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Abstract: In the real decision-making process, there are so many time series values that need to
be aggregated. In this paper, a visibility graph power geometric (VGPG) aggregation operator is
developed, which is based on the complex network and power geometric operator. Time series data
are converted into a visibility graph. A visibility matrix is developed to denote the links among
different time series values. A new support function based on the distance of two values are
proposed to measure the support degree of each other when the two time series values have visibility.
The VGPG operator considers not only the relationship but also the similarity degree between two
values. Meanwhile, some properties of the VGPG operator are also investigated. Finally, a case
study for water, energy, and food coupling efficiency evaluation in China is illustrated to show the
effectiveness of the proposed operator. Comparative analysis with the existing research is also offered
to show the advantages of the proposed method.

Keywords: visibility graph; power geometric operator; visibility graph power geometric operator;
water; energy and food efficiency evaluation

1. Introduction

Information aggregation is a process of fusing a set of values into a single one, which is an
important step in selecting the best alternative. Numerous aggregation operators have been proposed
over the past few decades. The mostly used aggregation operators are the weighted average (WA)
operator [1] and the weighted geometric (WG) operator. Based on these two operators, they are
extended to various forms, such as the ordered weighted average (OWA) operator [2], ordered
weighted geometric (OWG) operator [3,4], harmonic mean operator [5], induced OWA operator [6],
and generalized OWA operator [7]. All of these operators are also extended to various environments,
and have generated various operators such as the uncertain OWA operator [8], linguistic aggregation
operators [9–11], intuitionistic fuzzy aggregation operators [12], hesitant aggregation operators [3], etc.

Among these operators, the most well-known aggregation operator is OWA operator, which is
proposed by Yager [2]. The key issue of the OWA operator is to determine its associated weights.
A lot of research has been done to obtain the weights. Yager [2] proposed the linguistic quantifier,
orness measure, and dispersion measure. O’Hagan [13] developed a procedure to generate the
weights, which have a predefined degree of orness, and maximized the entropy of the OWA weights.
The procedure can be solved by the Lagrange multiplier [14]. Filev and Yager [15] introduced
exponential OWA operators to generate OWA weights satisfying a given degree of orness. Xu [16]
developed a normal distribution to determine the OWA weights.

The above proposed operators are usually used for multiple attribute decision making problems.
As far as we know, in real situations, there are many time series problems, such as weather forecast,
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stock, import trade, and so on. It is obvious that the time factor should be also considered. However,
the exiting operators fail to consider this face. Further, the proposed method to obtain weights is
always objective, as there is no relationship between the values and the weights. Generally, the time
series data are relevant before and after. Thus, it is very important to develop an aggregation method
that considers the time series values and relationships of these data at the same time. In order to
overcome the drawbacks of the existing methods, we develop a new aggregation operator, which is
based on the visibility graph (VG) and power geometric (PG) aggregation operator.

VG is proposed by Lacasa et al. [17], which is a powerful tool used to convert a time series to a
network. The time series data are plotted by using the vertical bars. If the top of two bars can be linked
without interruption by the middle bars, then the two bars are called “visibility.” We develop a visibility
matrix to denote the links of the time series data. The visibility only denotes whether the two values
are linked, but their similarities are not considered. The power average (PA) aggregation operator is
proposed by Yager [18] and is extended to the power geometric (PG) aggregation operator (Xu and
Yager [19]) and other types [20–25]. The PA operator uses the support function to consider the similarity
of two values, and then the similarities between one argument and all the other values are obtained,
which is considered as the weight of the argument. However, the weight of each argument depends
support of all the other arguments. In this paper, we integrate the above two cases, which consider
not only the links, but also the similarity. Based on the VG, we only consider those arguments that
are linked with the argument, and the similarities of these linked data are computed, which is more
objective and reasonable in the time series.

There are some challenges for the time series aggregation problem that need to be tackled further:

(1) How to determine the weights of the time series values and that the weights are obtained in a
more objective way?

(2) How to consider the relationships of in time series values?

The aim of the paper is to tackle these problems. The contributions of the paper are:

(1) A new aggregation operator, namely the visibility graph power geometric (VGPG) aggregation
operator, is proposed to aggregate the time series values.

(2) A new support function is proposed to denote the support of the two values when they
have visibility.

