Tert2/2 and Nth12/2

Tert2/2 cells (Figure S7B, right panel). Interestingly, HU

treatment does not affect the rate of apoptotic cells in wild-type

and Nth12/2 bone marrow cells in a telomerase proficient

background (Figure S7C). Thus, HU, but not aphidicolin may

induce apoptosis in Nth12/2Tert2/2 cells, likely by a mechanism

involving a cooperative effect of telomerase and Nth1 against

oxidative damage.

Higher incidence of telomere sister chromatid exchange
in Nth1 deficient mouse cells

Telomere sister chromatid exchange via homologous recombi-

nation, referred to as T-SCE, may be influenced by defective

telomere maintenance or repair [44,45]. In addition, oxidized

bases may impede DNA replication [18–20] or interfere with

binding of the shelterin proteins to telomeres [21], thereby

inducing telomere recombination. We thus measured the

frequency of T-SCEs in wild-type and Nth12/2 bone marrow

cells by CO-FISH (Figure 6A). Nth12/2 cells display a higher rate

of T-SCEs than wild-type cells (4.8 vs. 2.0% T-SCEs/chromo-

somes, respectively) (Figure 6B, left panel). Furthermore, in the

telomerase deficient background a higher rate of T-SCEs is also

observed in Nth12/2 mouse bone marrow cells (Figure 6C). Thus,

Nth1 deficiency can induce telomere recombination, indepen-

dently of telomerase. To explore the relationship between

telomere recombination and DNA replication, wild-type and

Nth12/2 bone marrow cells were treated with a low dose of

aphidicolin for 16 hours. T-SCE events are significantly increased

in wild-type mouse cells, but to a lesser extent, in Nth12/2 mouse

Figure 4. Telomere length in wild-type and Nth12/2 mouse
cells. Q-FISH analysis of ex vivo stimulated bone marrow cells. (A)
Representative metaphase spreads of wild-type and Nth12/2 mouse
bone marrow cells showing DAPI staining (blue) and telomere
fluorescence signals (red dots in left panel and white dots in right
panel). Quantitative measurement of telomere signal intensity is shown
in a jitter plot displaying complete distribution of telomeres with
diverse signal intensity (left panel) and in a combined histogram
displaying relative frequency of telomeres plotted against telomere
signal intensity (right panel). Bars (in green) denote mean telomere
signal intensity. (B) Box plot of telomere signal intensity of bone
marrow cells from three pairs of wild-type and Nth12/2 mice. Mean
values are shown above each mouse sample. Telomere signal intensity
is depicted in arbitrary units (A.U).
doi:10.1371/journal.pgen.1003639.g004

Nth1 Deficiency Affects Telomere Integrity
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Figure 5. Telomere length and DNA damage foci in Nth1+/+Tert2/2 and Nth12/2Tert2/2 mouse cells. (A) Q-FISH analysis of bone marrow
cells derived from Nth1+/+ Tert2/2 and Nth12/2Tert2/2 mice (n = 8). Representative quantitative measurement of telomere signal intensity is shown in
jitter plot displaying complete distribution of telomeres with diverse signal intensity (left panel) and in a combined histogram displaying relative
frequency of telomeres plotted against telomere signal intensity (right panel). Bars (in green) denote mean telomere signal intensity. (B)
Representative metaphase spreads from indicated genotypes, showing enlarged chromosome ends with or without telomere signals (Normal and
SFE, respectively). Arrows depict SFEs. (C) Quantification of SFEs in bone marrow cells with indicated genotypes (8 mice). At least 50 metaphases/
sample are counted. Values depict mean values 6 SD from each sample. P-values are calculated using a Student’s t-test. * represents P = 0.01. (D–E)
Percentage of Nth1+/+ Tert2/2 and Nth12/2Tert2/2 cells with various numbers of c-H2AX foci in the genome and telomeres by IF and IF-telomere FISH
analysis, respectively. At least 100 cells/sample are counted. Error bars indicate standard deviation.
doi:10.1371/journal.pgen.1003639.g005

Nth1 Deficiency Affects Telomere Integrity
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cells (Figure 6B, right panel); supporting that Nth1 deficiency and

low doses of aphidicolin may cause similar replication defects,

thereby contributing to telomere recombination.

