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Abstract: Parkinson’s disease (PD) is one of the key neurodegenerative disorders caused by a
dopamine deficiency in the striatum due to the death of dopaminergic (DA) neurons of the substantia
nigra pars compacta. The initially discovered A53T mutation in the alpha-synuclein gene was
linked to the formation of cytotoxic aggregates: Lewy bodies in the DA neurons of PD patients.
Further research has contributed to the discovery of beta- and gamma-synucleins, which presumably
compensate for the functional loss of either member of the synuclein family. Here, we review research
from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity models and various synuclein-
knockout animals. We conclude that the differences in the sensitivity of the synuclein-knockout
animals compared with the MPTP neurotoxin are due to the ontogenetic selection of early neurons
followed by a compensatory effect of beta-synuclein, which optimizes dopamine capture in the
synapses. Triple-knockout synuclein studies have confirmed the higher sensitivity of DA neurons to
the toxic effects of MPTP. Nonetheless, beta-synuclein could modulate the alpha-synuclein function,
preventing its aggregation and loss of function. Overall, the use of knockout animals has helped to
solve the riddle of synuclein functions, and these proteins could be promising molecular targets for the
development of therapies that are aimed at optimizing the synaptic function of dopaminergic neurons.

Keywords: synucleins; dopaminergic neuron; MPTP; knockout mice; Parkinson’s disease

1. Introduction

The synuclein family consists of three highly homologous genes encoding proteins
similar in structure: alpha-, beta-, and gamma-synuclein. Among the three representatives
of the synuclein family, alpha-synuclein is the best-studied and the volume of scientific
research devoted to its functions significantly exceeds the much-needed attention to the
other two members altogether [1]. Despite extensive international studies of the synuclein
family of proteins, their physiological functions as well as their pathophysiological role
in synuclein-associated neurodegenerative diseases have not been fully resolved [2]. The
question remains open whether the formation of Lewy bodies is the primary cause of
Parkinson’s disease (PD) or whether it is a by-product of the activation of intracellular
defense mechanisms against the ongoing debilitating neurodegenerative process.

In order to understand these fundamental questions, modern experimental science
is developing new hybrid forms of parkinsonism in laboratory model animal systems. A
toxic PD model that was initiated by single or multiple treatments of the neurotoxin 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was actively used in knockout animals
lacking one or more synucleins as well as in mice overexpressing a mutant form of the
human protein [3–7]. In this review, we focus on current findings on the potential role of
the synuclein family of proteins during the MPTP-induced death of substantia nigra pars
compacta (SNpc) dopaminergic neurons (DA neurons) of the midbrain.
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2. Synuclein Structure and Functions

Synucleins are a family of small soluble proteins that have at least five amino acid
repeats located in the N-terminal region, resulting in an alpha-helical conformation with
the C-terminal region remaining unstructured [8–10]. In contrast to alpha-synuclein, beta-
synuclein does not contain the internal hydrophobic region corresponding with the non-
beta-amyloid component (NAC) peptide, which makes alpha-synuclein capable of forming
aggregates [11]. The alpha-synuclein protein was first detected in the Torpedo California
electric scat in 1988 [12], but was later identified as a precursor protein in the amyloid
plaques of Alzheimer’s disease patients [13]. Somewhat later, beta-synuclein was isolated
from the presynaptic endings of rat and bovine brains [14,15]; gamma-synuclein was
found in breast cancer metastases [16], but was further isolated from the mouse trigeminal
nerve [17].

All synucleins are actively expressed in nervous system tissues. High expression
levels in the neocortex, hippocampus, striatum, and cerebellum are typical for alpha- and
beta-synuclein [18], but, in addition to the CNS, these proteins can also be found in blood
cells, astrocytes, skeletal muscles, and the liver [11,19,20]. The first two proteins are highly
represented in many structures of the brain and their levels in the spinal cord and peripheral
nervous system are relatively low; the opposite is found for gamma-synuclein, with a high
expression level in the motor neurons of the spinal cord and medulla oblongata, neurons
of the sympathetic and parasympathetic peripheral nervous system, tumor entities, and
retinal ganglion cells [9,21].

