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Background: Functional connectivity and complexity analysis has been discretely

studied to understand intricate brain dynamics. The current study investigates

the interplay between functional connectivity and complexity using the Kuramoto

mean-field model.

Method: Functional connectivity matrices are estimated using the weighted phase lag

index and complexity measures through popularly used complexity estimators such as

Lempel-Ziv complexity (LZC), Higuchi’s fractal dimension (HFD), and fluctuation-based

dispersion entropy (FDispEn). Complexity measures are estimated on real and simulated

electroencephalogram (EEG) signals of patients with mild cognitive-impaired Alzheimer’s

disease (MCI-AD) and controls. Complexity measures are further applied to simulated

signals generated from lesion-induced connectivity matrix and studied its impact. It is a

novel attempt to study the relation between functional connectivity and complexity using

a neurocomputational model.

Results: Real EEG signals from patients with MCI-AD exhibited reduced functional

connectivity and complexity in anterior and central regions. A simulation study has also

displayed significantly reduced regional complexity in the patient group with respect to

control. A similar reduction in complexity was further evident in simulation studies with

lesion-induced control groups compared with non-lesion-induced control groups.

Conclusion: Taken together, simulation studies demonstrate a positive influence of

reduced connectivity in the model imparting a reduced complexity in the EEG signal.

The study revealed the presence of a direct relation between functional connectivity and

complexity with reduced connectivity, yielding a decreased EEG complexity.

Keywords: functional connectivity, complexity, Kuramoto model, MCI-AD, EEG

INTRODUCTION

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases affecting the
elderly population (Jeong, 2004). Electroencephalogram (EEG) studies, especially non-linear
dynamics, are gaining popularity as a potential tool for the early detection of AD. An early diagnosis
of the disease could aid in early interventions against the disease, subsequently increasing the
quality of life. The three hallmark features from the non-linear/linear analysis of EEG signals of
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patients with AD are the slowing of EEG signals and reduction of
functional connectivity and complexity (Dauwels and Cichocki,
2011). Recent studies with EEG signals have revealed the presence
of reduced functional connectivity (Das and Puthankattil, 2020)
and reduced complexity in the early stages of AD [mild cognitive-
impaired AD (MCI-AD)] (Nimmy John et al., 2018).

Functional connectivity represents the correlation of neural
activity among different brain regions through statistical
interdependence measures. It provides the indices for functional
integration between segregated cortical regions and has been
correlated with aging (Varangis et al., 2019), learning (Veroude
et al., 2010), and neurological disorders (Orekhova et al., 2014;
Engels et al., 2015; Sargolzaei et al., 2015). The concept of
complexity could be interpreted in different ways. Commonly
used EEG complexity measures explain the complexity as a
measure of the degree of randomness or degree of freedom
associated with the system. However, complex behavior in a
non-linear system could be exhibited with fewer degrees of
freedom (Wackerbauer et al., 1994). Generally, a high and
low entropy (i.e., random and regular order) system would
have lower complexity, and an intermediate system would have
higher complexity (Wackerbauer et al., 1994; Tononi et al.,
1998).

A reduction in connectivity and complexity in MCI-AD/AD
could be attributed to atypical non-linear neurodynamics in
the brain (Jeong, 2004). Atypical non-linear dynamics in MCI-
AD/AD brain could arise from pathophysiological changes due
to the presence of tangles, alteration in synaptic couplings,
and neuronal death (Nestor et al., 2004; Hornero et al.,
2009). The AD brain has shown the presence of modest
degrees of lesions with medial temporal lobe atrophy as a
significant indicator in multiple studies (Visser et al., 2002;
Clerx et al., 2013; Dhikav et al., 2014). Structural and functional
connectivity studies in AD have revealed a reduction in the
connectivity between different regions of the brain, converging
into a network disconnection hypothesis (Delbeuck et al., 2003;
Brier et al., 2014; Kundu et al., 2019). The disconnection
hypothesis explains a neurodegenerative model with edges in
the network model displaying a reducing trend of connectivity
strength (Brier et al., 2014). Several research studies have
related the reduction in the complexity measures to the
decreased cortical connectivity, resulting in the diminished
flexibility of the neural system to reach different information
processing states (Babiloni et al., 2004; Al-nuaimi et al.,
2018; Nobukawa et al., 2019). However, studies exploring
the relation between complexity and functional connectivity
are limited. This article attempts to explore the relation
between functional connectivity and complexity using the
Kuramoto mean-field model in the MCI-AD condition. The
study also utilizes a lesion model to examine its impact on the
network dynamics.