Discussion

The BER pathway repairs non-bulky oxidative DNA lesions,

including a number of potential replication-blocking lesions that

hamper genome stability and cell viability, if left unrepaired.

Telomeres are also critical for genomic integrity, because

unprotected chromosome ends are highly prone to recombination

and induce a DNA damage response. Telomeric DNA is sensitive

to oxidative DNA damage [8,9,12], which may have negative

impact on telomere maintenance. Here, we show that ablation of a

BER repair protein, Nth1 leads to accumulation of telomere base

damage and an increase in telomere attrition, fragility, recombi-

nation, and DNA damage foci. Telomerase deficiency exacerbates

the telomere defects of Nth1 deficient mice.

It has been shown that there is a tissue and age-dependent

accumulation of 2,6.-diamino-4-hydroxy-5-formamidopyrimidine

and 4, 6.-diamino-5-formamidopyrimidine in Nth12/2 mouse

genome by gas and liquid chromatography/mass spectrometry

detection methods [24,46]. However, other Nth1-preferred base

substrates, e.g. 5-OH-Cyt, 5-OH-Ura, and Tg do not persist in

Nth12/2 mouse genome or are below the detection by the above

methods [46]. In this study, we have utilized a quantitative PCR

method to detect Endonuclease III (or Nth1)-sensitive DNA lesions

at telomeric and non-telomeric loci in mice. A higher number of

Endonuclease III-sensitive DNA lesions are detected at the

telomeres, but not at the 36B4 locus in Nth1 deficient kidney

and MEFs, supporting that these oxidative base lesions preferen-

tially accumulate at telomeres in the absence of Nth1. Since the

extracts from Nth12/2 mice are unable to incise oxidized bases in

5-OH-Cyt, 5-OH-Ura, or Tg-containing oligonucleotides [47], it

implies that there is a defective repair of these DNA base lesions in

Nth1 deficient mice, which could be exacerbated at telomeres.

Nth12/2 MEFs are also inefficient in repairing telomeric

Endonuclease III-sensitive DNA lesions that are induced by an

oxidant, benzo[a]pyrene (Figure 1B). Our results support that

Nth1 plays an important role in the removal of certain oxidative

base lesions at telomeres. Similarly, Ogg12/2 mouse cells show

elevated levels of Fpg-sensitive lesions and defective base repair at

telomeres [26]. These results confirm the importance of BER

proteins in protecting telomere DNA from oxidative damage.

Figure 6. T-SCEs in wild-type and Nth12/2 mouse cells with or without telomerase. CO-FISH analysis of ex vivo stimulated bone marrow
cells. (A) A schematic presentation of CO-FISH. In brief, newly synthesized strands with BrdU/BrdC are removed, leaving parental strands to be
detected by Alexa488-labeled (TTAGGG)3 (in green) and Cy3-labeled telomere (CCCTAA)3 (in red) PNA probes. In an event of T-SCE, an end shows
telomere signals in both green and red. An example of T-SCEs in a metaphase of Nth12/2 cell showing DAPI staining (gray), leading strand telomere
fluorescence signals (red) and lagging strand telomere fluorescence signals (green). Arrows: T-SCEs. (B) T-SCE events in bone marrow cells of wild-
type and Nth12/2 mice (n = 7) with (+) or without (2) aphidicolin treatment at the concentration of 0.2 mM for 16 hours. (C) T-SCE events in bone
marrow cells of Nth1+/+Tert2/2 and Nth12/2Tert2/2 mice (n = 4). At least 90 metaphases/sample are counted. Error bars indicate standard deviation. P-
values are calculated using a Student’s t-test.
doi:10.1371/journal.pgen.1003639.g006
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Besides base lesions, 53BP1 and c-H2AX foci are also detected