Despite independent roles in the cell, synucleins are highly homologous and have
similar functions, often compensating for the dysfunction between each other. Synucleins
are important for the synaptic transmission and circulation of synaptic vesicles [22–27].
Alpha-synuclein modulates the release of neurotransmitters from presynaptic terminals by
binding and clustering synaptic vesicles and chaperoning the soluble N-ethylmaleimide-
sensitive factor attachment protein receptor (SNARE) complex assembly by binding to the
protein synaptobrevin-2 (VAMP2) [28,29] whereas beta-synuclein and gamma-synuclein
modulate the synaptic vesicular binding of alpha-synuclein and thus reduce the synaptic
physiological activity of alpha-synuclein [30,31] (Table 1). Moreover, in vitro and in vivo
experiments have revealed that all three members of the synuclein family have chaperone
activity [32–34].

Table 1. Physiological functions of synuclein proteins.

Functions α-syn β-syn γ-syn Ref.

Neurotransmission 4 4 4 [22–27]

Chaperoning 4 4 4 [32–34]

SNARE assembly 4 Maintenance Maintenance [28–31]

DAT transporter delivery to
the presynapse 4 4 4 [11,31,35]

Regulation of DAT
transporter activity 4 NA Maintenance [36–38]

Regulation of dopamine homeostasis 4 ? NA [27,39–44]

Potentiation of vesicular
dopamine uptake NA 4 NA [4]

Lipid structure or
morphology changes 4 4 4 [11,31,45]

Regulation of lipid metabolism NA NA 4 [46]

Anti-apoptosis 4 4 NA [47,48]

Mitochondrial regulation ? NA NA [49–52]
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Table 1. Cont.

Functions α-syn β-syn γ-syn Ref.

Regulation of cellular
metal homeostasis NA 4 NA [11,53,54]

Regulation of the
autophagic–lysosomal pathway NA ? 4 [55–57]

Interaction with proteasomes 4 4 4 [58–60]

Cytoskeleton stabilization ? NA 4 [61–63]

Regulation of the growth of neurons
in SNpc 4 NA NA [64]

Regeneration of damaged neurons ? ? ? [65,66]
4: involved; NA: not available; ?: hypothesis.

Alpha-, beta-, and gamma-synucleins can bind to the dopamine transporter (DAT)
and modulate its delivery to the synaptic membrane, thereby affecting dopamine neu-
rotransmitter reuptake [11,31,35]. In turn, it has been shown through protein–protein
interactions that alpha-synuclein can affect DAT activity and this effect is regulated by
the gamma-synuclein concentration [36–38]. Alpha-synuclein is involved in maintaining
the required level of dopamine (DA) and if its function cannot be performed due to a
mutation, a vesicle degradation occurs [27]. The mechanism of this effect has multiple
roots: alpha-synuclein regulates synaptic DA homeostasis [39], affects the expression of
DA synthesis member genes (such as GTP-cyclohydrolase, tyrosine hydroxylase (TH),
and aromatic acid decarboxylase) [40], modulates synaptic DA reuptake by binding to
DAT [41], and inhibits DA release in response to repeated excitation [42,43]. Previously,
there was no evidence for an interaction between beta-synuclein and TH, but it has been
suggested that it may functionally overlap with alpha-synuclein [44]. Moreover, a recent
study convincingly demonstrated that beta-synuclein potentiates vesicular dopamine up-
take, presumably by the assembly of the TH/AADC/VMAT-2 protein complex, which is
probably not functionally compensated by alpha- or gamma-synuclein [4].

Synucleins are also lipid-binding proteins capable of inducing membrane curvature
and turning large vesicles into highly curved formations [11,31,45]. Moreover, gamma-
synuclein regulates lipid metabolism in adipocytes and the lack of this protein has a
significant impact on the energy metabolism of the whole organism [46]. In addition,
alpha- and beta-synucleins prevent cell autolysis. For example, beta-synuclein possesses
p53-dependent anti-apoptosis properties at low physiological concentrations, inhibiting
caspase-3 activation by binding to Akt [47,48].

A number of studies have found that alpha-synuclein is able to bind to the mitochon-
dria and even penetrate them through VDAC channels (the outer membrane metabolic
channel), thus probably targeting the mitochondrial respiratory chain complexes in the
inner membrane [49–51], but the physiological significance of this interaction remains un-
clear. A difference in the lipid composition of the mitochondrial membrane is a regulatory
link in the affinity with the alpha-synuclein–VDAC interaction [52].