The Kuramoto model is a popularly used neurocomputational
model based on weakly coupled limit-cycle oscillators. Nodes
of the networks are defined by differential equations and edges
by the cortical connectivity. The dynamics of the model could
simulate data that have physiological properties similar to

macroscopic features found in neurophysiological signals like
EEG (Breakspear et al., 2010). One of the major advantages
of the neurocomputational model based on Kuramoto would
be the direct utilization of the connectivity matrix. One of the
common applications of the Kuramoto model is in analyzing
the structural–functional correlation of the brain to understand
cortical dynamics (Finger et al., 2016; Lee and Frangou, 2017).
The Kuramoto model has also been applied to studies on
anesthesia (Schartner et al., 2015), consciousness (Ibáñez-molina
et al., 2018; Lee et al., 2019), mind wandering (Ibáñez-molina
et al., 2016), lesion (František et al., 2015; Jos et al., 2018),
and complexity (Escudero et al., 2015). The studies generally
used diffusion tensor tractography data for the connectivity
pattern in the Kuramoto model (Escudero et al., 2015; Jos et al.,
2018; Lee et al., 2019). The current study proposes to utilize
functional connectivity data instead of structural connectivity
data in the Kuramoto model to study the relationship between
functional connectivity and complexity. Previous studies have
utilized the Kuramoto model to study the relation between
structural connectivity and complexity (Jos et al., 2018). We
have used the Kuramoto model to validate the reduction of
functional integration caused by the pathological process inMCI-
AD, which would result in the reduction of the complexity score.
The computational study also uses a lesion model in which edges
originating from one specific region of the cortex are set to
the lowest value. Lesions preferentially in the central part of a
network could be a possible network lesionmodel in developing a
neurocomputational model of AD (Aerts et al., 2016). The lesion
model is exploited to study the impact of reduced connectivity
with the complexity parameter.

Electroencephalogram studies reveal a gradual reduction
in connectivity and complexity with the progression of the
disease. This study analyzes the occurrence of the possible
relation between connectivity and complexity in the context
of the EEG signal simulation. It could be elucidated that
reduction of connectivity could result in relatively isolated neural
activities in the cortex that could influence the complexity
of the system. This study explores the relation between
connectivity and complexity through simulated EEG signals
generated from the functional connectivity matrix of patients
and controls. Complexity metrics were applied to real and
simulated EEG signals to study the variation. The study also
simulated EEG signals from the connectivity matrix with an
induced lesion to study its characteristics. The steps followed
in the study are represented in the form of a flowchart
in Figure 1. The functional connectivity matrix from EEG
signals was estimated using the weighted phase lag index
(WPLI) (Vinck et al., 2011). WPLI is an efficient connectivity
measure that indices the phase relation between brain regions
with minimal interference through volume conduction. The
complexity analysis was performed using Lempel-Ziv complexity
(LZC), Higuchi’s fractal dimension (HFD), and fluctuation-
based dispersion entropy (FDispEn), where LZC and HFD are
commonly used EEG complexity measures. FDispEn is a recent
approach to measure dynamic variability in the fluctuation of
EEG signals.
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FIGURE 1 | The analytic plan followed in the study. (A) The alpha band of the EEG signals was extracted through wavelet transform. (B) The connectivity matrix was

generated from the alpha band of EEG signal utilizing weighted PLI. (C) Kuramoto’s mean-field model was simulated with 21 oscillators. (D) Functional connectivity

matrix and coupled non-linear oscillators form the neurocomputational model used in the study. (E) Simulated EEG signals being generated from the

neurocomputational model. (F) Non-linear analysis was performed with metrics: LZC, HFD, and FDispEn. (G) Statistical analysis was performed on the estimates of

non-linear analysis on real and simulated EEG signals separately.

METHODOLOGY

Data Collection
Electroencephalogram data for the analysis were collected from
15 healthy controls and 13 subjects with MCI-AD. The sample
population consists of participants from both genders in the
age group of 57–75 years. Clinical dementia rating (CDR),
Mini-Mental Scale Examination (MMSE), and Addenbrooke’s
cognitive examination (ACE) were used to rate dementia in
MCI-AD. Patients with MCI-AD with the CDR score ≤1 were
selected for the study. The mean and standard deviation of
the various parameters of the sample population along with a
significant difference between the groups considered in the study
are provided in Table 1. Data acquisition was carried out at Sree
Chithra Tirunal Institute of Medical Sciences and Technology,
Trivandrum, Kerala, India. Ethical committee sanction was
accorded for the study. Written and informed consent from
patients and controls were obtained for the study.