in the telomeres of Nth12/2 mice. It is likely that these telomeric

damage foci are derived from stalled replication forks. For

example, the DNA polymerase inhibitor, aphidicolin, at low doses

causes 7.5-fold increase in the percentage of wild-type cells positive

for telomeric damage foci. Nth12/2 cells accumulate oxidized base

lesions, which may also impede DNA polymerases, causing

replication stress. The fact that low-dose aphidicolin treatment

only causes 1.2-fold increase in the percentage of Nth12/2 cells

positive for telomeric damage foci indicates that oxidative base

lesions may interfere with telomere replication via a mechanism

similar to that of low doses of aphidicolin. This trend is also

observed for telomere fragility, telomere recombination and

apoptosis in Nth12/2 cells that are treated with low doses of

aphidicolin. We speculate that low doses of aphidicolin and Nth1

deficiency might influence these phenotypes by acting in the same

pathway, such as inhibiting DNA polymerases. However, there is

no detectable Chk1 activation in Nth1 null cells, except with high-

dose aphidicolin treatment. The differential response of Nth12/2

cells for telomere fragility and Chk1 activation could be due to

different mechanisms and/or different doses (low or high) of

aphidicolin in triggering these phenotypes. Sufficient DNA

damage could trigger Chk1 activation [37], but the exact

mechanism for the occurrence of fragile telomeres is yet unknown.

Although Nth1 deficiency might sufficiently perturb DNA

polymerases, to result in an increase in fragile telomeres, it may

not lead to enough DNA damage to activate Chk1. Instead, high-

dose aphidicolin treatment can significantly increase DNA damage

[36,37] and thus activate Chk1 in Nth1 deficient cells.

Although oxidative base lesions may interfere with telomere

replication, Nth1 could directly interact with and be involved in

the progression of the replication apparatus [48,49]. SSBs, which

usually accumulate in telomeric DNA in the vicinity of oxidative

base lesions [8,13–15], could also be converted to DSBs during

DNA replication [34] to interfere with telomere replication.

Nevertheless, these potential defects fail to activate a persistent

DNA damage response in Nth12/2 mice, as Chk1 and Chk2 are

not phosphorylated in the null mice. This is consistent with the fact

that deletion of Nth1 alone does not lead to critically short

telomeres and cell apoptosis.

When Nth1 null mice are bred with Tert null mice,

Nth12/2Tert2/2 mice harbor more critically short telomeres in

comparison to Nth1+/+Tert2/2 mice. Thus, Nth1 cooperates with

telomerase to maintain telomere length. Interestingly, HU does

not affect the rate of apoptosis in Nth12/2 mouse cells in a

telomerase proficient background, but it promotes apoptosis in

Nth12/2 mouse cells in a telomerase deficient background (Figure

S7B). These results imply that HU induces apoptosis by a

mechanism involving a cooperative effect of telomerase and Nth1

against oxidative damage. Nth1+/+Tert2/2 and Nth12/2Tert2/2

mice are currently being propagated for additional generations to

further exhaust telomere reserves, which may help reveal the

impact of defective oxidative base lesion repair on telomere

function and cell viability in mouse aging.

Nth1 deficient mouse cells have a higher incidence of fragile

telomeres, implying that replication encounters problems at

telomeric DNA. We speculate that some Endonuclease III-

sensitive base lesions, e.g. Tg pose a problem to the replication

machinery in Nth1 deficient mice. However, fragile telomeres are

also increased in Ogg12/2 mice that harbor 8-oxoG. Thus, the

presence of oxidative base lesions may nevertheless affect telomere

replication, independently of the nature of the lesions. Oxidative

base lesions may also impair telomere replication via perturbing

the binding of TRF1 to telomeres [21], which is required for

telomere replication [7]. The replication inhibitor aphidicolin does

not increase the frequency of fragile telomeres in Nth1 deficient

mice. Similarly, aphidicolin fails to enhance fragile telomeres in

mutant mice deficient in genes facilitating telomere replication,

e.g. ATR or CTC1 [29,31,32]. These results further support our

hypothesis that telomere replication is defective in Nth1 deficient

mice.