Beta-synuclein binds to metals to regulate cellular metal homeostasis, particularly
chelated copper ions, which can produce free radicals and promote the formation of cyto-
toxic alpha-synuclein oligomers [11,53,54]. There is also a suggestion that beta-synuclein
can affect the autophagic–lysosomal pathway, removing damaged or toxic protein molecules
and even aggregates [55,56]. In turn, gamma-synuclein optimizes the autophagy process,
which protects colon cancer cells from endoplasmic reticulum stress [57].

The ubiquitin–proteasome system that provides controlled protein degradation is
extremely important for the removal of toxic oligomers and soluble protofibrillar structures
formed by proteins prone to aggregation, including synucleins. All three members of
the synuclein family are able to interact with proteasomes but with different efficiencies.
For alpha-synuclein, the interaction depends on the degree of its aggregation [58,59].
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Monomeric beta-synuclein also has a low inhibitory effect on 20S and 26S proteasome
complexes, but monomeric gamma-synuclein inhibits ubiquitin-independent proteolysis
much more effectively. Interestingly, beta-synuclein acts as a negative regulator of alpha-
synuclein in these processes [60].

Gamma-synuclein is involved in the stabilization of the cell cytoskeleton [61]. Although
alpha-synuclein is capable of interacting with a few components of the cytoskeleton—in
particular, with tubulin—the putative effects of alpha-synuclein on its polymerization
are not clear [62]. In the lysates of cancer cells, gamma-synuclein was found both in the
cytosolic fraction and in the cytoskeleton fraction and the role of gamma-synuclein in
stabilizing the neurofilament network in neurons was also revealed [63].

Interestingly, several studies have shown a modulating role of alpha-synuclein in
the formation of populations of the SNpc DA neurons of the midbrain. Alpha-synuclein
takes part in the maturation of SNpc DA neurons whilst the development of the adjacent
similar anatomical structure, the ventral tegmental area (VTA), proceeds independently [64].
In turn, one of the possible roles of synucleins is considered to be participation in the
regeneration of damaged neural tissues. It was found that the concentration of alpha-
and beta-synucleins (gamma-synuclein-less) was significantly increased around damaged
neural endings [65,66]. Hence, the link between synucleins and neurodegeneration can
be explained not only by pathological aggregation and its induced toxicity, but also by
the loss of normal function. Disruptions in the structure, intracellular localization, and
compartmentalization of the synuclein family of proteins result in pathological conditions
called synucleinopathies.

3. Parkinson’s Disease Is a Form of Synucleinopathy

Parkinsonian syndrome (or parkinsonism) is a neurological condition with a multifac-
torial etiology caused by a disorder in the extrapyramidal system of the brain. Parkinsonism
is clinically characterized by a triad of signs (bradykinesia, rigidity, and tremor) and it has
additional motor and non-motor pathological manifestations. The debut of the disease
usually occurs between the ages of 65 and 70, with less than 5% of cases in patients younger
than 45 [67,68].

According to worldwide statistics, the prevalence of parkinsonism in the general
population ranges from 100 to 200 cases per 100,000 people, with an annual increase of
15 cases per 100,000 people [69]. In reality, these figures are underestimated due to the low
detection rate at the initial stages of the disease and difficulties in the differential diagnosis
of various extrapyramidal pathologies burdened with a PD-like set of symptoms.

Parkinson’s disease (PD) is the most common form of parkinsonian syndrome and it is
etiopathogenetically designated as primary or idiopathic parkinsonism. However, there are
other clinical forms of neurodegenerative diseases to be considered. These include progres-
sive supranuclear palsy (Steele–Richardson–Olszewski syndrome), Huntington’s chorea,
and corticobasal degeneration (CBD) as well as secondary drug-induced toxic parkinsonism
and many others [70,71]. These diseases can be differentiated on the basis of key clinical
features as well as a clear understanding of the pathogenetic mechanisms underlying
PD, which is crucial for the diagnosis, treatment, and prognosis of the neurodegenerative
process in the extrapyramidal system.