(3) Based on the support function and visibility matrix, a new objective weight determination method
for the VGPG operator is developed.

The reminders of the paper are organized as follows. Section 2 introduces some basic concepts of
the OWA operator, PA operator, PG operator, and VG. Section 3 develops a new operator called VGPG
aggregation operator. Some properties of the VGPG are investigated. In Section 4, a case study about
water, energy, and food efficiency evaluation in China is illustrated to show the effectiveness of the
proposed method. Further, the comparative analysis with the existing operators are offered to show
the advantages of the proposed method. Finally, the conclusions are given in Section 5.

2. Preliminaries

This section introduces the OWA operator, PA operator, PG operator, VG, and VGPA operator.

2.1. The OWA, PA, and PG Operators

Yager [2] first introduced the OWA operator.

Definition 1. An OWA operator of dimension n is a mapping: F: Rn
→R, that has an associated weighting

vector w = (w1,w2, . . . ,wn)T, such that
∑n

i=1 wi = 1



Int. J. Environ. Res. Public Health 2020, 17, 3891 3 of 15

, wi∈ [0,1], and

OWA(a 1, a2, . . . , an) =
n∑

i=1

wiaσ(i) (1)

where aδ(i) is the ith largest value of the collection {a1,a2, . . . ,an}.

The key issue of the OWA operator is to determine its weights. At present, there are many methods
to obtain the OWA weights [16], such as the linguistic quantifiers [2], orness measure, and dispersion
measure. O’Hagan [13] used the two measures to generate the OWA weights that have maximized the
entropy and a have predefined degree of orness. It needs to solve the following constrained nonlinear
optimization method:

max Disp(w) = −
n∑

i=1

wiln(w i) (2)

s.t.


orness(w) = 1

n−1

n∑
i=1

(n− i)wi= α, 0 ≤ α ≤ 1
n∑

i=1
wi= 1, 0 ≤ wi ≤ 1, i = 1, 2, . . . , n

The problem (2) was further investigated by Fullér and Majlender [14].
Yager [18] introduced the PA operator. It is a nonlinear weighted-average operator, which can be

defined as follows.

Definition 2. Let {a1,a2, . . . ,an} be a collection of data, the PA operator is defined as:

PA(a 1, a2, . . . , an) =

∑n
i=1(1 + T(a i)ai∑n

i=1(1 + T(a i

) (3)

where

T(ai) =
n∑

j = 1
j , i

Sup(ai, a j), (4)

and Sup(ai,bj) is the support for ai from aj; thus, T(ai) is the total support for ai from all the other values except
itself. Further, the support function Sup(a,b) should satisfy the following properties:

(1) Sup(a,b) ∈ [0,1];
(2) Sup(a,b) = Sup(b,a);
(3) Sup(a,b) ≥ Sup(x,y), if |a − b|<|x − y|.

The property (1) denotes that the support of any two values is between 0 and 1. Property (2)
indicates that support between any two values a and b is equal. Property (3) denotes that if the distance
of any two values a and b is smaller than the other two values x and y, then the support of a and b is
larger. The support is a similarity function; the closer the two values, the more they support each other.

Based on the PA operator and the geometric mean, Xu and Yager [19] defined the power geometric
(PG) operator.

Definition 3. Let {a1,a2, . . . ,an} be a collection of data, the PG operator is defined as:

PG(a1, a2, . . . , an) =
n∏

i=1

a

1+T(ai)∑n
i=1 (1+T(ai))

i (5)
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where {a1,a2, . . . ,an} is a collection of arguments, and T(ai) satisfies Equation (4). Obviously, the PG operator is
a nonlinear weighted-geometric aggregation operator.

2.2. The Visibility Graph

The VG method was first proposed by Lacasa et al. [17], and it can convert a time series into a
graph. Since its appearance, it has received great attention [26–29]. In the VG method, the time series
is transformed into a network topology. The properties of the time series are conserved in the graph
topology. The values of the time series are plotted by using vertical bars. For example, in Figure 1,
there are three time series (t1,y1), (t2,y2), and (t3,y3). At time t1, the value is y1, at time t2, the value is y2,
and at time t3, the value is y3. Thus, we can plot the time series by the vertical bars. The horizontal is
time, and vertical is the value. The line slope between two tops at times t1 and t2 is (y2 − y1)/(t2 − t1),