Ex vivo-stimulated Nth1 deficient bone marrow cells display

increased T-SCE events, which possibly reflects replication

problem and DNA damage in telomeric DNA in Nth1 null cells

[45]. In line with this, low-dose aphidicolin treatment increases T-

SCE events in wild-type, but not in Nth1 deficient mouse cells

(Figure 6B), supporting that low doses of aphidicolin or oxidative

base lesion–induced replication stress contributes to telomere

recombination. Alternatively, a DNA glycosylase may inhibit

telomere recombination [50] and ablation of DNA glycosylase

function would therefore relieve this inhibition and activate the

recombination pathway. Lastly, Endonuclease III-sensitive base

lesions may affect telomere recombination by disrupting the

association of shelterin to telomeres [21].

Telomere length regulation involves many factors including

telomerase, telomere binding proteins and telomere recombina-

tion/replication/capping. As discussed above, persistent oxidative

DNA lesions and/or insufficient BER capacity could disrupt these

processes, thereby interfering with telomere length homeostasis.

Although Nth1 deficient hematopoietic tissues have a normal

distribution of telomere length, they undergo telomere shortening

after being stimulated in culture with 20% oxygen. This suggests

that the impact of Nth1 deficiency on telomere length is dependent

on cell proliferation and/or exposure to higher oxygen levels.

Cultured Nth1 deficient bone marrow cells harbor more DNA

damage that may also contribute to telomere attrition in these

cells. Furthermore, damaged bases or Nth1 deficiency might

interfere with telomere replication and thus telomere length,

especially upon stimulating cell proliferation.

The Nth1 deficient mouse model is a valuable tool for assessing

the role of BER in telomere maintenance. However, somatic cells

from Nth1 deficient mice differ from human somatic cells in that

the mouse cells express abundant telomerase activity. In this

regard, it is important to note that the impact of Nth1 deficiency

on telomere length is more severe in cells carrying the Tert null

alleles. Moreover, Nth1 and Tert double null mouse bone marrow

cells demonstrate an elevated rate of apoptosis after replication

stress. Thus, Nth1 and Tert might cooperate in maintaining

telomere function in replicating cells. Because most human

somatic cells express a low level of telomerase, age-dependent

changes in BER capacity [51] could have a significant impact on

telomere maintenance and cell viability in human tissues.

Materials and Methods

Mice and primary mouse cells
The generation of Nth1 null (Nth12/2) and Tert null (Tert2/2)

mice was described previously [52,53]. Nth12/2 mice were further

backcrossed into C57BL/6 background. Wild-type and Nth12/2

mice were derived from heterozygous (Nth1+/2) breeders. To

generate mice deficient for both Nth1 and Tert, Nth12/2 mice was

bred with Tert2/2 mice to obtain Nth1+/2Tert+/2, which were

subsequently bred to generate Nth1+/+Tert2/2 and Nth12/2

Tert2/2 mice. Primary mouse embryonic fibroblasts (MEFs) were

isolated from 13.5 day embryos of Nth1+/2 female bred with

Nth1+/2 male and cultured in Dulbecco’s Modified Eagle Medium

containing 10% fetal bovine serum in CO2 incubator in the

presence of 20% oxygen. Bone marrow cells were flushed from
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femurs and tibias and cultured in Iscove’s modified Dulbecco’s

medium (Invitrogen) supplemented with 20% fetal calf serum with

interleukin 6 (200 U/mL; Peprotech) and stem cell factor (100 ng/

mL; Peprotech). Single cell suspensions of spleen were obtained by

passing the spleen suspension through a cell strainer (70 mm, BD

Falcon). All animal experiments were carried out according to the

‘‘Guide for the Care and Use of Laboratory Animals’’ (National

Academy Press, USA, 1996), and were approved by the

Institutional Animal Care and Use Committee of National

Institute on Aging.