Pathophysiologically, PD is characterized by the degeneration of dopaminergic neu-
rons in the substantia nigra of the midbrain due to the cytotoxic aggregation and formation
of cytoplasmic inclusions—Lewy bodies (LBs)—resulting in a dopamine deficiency in
the striatum and in other associated structures of the basal ganglia [72–74]. LBs contain
aggregated forms of the alpha-synuclein protein, which is also present in other neurodegen-
erative disorders, including multiple system atrophy, dementia with Lewy bodies [75,76],
Hallervorden–Spatz disease, and many others that are collectively referred to as “synucle-
inopathies” [77]. Although a small percentage of patients with PD have a monogenic form
of the disease (LRRK2, parkin, etc.), in most cases the disorder is sporadic with an unknown
etiology. Normally, alpha-synuclein is present in several states, such as monomeric, dimeric,
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oligomeric, and fibrillar forms. However, alpha-synuclein oligomers exert the most toxic
effects on DA neurons [78]. An increased concentration of alpha-synuclein oligomers was
found in the substantia nigra [79,80], cerebrospinal fluid [81], and blood [82] of PD patients.
The intranasal administration of oligomeric forms of alpha-synuclein to C57BL/6J mice
caused PD-like symptoms [83]. These data all suggest that the oligomeric form of alpha-
synuclein has a pathogenetic significance in the development of PD. However, the exact
mechanisms of the involvement of alpha-synuclein oligomers in the death of nigrostriatal
dopaminergic neurons are currently unknown.

A joint injection of MPTP and alpha-synuclein oligomers into the striatum of C57BL/6J
mice resulted in the activation of astrocytes and microglia in the substantia nigra and
increased the loss of nigral TH+ neurons and the development of motor deficits in animals
to a greater extent than MPTP-only treatments. These results indicate that alpha-synuclein
oligomerization induces a neurotoxic effect on DA neurons in SN [6]. Activated microglia
secrete proinflammatory cytokines IL-1β, IL-6, IL-10, interferon gamma (IFN-γ), and tumor
necrosis factor-α (TNF-α). These secretions activate the nuclear transcription factor NF-kB,
triggering core apoptosis and inducible NO synthase (iNOS), leading NO and other ROS
and cyclooxygenase-2 (COX2) to increase the formation of prostaglandin E2. The presence
of these pathogenic factors eventually causes the death of SNpc DA neurons [84]. Thus, it
is crucial to use various models of parkinsonism—including laboratory animals such as
transgenic mice with an overexpression of a mutant form of human alpha-synuclein (A53T;
A30P), toxin-induced models (6-hydroxydopamine (6-OHDA), MPTP, and reserpine), and
knockout mice lines with a depletion of Parkin/Park genes (Pink-1, DJ-1, and synuclein
family proteins)—in order to fully understand the mechanisms of PD pathogenesis.

3.1. Toxic Animal Modeling of Parkinsonism Using MPTP

The toxic modeling of parkinsonism with MPTP was proposed at the end of the 20th
century. Dr. Langston discovered clinical PD symptoms in addicts of “synthetic heroin”,
which contained MPTP as one of its byproducts [85]. The discovery of MPTP-induced
parkinsonian syndrome provoked a number of scientific studies worldwide that were
aimed at determining the pathophysiological mechanisms underlying parkinsonism and
it raised the disciplines of neurochemistry and neurobiology to a new level. Thus, MPTP
was found to cause the extensive selective death of dopaminergic neurons in the substantia
nigra [86]. The results of biochemical studies and an analysis of the cytoarchitectonics
of SNpc revealed a decrease in the dopamine content in the striatum and a decrease
in the number of nigrostriatal DA neurons in various MPTP-treated animals, including
monkeys [87], dogs [88], cats [89], mice [64], and even frogs [90]. A local neurodegeneration
caused by a single injection of MPTP at relatively low doses (5–10 mg/kg for dogs and cats;
30 mg/kg for mice) resulted in symptoms (hypokinesia, muscle rigidity, and tremor) that
were typical for idiopathic parkinsonism. Yet, not all laboratory animals are sensitive to
MPTP. For example, rats, rabbits, and guinea pigs required relatively high doses of MPTP
(50–70 mg/kg) in order to manifest the neurological signs of an extrapyramidal system
dysfunction, which leads to the development of parkinsonism [91].

MPTP is a lipophilic compound that freely crosses the blood–brain barrier and is
metabolized by MAO-B in the glial cells to 1-methyl-4-phenylpyridine in an ionic form
(MPP+), which is a highly toxic final metabolite [85,92]. DA neurons in the SNpc then
selectively capture MPP+ from the intercellular space using the membrane transporter
DAT due to its structural similarities to the dopamine molecule [93]. MPP+ accumulates
in the mitochondria where it inhibits complex I of the electron transport chain, leading to
the inhibition of cellular respiration [94,95], decreased ATP production [96,97], oxidative
stress [98,99], the activation of the caspase cascade [100], and, ultimately, cell death.