and the linear equation is: y =
(y 2−y1)
(t 2−t1)

t+ y1t2−y2t1
t2−t1

. Thus, at the time t3 between t1 and t2 (i.e., t1 < t3

< t2), if the value y3 is smaller than
(y 2−y1)
(t 2−t1)

t3 +
y1t2−y2t1

t2−t1
= y2 +

(y2−y1)(t3−t2)
t2−t1

, then the top at times t1

and t2 (See Figure 1a) can be linked without interruption; otherwise, they cannot be linked. That is,
we cannot see y2 (at time t2) from y1 (at time t1) (See Figure 1b). That is to say, if there is a straight
line that connects two series data, this “visibility line” does not intersect any intermediate data height.
This is the visibility criteria. Thus, the visibility is defined as follows.
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Figure 1. The explanation of VG. The explanation of VG. (a) Thus, at the time t3 between t1 and t2

(i.e., t1 < t3 < t2), if the value y3 is smaller than (y2−y1)
(t2−t1)

t3 +
y1t2−y2t1

t2−t1
= y2 +

(y2−y1)(t3−t2)
t2−t1

, then the top at
times t1 and t2 can be linked without interruption; otherwise, they cannot be linked; (b) y2 (at time t2)
from y1 (at time t1) can not be seen.

Definition 4 [17]. Two time series data (t1,y1) and (t2,y2) have visibility for any other data (t3,y3) such that t1

< t3 < t2 satisfies:

y3 < y2 + (y1 − y2)
t2 − t3

t2 − t1
(6)

Example 1. Assume there is a time series of eight values {85,60,70,75,65,65,50,72} from time t1 to t8, and the
associated visibility graph is shown in Figure 2. In Figure 2a, the histogram shows a time series with eight data
values. The first bar links the second, the third, the fourth, and the eighth bars because the tops of these bars can
be seen from the first bar. Other links can be explained in the same way. Figure 2b is obtained by Equation (6),
which is the topology of Figure 2a, and is called an associated graph. In the graph, each node corresponds to
series data in the same order. The visibility rays in the histogram of Figure 2a define the links connecting the
nodes in the graph of Figure 2b.
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The associated graph extracted from a time series has the following properties:

(1) Connected: each node connects with its nearest left and right neighbor nodes.
(2) Undirected: there is no direction defined in the links.
(3) Invariant under affine transformations of the series data: the visibility criteria is invariant under

the rescaling of both the horizontal and vertical axes.
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Figure 2. The visibility graph of Example 1. (a) the histogram shows a time series with eight data
values; (b) The visibility rays in the histogram define the links connecting the nodes in the graph.

2.3. Visibility Graph Power Averaging Operator

Based on the PA operator and VG, Jiang et al. [30] proposed the visibility graph power averaging
(VGPA) operator, and it is defined as follows:

Definition 5 [30]. VGPA operator is a mapping VPGA: In
→I, I∈R, where

VGPA(a1, a2, . . . , an) =

∑n
i=1 (1 + T(ai))ai∑n
i=1 (1 + T(ai))

, (7)

where ai is the ith value in the time series, and where

T(ai) =
n∑

j = 1
j , i

Sup(ai, a j). (8)
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Jiang et al. [30] used the distribution to reflect the important part of a vertex, and defined the Sup(ai,aj) in
the VG as:

Sup(ai, a j) =
1

d2
i j

. (9)

Thus,

T(ai) =
n∑

j = 1
j , i

Sup(ai, a j) =
n∑

j = 1
j , i

1
d2

i j

(10)

where dij = |i−j| is the distribution from time ti to tj, and ai and aj are connected.

Remark 1. It should be noted that Equation (10) does not have the property of support. For the data in Example
1, a1 = 85, a3 = 70, a7 = 50, and a8 = 72; we know that |a1 − a3| = 15 < |a7 − a8| = 22, but Sup(a1,a3) = 1/22 =

1/4 and Sup(a7,a8) = 1/12 = 1 do not satisfy property 3. Thus, a new support function for the visibility graph
needs to be designed.

3. Visibility Graph Power Geometric Operator

Based on the VG and PG operator, in the following, we present a new operator called a visibility
graph power geometric (VGPG) operator.