Detection of oxidative base lesions in telomeres
Identification of oxidative base lesions in telomeres was

performed as previously described [27]. In brief, DNA was

isolated from mouse kidney and primary MEFs by salting out

[22,26]. To excise oxidative base lesions and generate strand

breaks at the resulting abasic sites, DNA was digested with

Endonuclease III. 400 ng of duplex oligomer or genomic DNA

were incubated overnight with 12 units of Endonuclease III (New

England Biolabs) in 16 NEB Endonuclease III buffer (20 mM

Tris-HCl, 1 mM EDTA, 1 mM Dithiothreitol, pH 8.0). A

duplicate digestion was also set up for each corresponding sample

in mock digestion buffer (i.e. enzyme was excluded and substituted

with H2O). All samples were set up on ice, then incubated at 37uC
overnight to allow complete digestion and followed by the

quantitative Real-Time amplification (qPCR) [54]. Five oligonu-

cleotides containing TTAGGG repeats with 0, 1, 2, 4 or 8 thymine

glycols were used for generation of a standard curve (Table S1). A

reverse oligonucleotide was used to construct duplex substrates

(GeneWorks, Adelaide). Forward and reverse oligonucleotides

were mixed in a 1:1 molar ratio. Annealing reactions were

incubated at 95uC for 10 min and then cooled to room

temperature for 30 min. For qPCR, each 20 mL reaction was

composed as follows: 40 pg of digested or undigested oligonucle-

otides or 40 ng of digested or undigested genomic DNA, 16
SYBR Green master mix, 100 nM telo1 forward and 100 nM

telo2 reverse primers [54]. All samples were run on an ABI 7300

Sequence Detection System with the SDS Ver. 1.9 software

(Applied Biosystems). Cycling conditions were: 10 minutes at

95uC, followed by 40 cycles of 95uC for 15 seconds and 60uC for

one minute. Each sample was analyzed in triplicate. PCR

efficiencies and correlation coefficients for genomic DNA and

synthetic oligonucleotides are shown in Table S2. The Ct values

for all the samples were obtained from PCR reactions run under

the same conditions using the same reagents, and the DCT value

(Ct treated - Ct mock) for each sample were converted into

numbers of Endonuclease III-sensitive lesions by comparison to

the standard curve, as described previously [27].

Telomere quantitative fluorescence in situ hybridization
Flow-FISH: The average telomere fluorescence in populations

of splenocytes and bone marrow cells was measured according to a

previously published protocol [55]. In each set, data were pooled

from at least five individual mice. A telomere-specific FITC

conjugated (CCCTAA)3 PNA probe (0.3 mg/mL, Panagene) was

employed and telomere fluorescent signal intensity was measured

by Accuri O6 flow cytometer using FlowJo software.

Q-FISH: Mice were injected with 100 ml of 0.5% colchicine

intraperitoneally for approximately 30 minutes before being

sacrificed. Bone marrow cells were then collected by flushing

1 ml of PBS from femurs. Cultured bone marrow cells and

primary MEFs were incubated with 0.1 mg/mL colcemid for 2–

6 hours at 37uC to allow mitotic cells to accumulate. Metaphase

spreads were obtained by incubating mouse cells in 0.075 M KCl

for 15 minutes at 37uC, followed by fixing cells in ice-cold (3:1)

methanol and glacial acetic acid and dropping the fixed cells onto

slides. Metaphase spreads were hybridized with Cy3-labeled

(CCCTAA)3 (0.3 mg/mL, Panagene), washed, and then counter-

stained with 4, 6 diamidino-2-phenylindole (DAPI) as previously

described [56]. Images were captured using Cytovision software

(Applied Imaging Corp.) on a fluorescence microscope (Axio2;

Carl Zeiss, Germany); followed by quantification of individual

telomere fluorescence signals using the TFL-Telo software (a kind

gift from P. Lansdorp, Vancouver, BC). For histograms and box/

jitter plots, data from different mice of each genotype were scored

using R statistical package (http://www.r-project.org/) and

Graphpad software. Metaphases from different mice of each

genotype were scored for fragile telomeres (a chromatid with $2

telomere signals) and SFEs (chromosome ends without detectable

telomere signals).