The MPTP-toxic model of parkinsonism induced in C57BL/6J mice is widely accepted
as the primary system to study the pathogenetic mechanisms that underlie extrapyramidal
system disorders and that contribute to PD as well as to develop prospective neuroprotec-
tion strategies. Over the past decades, numerous protocols have been created to model
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toxic parkinsonism. These protocols are grouped based on the speed and severity of the
clinical signs into three main categories: “acute administration” (several MPTP doses in
one day); “subchronic administration” (usually 1–2 doses a day for a 5-day period); and
“chronic” administration (multiple injections for 1 month or more) [101,102].

As indicated earlier, synuclein family proteins are actively involved in the processes
of dopamine neurotransmission in the presynaptic endings of SNpc DA neurons. The
saturation of the presynaptic endings of DA neurons with the toxic end-metabolite of
MPTP—1-methyl-4-phenylpyridine in an ionic form (MPP+), which has a high affinity
with the plasma membrane transporter DAT—is presumably directly related to the activity
of synuclein family proteins (Figure 1). Thus, the selective pathological effect of MPP+ is
based on the ability of neurons to reuptake the neurotransmitter from the synaptic cleft in
order to replenish the intracellular stores and form new vesicles [103] where synucleins
could play a special role.
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Figure 1. The role of synucleins in the mechanisms of SNpc DA neurons during MPTP-induced
parkinsonism. Key regulatory factors include the regulatory activity of all synucleins toward the
presynaptic membrane of the dopamine transporter (DAT); increased DAT/VMAT-2 ratio and
SNARE assembly due to the presence of alpha-synuclein and support from other members of the
synuclein family; the inability of beta-synuclein in the presence of alpha- and gamma-synucleins to
potentiate VMAT-2-dependent MPP+ capture to further sequester these molecules; the involvement
of alpha-synuclein in the neuroinflammatory response; and glutamate toxicity induced by glial cells.
These, as well as other unexplored effects of alpha-synuclein binding and penetration into damaged
mitochondria, may have a special effect on the MPTP-induced death of DA neurons. Created with
BioRender.com (accessed on 2 November 2021).

3.2. Synucleins and MPTP Toxicity

Dopamine is the most important signaling neurotransmitter that regulates the motor
function of the entire extrapyramidal system, which is responsible for the superstructure of

BioRender.com
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movements [104]. MPP+ is structurally similar to dopamine and it competes for binding
sites on the presynaptic membrane of DA neurons. In toxic conditions, such as parkin-
sonism, DA neurons are particularly sensitive and vulnerable to the pathological effects
of MPP+, which entails a series of dramatic events leading to the complete degeneration
of the nigrostriatal pathway because DA neuron bodies lie in the substantia nigra of the
midbrain with axons extending to the dorsal striatum. On the other hand, it is not quite
clear what role synuclein family proteins play in these processes as the main representative
of the family, alpha-synuclein, acts as a pathological marker of PD.

The first and subsequent studies on the effects of MPTP toxicity in alpha-synuclein-
deficient animals showed surprising results: acute and chronic neurotoxin administration
protocols did not have the desired effect on the death of the DA neurons of the SNpc
despite lower cell counts [105–108] (Table 2). Moreover, several in vitro studies demon-
strated that an overexpression of human alpha-synuclein was associated with enhanced
cell death after MPP+ exposure [109,110]. MPTP administration to mice with a selective
inactivation of alpha-synuclein in a few cases resulted in a dopamine deficiency and the
manifestation of early clinical symptoms of a dopaminergic system dysfunction typical of
the early stages of PD [7], which indirectly indicated the activation of the compensatory
mechanisms of DA/MPP+ neurotransmission. It is worth emphasizing that phenotypically
alpha-synuclein-knockout mice do not differ from wild-type animals [111,112]. However,
decreased levels of striatal dopamine in a few lines [113,114] resulted in a reduced avail-
ability of DAT on neuronal surfaces [107] and the early debut of Parkinson-like symptoms
in aging mice [114–116]. Although neurons manage to compensate for a lack of alpha-
synuclein, this takes a toll on the restructuring of the defense systems, which, under certain
conditions, can lead to the development of pathological processes, primarily in those
cellular compartments where alpha-synuclein normally functions.