Electroencephalogram data were acquired through a 32-
channel digital acquisition system (NicVue, Nicolet-Viking,
USA). EEG data from 21 electrode locations (Fp1, Fp2, F3, F4,
C3, C4, P3, P4, O1, O2, T1, T2, F7, F8, T3, T4, T5, T6, Fz, Cz,
and Pz) were preprocessed using simultaneous low-pass filtering
and total variation denoising (LPF/TVD) algorithm (Selesnick
et al., 2014). The signals were recorded with a sampling frequency
of 400Hz. EEG data were recorded for a duration of 5min

TABLE 1 | Mean and standard deviation of parameters in control and patient with

mild cognitive-impaired Alzheimer’s disease (MCI-AD).

Sample

size (n)

Age (years) Sex MMSE ACE

Control 15 65.18 ± 3.15 7 males,

8 females

29.31 ± 1.03 92.47 ± 4.76

Patient 13 67.78 ± 6.10 7 males,

6 females

23.92 ± 4.15 63.85 ± 8.45

Significant

difference

– p = 0.09 – p = 0.0001 p = 0.0002

in the eyes open resting state. For the targeted lesion study,
EEG data channels were clustered into three groups, namely,
anterior (i.e., Fp1, Fp2, F7, F3, Fz, F4, and F8), central (i.e., T3,
C3, Cz, C4, and T4), and posterior (i.e., T5, P3, Pz, P4, T6,
O1, and O2). The alpha band of the EEG signals was extracted
using wavelet transform. Wavelet transform is a multi-resolution
decomposition method. The technique requires the selection of
an appropriate wavelet function for the signal to be decomposed
into different frequency scales. Wavelet “db10” was used in
this study as it has given a good correlation coefficient with
most of the signals acquired from the sample population. The
functional connectivity analysis is performed through WPLI as
a connectivity measure. The connectivity matrix thus generated
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was then fed into the Kuramoto model for generating simulated
EEG signals. Complexity measures of LZC, HFD, and FDispEn
were applied in real EEG signals and simulated EEG signals to
study the variation.

Functional Connectivity
Weighted phase lag index (Vinck et al., 2011) is the
weighted version of PLI. PLI is a measure to quantify phase
synchronization and indexes, the asymmetry of the distribution
of relative phase around zero. It is motivated by the fact that
non-zero phase difference occurs only through the result of
true interaction. Thus, the measure is invulnerable to volume
conduction and depends only on the phase difference. To
increase the sensitivity to small signals and to mitigate the effect
of noise, Vinck et al. have proposed some adjustments in PLI,
yielding WPLI. In WPLI connectivity measure, phase leads or
lags are weighted by the magnitude of the imaginary part of the
complex cross-spectrum.

WPLIxy =

1
n

∑n
t = 1

∣

∣imag
(

Sxyt
)∣

∣ sgn(imag(Sxyt))
1
n

∑n
t = 1

∣

∣imag(Sxyt)
∣

∣

(1)

In this equation, Sxy indicates the cross-spectral density between
x and y time series data at time point t in the complex plane xy.
Sgn is the sign function (−1,+1, or 0).

Kuramoto Model
The Kuramoto model is used to mimic the dynamics of
synchronization of activity between brain regions of MCI-
AD and control. The model consists of a set of coupled
differential equations. The model defines the dynamics of N
identical oscillators.

dθi
dt

= ωi+k
N

∑

j = 1

aijsin(θj−θi) (2)

where N is the number of oscillators (nodes) in the model. Each
node is equated to different electrode locations in the brain. θi is

the phase of ith oscillator on its limit cycle. In this study, ( dθi
dt
)

represents the rate of change of the phase of ith oscillator. The
variables ω and k denote the natural frequency and coupling
strength of the oscillator network, respectively. The behavior of
the system is strongly determined by the parameter k. When
the system has k >kcriticalvalue, the system reaches a state of
global synchrony. Similarly, when k<kcritical value, the system
exhibits a low value of global synchrony. Thus, kcritical defines the
bifurcation in the system dynamics. When k is poised near the
kcriticalvalue, the system displays complex behavior. The variable
aij denotes the connectivity matrix.

The degree of synchrony in the coupled oscillators can be
measured through an order parameter r(t).

r (t) e−iψ(t)
=

1

N

N
∑

j = 1

e−iθ j(t) (3)

FIGURE 2 | Sensitivity plot of three complexity measures as a function of

coupling strength k of Kuramoto order parameter.

The order parameter takes the value from 0 to 1 and measures
the phase coherence of N oscillators. The order parameter of
1 represents perfectly synchronized oscillators and 0 represents
perfectly unsynchronized oscillators. The symbol ψ represents
the average phase of collective oscillators.