Chromosome-Orientation FISH (CO-FISH)
CO-FISH was used to measure T-SCEs as described previously

[44]. Briefly, bone marrow cells were cultured in medium with 3:1

ratio of BrdU/BrdC at a final concentration of 161025 M for

approximately 12 hours. Colcemid (0.1 mg/ml) was added for the

final 2 hours. Metaphase spreads were prepared as described

above, stained with Hoechst 33258, exposed to UV light and then

digested with exonuclease III to remove newly synthesized strands.

Remaining parental strands were hybridized with Cy3-labeled

(CCCTAA)3 probe, then briefly washed with hybridization buffer

and subsequently with Alexa 488–labeled (TTAGGG)3 probes.

Hybridization and wash conditions were identical to those

described for telomeric FISH. A chromosome with more than

two telomeric DNA signals by both probes was scored as T-SCE

positive.

IF and telomere FISH
Fibroblasts were grown overnight on chamber slides and bone

marrow cells were spun onto Cytospin microscopic slides at

200 rpm for 3 minutes. Cells were washed in PBS, fixed in 2%

paraformaldehyde for 10 minutes at room temperature, permea-

bilized with 0.5% tritonX-100 for 5 minutes on ice and blocked

with 10% FBS for 1–2 hours. Cells were stained overnight at 4uC
with a rabbit anti-cH2AX antibody (1:200, Santa cruz) or a rabbit

anti-53BP1 antibody (1:500, Novus Biologicals), followed by Alexa

488-labeled secondary antibody (1:500; Molecular Probes) for one

hour at room temperature. Cells were washed in PBS, fixed in 2%

paraformaldehyde for 10 minutes at room temperature, washed,

dehydrated through ethanol series and briefly dried. Slides were

immediately hybridized to Cy3-labeled (CCCTAA)3 probe

(Panagene) for 2 hours at room temperature. Hybridization buffer

and wash conditions were identical to those described for

telomeric FISH. Slides were counterstained with DAPI. Z-stack

images were captured on a fluorescence microscope (Axiovert

200M; Carl Zeiss).

Apoptosis assay
Apoptosis was quantified using the Annexin V: FITC Apoptosis

Detection Kit as per the manufacturer’s instructions (BD

Pharmingen). Briefly, cells were harvested, washed twice with

ice-cold PBS and resuspended in 16 Binding buffer supplied by

the manufacturer. Cells were incubated with 5 mL PI and 5 mL

FITC-Annexin V at room temperature for 15 minutes and

analyzed using an Accuri O6 flow cytometer with FlowJo software.

Nth1 Deficiency Affects Telomere Integrity

PLOS Genetics | www.plosgenetics.org 9 July 2013 | Volume 9 | Issue 7 | e1003639



Western blot
Cells were exposed to 5 mM aphidicolin for 8 hours or 2 mM

HU for 24 hours as a positive control for Chk1 phosphorylation or

10 Gy Ionizing radiation with 1 hour recovery as a positive

control for Chk2 phosphorylation [37]. Cells were lysed with lysis

buffer (50 mM Tris HCl, pH 7.4, 150 mM NaCl, 1% IGEPAL,

0.25% sodium deoxycholate, 0.5 M EDTA, 20% SDS) supple-

mented with complete, EDTA-free Protease Inhibitor Cocktail

Tablet and PhosSTOP Phosphatase Inhibitor Cocktail Tablet

(Roche). Approximately 40–100 mg cell extracts were examined

for phosphorylated-Chk1 or Chk2 and actin by rabbit phospho-

Chk1 (S345) (1: 1000, Cell signaling, 2341), mouse Anti-Chk2

(1:500, BD Biosciences, 611570) or actin (1:1000, Santa Cruz, SC-

1616) antibodies.

Supporting Information

Figure S1 Oxidative base lesion detection by the quantitative

telomere-PCR method. (A) A standard curve for Endonuclease III-

sensitive DNA lesions at telomere repeats. Double stranded

telomere sequence containing oligonucleotides with various

numbers of Tg lesions are digested with Endonuclease III. A

DCt is calculated based on the amplification profiles of

Endonuclease III-treated and the mock-treated oligonucleotides.