Table 2. Main phenotypic changes in synuclein-knockout animals before and after MPTP injections.

Effect MPTP * α-syn KO β-syn KO γ-syn KO αβγ-syn KO

Clinical manifestation
– ≈ ≈ ≈ ≈
+ 4 NA NA 6

Striatal dopamine – ≈ H ≈ H
+ H H NA H

DAT expression – H NA NA NA
+ NA NA NA NA

SNpc neurons – H ≈ H ≈
+ resistant H resistant H

≈: similar to wild-type animals; 4: presence; 6: absence; H: decrease; NA: not available; *: subchronic
MPTP administration.

In turn, animals with a gamma-synuclein deficiency showed a similar response to
MPTP-induced dopaminergic neurodegeneration. Here, the main feature was also the resis-
tance of SNpc DA neurons to the toxic effect of MPTP [5,113,116]. Notably, a comparative
immunoblotting analysis of the synuclein levels in the midbrain of gamma- and alpha-
synuclein-knockout vs. wild-type mice showed increased levels of beta-synuclein [5,117].
This phenomenon led to a further strategy to investigate the role of synucleins in the
development of MPTP resistance.

Recent studies have convincingly demonstrated that beta-synuclein is involved in
optimizing the capture of dopamine and probably that of structurally similar molecules via
VMAT-2 (vesicular monoamine transporter-2) [4]. Moreover, there was a loss of resistance of
the DA neurons in the SNpc to MPP+, which is a toxic metabolite of MPTP, in beta-synuclein
knockouts. A similar effect was observed in triple-knockout mice (triple synuclein-deficient
mice), where the initial population of DA neurons in the SNpc was similar to wild-type
mice [4]. In cases of alpha- and/or gamma-synuclein deficiency there was a 2.8-fold increase
in the VMAT-2 density per vesicle [107], probably due to the increased presence of beta-



Biomedicines 2022, 10, 2278 8 of 15

synuclein at the presynaptic end, which was consistent with other studies [5]. However,
DA neurons in the SNpc are known to be particularly susceptible to MPP+ because they
have a higher DAT/VMAT-2 ratio than other brain neurons [11]. Thus, a reduced DAT
transporter in the presynapse, combined with an increased VMAT-2 density in the vesicles,
changed the VMAT-2/DAT ratio, leading to the utilization of toxic MPP+ molecules. Taken
together, these results suggest a direct involvement of beta-synuclein in the developmental
processes of the resistance of SNpc DA neurons to neurotoxins rather than the absence of
alpha- or gamma-synucleins per se.

The potential neuroprotective properties of beta-synuclein also include the regulation
of cellular apoptosis. Serine threonine kinase (Akt) is an enzyme that inhibits apoptosis by
phosphorylating the Mdm2 protein that binds to p53 in the nucleus. In an experiment by
Hashimoto et al., it was shown that a beta-synuclein overexpression in a rat neuroblastoma
B103 cell line resulted in the resistance of these cells to the toxic action of rotenone, which,
in a similar manner to MPTP, inhibits mitochondrial respiratory chain complex I. However,
an Akt inhibition in this cell line resulted in the loss of neuronal resistance to neurotoxin
exposure [118].

The specific damaging effect of MPTP on catecholaminergic neurons is also associated
with the activation of toxic A-astrocytes, which, under the influence of proinflammatory
mediators, inhibit the glutamate capture via GLT-1 and induce the production of inflam-
matory cytokines, leading to neuroinflammation [119]. Moreover, a disruption of the Nrf2
system in astrocytes leads to a decrease in the number of antioxidant molecules, resulting
in oxidative stress. Damaged DA neurons secrete oligomeric alpha-synuclein in PD. The
transfer of alpha-synuclein from neurons to astrocytes, with the subsequent accumulation
and deposition in astrocytes, leads to the formation of proinflammatory cytokines and
the disruption of the glutamate capture via GLT-1 [119]. Such a scenario is possible in
the case of a long-term protocol of chronic MPTP administration, for which the presence
of amyloid-like inclusions in both the astrocytes and DA neurons in the SNpc has been
noted [120,121].