EEG Simulation
The Kuramoto model implemented in this study uses 21
oscillators to simulate 21-channel electrode locations. The
connectivity matrix obtained fromWPLI measure on 21 channel
EEG signals is used as the connection strength aij. WPLI
measure was extracted from the alpha band of patients and
controls during the eyes open protocol. WPLI operates on phase
space and estimates maximally weighting ±90◦ phase difference
between different EEG channels. It essentially detects phase lag
interactions from a complex coupled system like the brain. Since
the connection strength matrix aij is the connectivity strength
estimated from the functional connectivity data instead of the
structural connectivity data, the value of coupling strength k is
kept constant at 1. Figure 2 provides the sensitivity plot between
the mean complexity measure and coupling strength. A variation
in the coupling value of k in the Kuramoto model alters the
global connectivity strength. Complexity measures used are LZC,
HFD, and FDispEn. From the sensitivity plot, the complexity
estimates were nominally altered by the change in the coupling
parameter. To ensure uniformity among the simulation studies
for conducting a comparative analysis, the coupling strength was
maintained at a constant value of 1. Since the Kuramoto model
utilized in the study uses functional connectivity data, the data
matrix is also inclusive of the bias from time delay, the weighted
contribution from different sources, and the weighted reduction
while passing through different layers of the brain.

The simulationmodel uses a frequency range (ω) that matches
the frequency of the alpha band. The alpha band was specifically
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chosen in this study as this band was significantly affected in
multiple functional connectivity studies conducted in AD/MCI-
AD (Miraglia et al., 2016; Afshari and Jalili, 2017; Das and
Puthankattil, 2020; Duan et al., 2020). The natural frequency of
the coupled oscillators (fi =

ωi
2π ) is randomly assigned with

the distribution of mean and standard deviation of 10Hz and
2Hz, respectively.

xi (t) =
N = 21
∑

i = 1

sinθi(t) (4)

In this study, xi (t) is the simulated EEG signal. The model
was simulated to produce 15,000 sample points with Euler’s
integration scheme of h to be 0.1. Initial 1,000 sample points
were discarded as the initial condition. The simulation is repeated
15 times with connectivity matrices of patients with MCI-AD,
healthy controls, and lesion-induced controls. The connectivity
matrices were averaged across patients with MCI-AD, healthy
controls, and lesion-induced controls.

Lesion Model
The popular hypothesis explaining AD pathology is the network
disconnection model (Brier et al., 2014). For progressive
neurodegenerative diseases such as Alzheimer’s, the hub regions
are preferentially vulnerable to lesions (Aerts et al., 2016). Hubs
in the topologically central regions were likely to be more
vulnerable to a pathological process like AD. In this study,
the lesion in the topologically central region of the network
is simulated by the reduction of connectivity strength. Thus,
the lesion simulates a transformed network with limited edge
strength, specifically in the topological central region. Edges
originating in the central region of the brain (i.e., T3, C3,
Cz, C4, and T4) were replaced with constant edge strength of
0.1 to simulate the effect of a lesion. The introduction of the
lesion could significantly alter the functional dynamics, possibly
influencing the complexity score of the system. The constant edge
strength of 0.1 was specifically chosen as it is the lowest non-
zero connectivity strength in the averaged connectivity matrix
over the patient population. The connectivity strength in the
averaged patient matrix varied between 0.1 and 0.6. The selection
of 0.1 edge strength could accentuate the difference between the
matrices. This resulted in the reduction of the mean connectivity
strength of the control matrix from 0.5575 to 0.2454. The
study generated lesioned network from the connectivity matrix
generated from the controls.

Complexity measures were estimated from the real EEG
signals of patients and controls and simulated EEG signals of
patients, controls, and lesion-induced control signals.

Complexity Measures
Electroencephalogram complexity has been studied in the
context of different neurological disorders and in healthy controls
to gain insights into the dynamical property of the brain.
LZC, HFD, and FDispEn had provided reliable conclusions
in studies related to neurological diseases. LZC estimates
the compressibility of EEG data and HFD measures fractal

characteristics in EEG data. FDispEn estimates the uncertainty of
the signal through the difference between the adjacent elements
of the dispersion pattern.

Lempel-Ziv Complexity
Lempel-Ziv complexity is derived from the compressibility of the
binary data (Lempel and Ziv, 1976). This measure could reveal
the regularity and randomness in high-dimensional non-linear
systems and is widely used in biomedical applications (Aboy
et al., 2006). EEG signals are binarized using a threshold level and
then analyzed for LZC. The median value in the EEG data sample
is selected as the threshold level. Data sample above the threshold
is equated to 1 and below the threshold level to 0. The resulting
binary segment is scanned for different patterns. The counter c(n)
is increased by one unit when a new pattern is encountered in the
scanning process (Zhang et al., 2001).

limn→∞c (n) = b (n) =
n

log2n
(5)

In this equation, n is the length of the binary sequence and b (n)
provides the upper bound of c (n) . c (n) is normalized as follows:

C (n) =
c(n)

b(n)
(6)

After normalization, the complexity measure (C (n)) reflects the
rate of occurrences of new patterns with an increase in time.