The numbers of Endonuclease III-sensitive lesions are calculated

based on the equation of the regression line. (B) Quantitative

telomere-PCR standard curves of mock- and Endonuclease III-

treated synthetic telomere oligonucleotides. 84-oligomers contain

either zero (Tg-free) or 1, 2, 4, or 8 Tg lesions (Tg-containing) (see

Table S1). (C) Quantitative telomere-PCR standard curves of

mock- and Endonuclease III-treated genomic DNA from wild-type

and Nth12/2 mouse kidney.

(TIF)

Figure S2 Detection of oxidative base lesions in telomeric and

non-telomeric loci. Endonuclease III-sensitive DNA lesions at the

36B4 or telomeric locus in wild-type and Nth12/2 MEFs and

kidney tissue. Fold change is obtained by normalizing the DCt

values in a sample to that of wild-type control (the value was set to

1).

(TIF)

Figure S3 Fragile telomeres in wild-type and Ogg12/2 mouse

cells. Metaphase spreads are analyzed by telomere-FISH. (A)

Percentage of fragile telomeres in freshly isolated bone marrow

cells (4 mice). (B) Percentage of fragile telomeres in stimulated

bone marrow cells in culture (4 mice). Error bars indicate standard

deviation. Student’s t-test is used for statistical analysis. P-values

are indicated.

(TIF)

Figure S4 DNA damage foci in wild-type and Nth12/2 bone

marrow cells. IF and IF-telomere FISH analysis of ex vivo

stimulated bone marrow. (A) Percentage of wild-type and Nth12/

2 cells with various numbers of cH2AX foci. (B) Percentage of

wild-type and Nth12/2 cells with greater than or equal to three

cH2AX foci that colocalize with telomere DNA.

(TIF)

Figure S5 Chk1 and Chk2 phosphorylation in wild-type and

Nth12/2 primary MEFs. (A–B) Representative western blot

analysis for Chk1 phosphorylation. For a positive control, cells

are exposed to 5 mM APH for 8 hours (A) or 2 mM HU for

24 hours (B). (C) Representative western blot analysis for Chk2

phosphorylation. For a positive control, cells are exposed to 10 Gy

Ionizing radiation (IR) and recovered for one hour. Actin serves as

a loading control.

(TIF)

Figure S6 Telomere length in wild-type and Nth12/2 mouse

tissues. (A) Flow-FISH analysis of freshly isolated splenocytes (24

mice) and bone marrow cells (16 mice). (B) A representative jitter

plot (left panel) and a combined histogram (right panel) of telomere

signal intensity by Q-FISH analysis from metaphase spreads of

freshly isolated bone marrow cells with indicated genotype (n = 10

mice). Bars (in green) denote mean telomere signal intensity.

(TIF)

Figure S7 DNA damage response and cell apoptosis in wild-type

and Nth12/2 mouse cells with or without telomerase. (A)

Representative western blot analysis for Chk1 and Chk2

phosphorylation in mouse cells with indicated genotype. Actin

serves as a loading control. (B–C) Percent apoptotic cells in Nth1+/+

Tert2/2 and Nth12/2Tert2/2 mice (n = 4) and in wild-type and

Nth12/2 mice (n = 6). Bone marrow cells are stimulated in culture

with or without exposure to 2 mM HU for 24 hours or with 0.2

and 1 mM aphidicolin for 16 hours, released and analyzed at the

indicated time points. Cells are stained with FITC-AnnexinV.

Error bars denote standard error of mean (SEM). P-values are

calculated using a Student’s t-test and adjusted using Benjamini-

Hochberg False Discovery Rate -controlling method [57]. P-

values,0.05 are statistically significant using the above method.

(TIF)

Table S1 Sequences of oligonucleotides used as template to

construct standard curves.

(DOCX)

Table S2 qPCR efficiencies and correlation coefficients for the

Tg containing oligomers and mouse DNA.

(DOCX)
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