An abnormal aggregation of alpha-synuclein can increase the degree of glutamate
excitotoxicity. Alpha-synuclein accumulation in astrocytes affects the glutamate trans-
port, causing increased extracellular glutamate concentrations and excitotoxicity, further
aggravating the damage to the dopaminergic neurons [122]. These data emphasize that
alpha-synuclein increases the glutamate release. The concentration of alpha-synuclein
itself depends on the release of activity-dependent presynaptic glutamate from the end-
ings of the forebrain neurons [123]. In addition, the overexpression of alpha-synuclein
increases the phosphorylation of N-methyl-D-aspartate (NMDA) receptors, thereby increas-
ing the formation of NR1 and NR2B subunits and the sensitivity of NMDA receptors to
developing glutamate excitotoxicity [124]. Increased levels of glutamate in the intercel-
lular space activates glutamate NMDA receptors, leading to a calcium overload and the
death of DA neurons [125–127]. Alpha-synuclein can also enhance glutamate excitotoxicity
by accelerating α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor
signaling [128].

The formation of reactive oxygen species (ROS) is directly involved in the pathogene-
sis of MPTP-induced parkinsonism [103]. It is unclear how synuclein family proteins are
related to these events. It has been established that an alpha-synuclein deficiency leads
to the inhibition of nitric oxide synthase (NOS), which forms another powerful oxidant,
peroxynitrite (ONOO−), by interacting with ROS [107]. Thus, NOS activation is an impor-
tant step in MPTP-induced toxicity and it can be inhibited by a targeted inactivation of
alpha-synuclein. Therefore, this targeted inactivation could be a promising direction for
the development of a PD therapy.

Finally, there is an assumption that alpha-synuclein specifically interacts with the mito-
chondria by blocking the toxic effect of neurotoxins, which have an established pathogenic
action on DA neurons, leading to the development of PD [129,130]. However, this protec-
tive function of synucleins does not extend to all cells; in particular, not to differentiated
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DA neurons. This may imply that the cytoprotective properties of alpha-synuclein are
aimed at optimizing the mitochondrial function and directly depend on the stage of cell
differentiation; i.e., are linked to aging [27]. This is indirectly confirmed by studies of
the role of alpha-synuclein in the maturation of SNpc DA neurons in the early postnatal
developmental period [64].

4. Concluding Remarks and Future Directions

All proteins of the synuclein family are distributed throughout the nervous system,
predominantly performing the optimization and systematization functions of various pro-
cesses. Based on all the studies summarized in this review, we conclude that the differences
in the sensitivity of synuclein-knockout animals compared with MPTP neurotoxin mod-
els are due to and result from the ontogenetic selection of early neurons followed by a
compensatory effect of beta-synuclein, which optimizes the DA capture in the synapses.
This is supported by MPTP toxicity data from synuclein-free animals with the inactiva-
tion of all three members. Compared with single alpha- or gamma-synuclein knockouts,
the sensitivity of DA neurons to the toxic effects of MPTP is higher in triple-knockout
animals and almost identical to the levels shown in wild-type controls, suggesting that
beta-synuclein could modulate the alpha-synuclein function, preventing its aggregation
and a loss of function. Thus, synucleins can be considered to be promising molecular
targets for the development of therapies that are aimed at optimizing the synaptic function
of dopaminergic neurons. Knockout mice lacking any of the three synuclein members could
be used as a promising tool to study the mechanisms of the neurodegenerative processes of
synucleinopathies such as PD.
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PD Parkinson’s disease
DA Dopamine
NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells
DA neurons Dopaminergic neurons
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MPP+ 1-methyl-4-phenylpyridine in ionic form
SNpc Substantia nigra pars compacta
NAC Non-beta-amyloid component
CNS Central nervous system
SNARE Soluble N-ethylmaleimide-sensitive factor attachment protein receptor
VAMP-2 Protein synaptobrevin-2
VMAT-2 Vesicular monoamine transporter-2
DAT Dopamine transporter
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TH Tyrosine hydroxylase
VDAC Voltage-dependent anion channels
VTA Ventral tegmental area
CBD Corticobasal degeneration
IL-1β Interleukin-1β
IL-6 Interleukin-6
IL-10 Interleukin-10
IFN-γ Interferon gamma
TNF-α Tumor necrosis factor-α
MAO-B Monoamine oxidase B
iNOS Inducible NO synthase
NO Nitric oxide
ONOO Peroxynitrite
COX2 Cyclooxygenase-2 enzyme
NMDA N-methyl-D-aspartate
AMPA α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
ROS Reactive oxygen species
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