Higuchi’s Fractal Dimension
Higuchi’s fractal dimension measures the self-similarity (scale-
free behavior) of a system. In a time-series data, FD could
range from 1 to 2, with a higher value indicating higher
signal complexity. EEG data show fractal properties with
statistical similarity at different time scales. In this study, the
fractal dimension algorithm has been selected as it provides a
good approximation of fractal dimension in EEG signals. The
algorithm uses a small number of data points to approximate the
mean length of the curve. HFD had been successfully utilized
by Gómez et al. (2009) and Smits et al. (2016) in order to
analyze EEG.

An EEG signal
[

y (1) , y (2) , . . . . . . ..y (N)
]

with a sample
length of N can be divided into k length sub-data as

ymk :y (m) ,y
(

m+k
)

,y
(

m+2k
)

,. . . . . ...y

(

m+int

[

N−m

k

]

k

)

(7)

In this equation, k is constant, andm = 1, 2, . . . .k. The [ ] is the
Gauss’ notation and length Lm(k) of each curve ym

k
is calculated

as follows:

Lm (k)=
1

k

[

N− 1

int
[

N−m
k

]

k

(

∑int
[

N−m
k

]

i = 1

∣

∣y (m+ik)−y
(

m+(i− 1)k
)∣

∣

)

]

(8)
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The mean of Lm(k) is computed to estimate HFD.

HFD=
1

k

k
∑

m = 1

Lm(k) (9)

For the HFD calculation, k involved in the estimation
was optimized at 18 and 6 for real and simulated EEG
signals, respectively.

Fluctuation-Based Dispersion Entropy
Fluctuation-based dispersion entropy is a recent approach
based on Shannon entropy and symbolic dynamics (Azami
and Escudero, 2018). It is an efficient method to measure
dynamic variability in real-time neurological data. The measure
is relatively faster, insensitive to noise, and detects simultaneous
amplitude and phase variations. Dispersion entropy (DispEn)
uses a mapping function that transforms the EEG data to a
new time series data of symbolic sequences with fewer elements
(Azami and Escudero, 2018; Nieto-Del-amor et al., 2021). It
estimates the regularity of the patterns with similar dispersion
patterns. FDispEn captures the difference between adjacent
elements of the dispersion pattern.

Algorithm for the FDispEn calculation for a given univariate
data sample yj

(

j = 1 . . . . . .N
)

of length N is as follows:

1. The time series yj is mapped with a mapping function to c
classes. The classes are labeled as 1–c. A number of linear
and non-linear mapping functions can be utilized for this
process. Each sample is grouped to its nearest class based
on its amplitude. A classified signal uj

(

j = 1 . . . . . .N
)

is
thus obtained.

2. With an embedding dimension (m), and time
delay (d) multiple time series, of length m,

um,c
i =

{

uci , u
c
i+d

, . . . . . . uc
i+(m−1)d

}

for each

i = 1, 2, . . . ..N − (m − 1)d are generated. Each um,c
i

is mapped to its dispersion pattern (Azami and Escudero,
2018). The number of possible dispersion patterns for each
um,c
i is cm.

3. FDispEn calculates the difference between adjacent
dispersion patterns. For a vector length of m − 1, each
element changes from –c + 1 to c − 1. Thus, the number
of fluctuation-based dispersion patterns for each um,c

i is
(2c− 1)m− 1 .

4. The relative frequency of each (2c− 1)m−1 dispersion
patterns is calculated. It is used for the calculation of
the FDispEn value of the input time series based on
Shannon’s entropy.

The study usedm = 3 and c = 3 as the embedding dimension
and number of classes, respectively, for the estimation of FDispEn
(Azami and Escudero, 2018).

STATISTICS

The Student’s t-test has been used to investigate the significant
difference between the patient and the control group. Normality

in the data was ensured using the Shapiro-Wilk test. As the
results from simulation experiments did not meet parametric
assumptions, the Wilcoxon rank-sum (Mann-Whitney) test, a
non-parametric test, has been used for simulated EEG signals. A
false discovery rate (FDR) correction was applied across multiple
comparison studies.

RESULTS

In this study, the complexity analysis was carried out in real and
simulated EEG signals to explore the relation between functional
connectivity and complexity in the context of MCI-AD under
resting eyes open conditions. The mean connectivity strength of
control, patient, and lesion-induced connectivity matrices was
0.5575, 0.4945, and 0.2454, respectively. The study performed
three statistical investigations, namely, (1) comparison between
real EEG signals of MCI-AD and healthy controls, 2) comparison
between simulated EEG signals of patients with MCI-AD and
healthy controls, and 3) comparison between simulated EEG
signals from control and lesion-induced control. Results from
these analyses are described in the following subsections. The
ANOVA test conducted between real and simulated EEG signals
displayed a significant difference of p= 0.0001.

Comparison Between Real EEG Signals of
Patients With MCI-AD and Healthy Controls
The complexity measures of LZC, HFD, and FDispEn were
used to analyze EEG signals of patients with MCI-AD and
healthy controls. It was observed from the analysis of all the
three complexity measures that the patients with MCI-AD have
reduced complexity with respect to the control group. Reduction
in complexity was displayed in anterior (p = 0.001), posterior (p
= 0.005), and central (p = 0.001) regions for the LZC measure.
However, significantly reduced complexity was observed only in
the central region (p = 0.05), employing the HFD metric. Lower
values of the FDispEn value were obtained for the anterior (p
= 0.05) and central (p = 0.05) regions. Bar chart plots for the
values computed for LZC, HFD, and FDispEn for patients with
MCI-AD and controls across the three regions are displayed
in Figures 3–5, respectively. It is observed from the plots that
the MCI-AD condition is accompanied by a reduction in EEG
complexity. Additionally, the central region of theMCI-AD brain
has displayed reduced complexity for all the EEG complexity
measures employed.

Comparison Between Simulated EEG
Signals of Patients With MCI-AD and
Healthy Controls
Complexity measures are calculated from simulated EEG signals
generated from the Kuramoto mean-field model utilizing
connectivity network of patients and controls. The analysis
has revealed a reduction in complexity estimates in simulated
EEG signals of patients with respect to that of the simulated
EEG signals from controls. A bar chart plot of mean values of
LZC complexity measured across three regions, anterior, central,
and posterior, is shown in Figure 6. A significant reduction
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FIGURE 3 | A bar chart plot of mean LZC values of real EEG signals of

patients with MCI-AD and controls computed for anterior, central, and

posterior regions.

FIGURE 4 | A bar chart plot of mean HFD values of real EEG signals of

patients with MCI-AD and controls computed for anterior, central, and

posterior regions.

in the complexity score was observed for the anterior (p =

0.006) and central (p = 0.006) regions. However, a significant
difference was not visible for HFD and FDispEn measures. The
reduction in complexity measure on simulated patient EEG
channels indicated that the signals have become more regular
and less complex than the simulated control EEG signals. This
study indicated that lesser functional connectivity registered
in patient matrix leads to a reduced patient EEG complexity
estimate with respect to control. The results thus imply that
connectivity between the limit cycle oscillator in the Kuramoto
model has a direct effect on complexity values in the subsequently
generated signal.

Comparison Study Between Simulated
EEG Signals of Controls and
Lesion-Induced Control Signals
Lesion-induced connectivity patterns were generated by
replacing the connectivity score of the edges joining the central

FIGURE 5 | A bar chart plot of mean FDispEn values of real EEG signals of

patients with MCI-AD and controls computed for anterior, central, and

posterior regions.

FIGURE 6 | Mean LZC values calculated from simulated EEG data channels of

patient and control group across anterior, central, and posterior regions.

region by a value of 0.1. This would result in a transformed
connectivity pattern with lowered connectivity score. A
comparative study was conducted between simulated EEG
signals generated from control and lesion-induced control
signals. The results revealed a reduction in complexity values
in the simulated EEG signals obtained from the lesion-induced
control connectivity matrix in comparison with the simulated
EEG signals generated from the connectivity matrix of the
controls. Bar chart plots of mean complexity values of LZC,
HFD, and FDispEn measures from control and lesion-induced
control signals are shown in Figures 7–9, respectively. A
significant difference was observed for LZC values in anterior
(p = 0.001) and central (p = 0.005) regions. Reduced values
of HFD were obtained for the central region (p = 0.006) with
no significant statistical difference in the anterior and posterior
regions. FDispEn has revealed differences in the central (p =

0.06) and posterior (p = 0.09) regions. From the analysis, it is
apparent that the introduced lesion has induced a significant
reduction in complexity values.
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FIGURE 7 | Mean LZC values calculated from simulated EEG data channels of

control and lesion-induced control signals across anterior, central, and

posterior regions.

FIGURE 8 | Mean HFD values calculated from simulated EEG data channels

of control and lesion-induced control signals across anterior, central, and

posterior regions.

The EEG complexity analysis carried out on the signals from
patients with MCI-AD and controls revealed a reduction in
complexity in the patient group with respect to the controls.
Results from the comparative study between simulated EEG
signals of patients with MCI-AD and healthy controls and
between simulated EEG signals from control and lesion-induced
control, ascertain a positive relation between reduced EEG
complexity to reduced connectivity pattern.

DISCUSSION

In this study, the relation between two prominent features,
namely, functional connectivity and complexity of MCI-
AD, are explored. The study investigates the influence of
brain connectivity on EEG complexity by employing a
phenomenological model of MCI-AD. The study employed
functional connectivity matrix of patients with MCI-AD and
the control group to generate simulated EEG signals using
the Kuramoto mean-field model. Complexity measures are
calculated from real and simulated EEG signals. The study also
explored the effect of an induced lesion in the connectivity
pattern and its resultant effect on complexity values. The

FIGURE 9 | Mean FDispEn values calculated from simulated EEG data

channels of control and lesion-induced control signals across anterior, central,

and posterior regions.

functional connectivity matrix is calculated using WPLI.
Popularly used complexity measures in EEG signal analysis such
as LZC and HFD together with the novel entropy measure of
fluctuation-based dispersion were used for EEG signal analysis.

Complexity analysis is performed to understand the amount
of uncertainty or irregularity in data. The complexity aspect of
neurological data has been explored with the hypothesis that
complexity in the data indicates the adaptability of the system
to function in varying environments. It further hypothesizes that
the effect of a pathological process could hamper adaptability
and would be reflected in the complexity estimates. The brain
may exhibit increased or reduced complexity as a result of
underlying pathology. Deviation in the mean complexity score
observed in the patient group in comparison to a healthy control
population could be the result of the detrimental effects of the
underlying condition. Complexity studies conducted in the brain
have shown this deviation with an increase in the complexity
in the case of schizophrenia (Takahashi et al., 2010; Fernández
et al., 2013; Ibáñez-molina et al., 2018), in normal aging (Anokhin
et al., 1996) and a decrease in the complexity with MCI-AD in
this study. In this study, the complexity scores of the patient
were compared with that of the control group to study the
deviation. The study reveals that alternations in the complexity
estimates have their onset in the early phases of AD. All the
three complexity measures of LZC, HFD, and FDispEn revealed
a reduction in complexity in the EEG signals in patients with
MCI-AD in comparison to the control group.

The reduction of EEG complexity estimates in patients is
an indication of the EEG waveforms becoming more regular
and less complex. It is suggestive of the possible effect of
the MCI-AD-related pathological process, disintegrating the
functional coupling and enabling neuronal bodies to behave
more independently generating simple predictable waveforms
(Jeong, 2004; Dauwels and Cichocki, 2011). The study has
further revealed that the reduction in complexity estimates was
significant in the anterior and central regions of the MCI-AD
brain. The result is in agreement with previous studies conducted
in AD (Dauwels and Cichocki, 2011; Smits et al., 2016; Al-nuaimi
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et al., 2018; Nesma et al., 2018; Nobukawa et al., 2019) and
in limited studies conducted in early AD (Labate et al., 2013;
Zhu et al., 2017). Histopathological studies in early AD and AD
have shown the presence of atrophy in the medial temporal lobe
and the association cortices (Chetelata and Baron, 2003; Teipel
et al., 2006). The evidence of change revealed in this study in the
anterior and central regions is inclusive of frontal and temporal
lobes that account for the memory and non-memory impairment
observed in the prodromal phase of AD (Chetelata and Baron,
2003; Teipel et al., 2006; Dauwels and Cichocki, 2011).

Along with the reduction of complexity, reduction in
functional connectivity is a hallmark feature of the EEG analysis
in AD (Dauwels and Cichocki, 2011). The functional connectivity
analysis in this study is carried out using the WPLI. The
connectivity analysis based on WPLI revealed a reduction
in mean connectivity strength in the patient group. Several
electrophysiological studies have extensively explored AD-
related changes revealing a reduction in connectivity (Babiloni
et al., 2004; Engels et al., 2015; Afshari and Jalili, 2017; Triggiani
et al., 2017) and complexity (Dauwels and Cichocki, 2011; Labate
et al., 2013; Smits et al., 2016; Al-nuaimi et al., 2018; Nesma
et al., 2018) discretely, without analyzing the influence of one
over the other. The results from the current study disclose
a positive influence between the two features of functional
connectivity and complexity accomplished through the study
of the Kuramoto model. A reduction in values of complexity
estimates was observed for the simulated EEG signal from the
patients with MCI-AD when matched with the controls. In
addition, results from the simulated EEG analysis from lesion-
induced controls and controls provide a similar inference. From
the simulated EEG signals analysis, it was observed that reduced
complexity has been consecutively associated with the group
having a reduced connectivity score. Simulated EEG signal from
lesion-induced control is an attempt to simulate the effect of the
discontinuous network in MCI-AD. The Kuramoto model could
generate a more disconnected set of EEG signals by reducing the
connectivity strength from the edges originating from the central
region of the connectivity matrix. Thus, from the comparative
studies, it is evident that the functional connectivity matrix holds
intricate relation with the signal complexity estimated.

The relation between connectivity and complexity could be
understood with the help of the meta-stability concept. The
meta-stability concept in the brain provides the theoretical
foundation to explain how complex features emerge and are
capable of information processing, data transmission, and
storage. The Kuramoto model essentially describes a phase
model that can exhibit spontaneous translations from random
incoherent phases to collective synchrony as the coupling
parameter passes through a critical threshold value. The coupling
parameter in the metastable region allows the model to simulate
data that resemble brain data with features of spontaneous
transition between multiple transient states. The reduction in
the connectivity/coupling in the coupled system of oscillators
could have enabled the individual oscillators to behave more
incoherently, thus reducing the “meaningful structural richness”
(Costa et al., 2005) of the simulated signal. Accordingly, the
reduction in the complexity could be related to the decline in

the capability of the system to visit a wide repertoire of possible
states, thus affecting the adaptability of the brain to varying
environmental conditions.

Several complexity measures have been applied to study
EEG signals over the years. The distinction between meaningful
structural richness and randomness in the system remains
unclear as both systems are capable of generating unpredictable
and irregular signals. Complexity is defined as an intermediate
stage between randomness and order. Complexity measures
used in this study, LZC, HFD, and FdispEn, capture different
aspects of the system dynamics. LZC and FDispEn measure the
regularity index of a dynamical system through the amount of the
uncertainty element. FDispEn is based on Shannon entropy and
estimates dynamical variability through dispersion patterns. LZC
estimates are based on scanning the symbolic representation of
time series data for new patterns. It is a useful means to estimate
the bandwidth of random process and harmonic variability in
a quasi-periodic signal (Aboy et al., 2006). HFD captures the
signal at different scales and investigates the self-similarity in the
time series data. HFD is insensitive to stereotypical or repetitive
signals. Therefore, it is possible to have a signal with a low
LZC value with high HFD if the signal is a disordered signal
composed of similar patterns (Jos et al., 2018). The complexity
measures LZC, HFD, and FDispEn are capable of measuring
certain aspects of “structural richness” in the signal. From the
results of simulation studies, it is discerned that the regional
complexity score is influenced by the introduction of lesion in
the connectivity matrix. Thus, the reduction in coordination with
multiple coupling strength in the simulation of EEG signal could
have resulted in reduction in “meaningful structural richness”
or complexity.

Mixed patterns of both positive (Nobukawa et al., 2020)
and negative correlation (Mcdonough and Nashiro, 2014; Jos
et al., 2018) between connectivity and complexity have been
reported in few studies conducted on neurophysiological and
simulated data. A recent study observed a positive correlation
between connectivity and complexity in AD (Nobukawa et al.,
2020). The current study supports this result with an abstract
modeling approach to the MCI-AD condition. However, it
should be noted that it is yet to be fully understood whether the
reduction of connectivity and complexity could be the result of
a direct association or is the by-product of diverse neurological
activities in the MCI-AD brain. One of the major limitations
of the study is that the Kuramoto model used in the study
is a fairly simple model and would not be able to reconstruct
all the characteristic features of the EEG signal. Furthermore,
this model used a limited number of oscillators to simulate
the signal. Despite this, the comparison analysis by using the
complexity analysis showed that the model could fairly simulate
EEG signals at a similar level of complexity as a real EEG signal.
This study suggests that the reduction of functional integration
between brain regions caused by the loss of connectivity could
be one of the possible reasons for the reduction of richness
or complexity in the EEG signals. Future studies could use
the results from this study to understand the neurodynamics
behind the electrophysiological observation in EEG under MCI-
AD conditions.
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CONCLUSION

The study attempted to analyze the relation between functional
connectivity and complexity by modeling theMCI-AD condition
with the help of the Kuramotomodel. EEG signals from theMCI-
AD condition have shown altered neurodynamics, displaying a
reduction in the estimates of connectivity and complexity. From
the studies using the Kuramato model, it was found that the
connectivity of the coupled oscillators has a direct influence on
the complexity of the generated signal. A significant observation
from the results of the study is the possible direct influence
of reduced connectivity between brain regions in lowering the
complexity score of the EEG signal.
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