Definition 6. VGPG operator is a mapping VGPG: In
→I, I∈R,

VGPG(a1, a2, . . . , an) =
n∏

i=1

a

1+T(ai)∑n
i=1 (1+T(ai))

i (11)

where {a1,a2, . . . ,an} can be a time series, and T(ai) satisfies Equation (8).

Obviously, the VGPG operator is a nonlinear weighted-geometric aggregation operator. As T(ai)
is the support of the argument ai from all the other time series values aj (j = 1, . . . ,n, j , i). The weight
(1 + T(ai))/

∑n
i=1(1 + T(ai)) of the argument ai depends on all the other input series aj (j = 1, . . . ,n, j , i),

which can support each other in the geometric aggregation process. As we have pointed out in Remark
1, Equations (9) and (10) do not have the property of support function. Thus, we need to design another
way to compute the weight. From the VG theory, if two nodes are connected, it can be regarded that
the two nodes are supported each other. By Equation (6), we can develop a visibility matrix

V = (vij)n×n (12)

where vij = 1 if two values (ti,ai) and (tj,aj) have visibility (i.e., there is a link from ai to aj); otherwise,
vij = 0. Clearly, V is symmetric matrix. Thus, we define the support

Sup(ai, a j) =

{
1− d(ai, a j), vi j = 1
0, vi j = 0

(13)

where
d(ai,aj) = |ai − aj|. (14)

Here, we assume that ai ∈ [0,1]; otherwise, it needs to be normalized into the scope [0,1]. Clearly,
Equation (13) satisfies the properties of the support function. All the support values obtained by
Equation (13) can form a support matrix Sup = (Sup(ai,aj))n×n.
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Furthermore, we denote the following:

γI = 1 + T(ai) (15)

and
wi =

γi
n∑

i=1
γi

. (16)

Obviously, wi ≥ 0 and
∑n

i=1 wi = 1 can be looked at as the weight of ai. Then, VGPG can be
rewritten as:

VGPG(a1, a2, . . . , an) =
n∏

i=1

awi
i , (17)

which is a geometric mean aggregation operator.
In the following, we investigate some properties of the proposed VGPG operator.

Theorem 1. Letting Sup(ai,aj) = k for all i , j, then

VGPG(a1, a2, . . . , an) =
n∏

i=1

(ai)
1/n, (18)

which indicates that when all the supports are the same, the VGPG operator is reduced to a simple geometric
averaging operator.

Proof. If Sup(ai,aj) = k, and for all i , j, then

T(ai) = (n − 1)k. (19)

Thus,

VGPG(a1, a2, . . . , an) =
n∏

i=1

a
1+(n−1)k∑n

i=1 (1+(n−1)k)

i =
n∏

i=1

a
1+(n−1)k

n(1+(n−1)k)
i =

n∏
i=1

(ai)
1/n,

which is a simple geometric averaging operator. �

Theorem 2. (Boundness)
min

i
(ai) ≤ VGPG(a1, a2, . . . , an) ≤ max

i
(ai).

Proof. Since min
i
(ai) ≤ ai ≤ max

i
(ai), then

n∏
i=1

(min
i

ai)

1+T(ai)∑n
i=1 (1+T(ai)) ≤

n∏
i=1

a

1+T(ai)∑n
i=1 (1+T(ai))

i ≤

n∏
i=1

(max
i

ai)

1+T(ai)∑n
i=1 (1+T(ai)) .

That is:
min

i
(ai) ≤ VGPG(a1, a2, . . . , an) ≤ max

i
(ai). (20)

�

Theorem 3. (Idempotency): If ai = a for all i = 1,2, . . . ,n, then

VGPG (a1,a2, . . . ,an) = a.
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Proof. According to the property of Boundness, we have

a ≤ VGPG(a1,a2, . . . ,an) ≤ a.

�

Theorem 4. VGPG (ra1,ra2, . . . ,ran) = rVGPG(a1,a2, . . . ,an), where r > 0.

Proof. ra1,ra2, . . . ,ran also satisfy Equation (6); therefore, the visibility matrices of a1,a2, . . . ,an and
ra1,ra2, . . . ,ran are the same. By Equations (13) and (14), we have

Sup(ai,aj) = Sup(rai,raj)

and
T(ai) = T(rai).

Thus,

VGPG(ra1, ra2, . . . , ran) =
n∏

i=1

(rai)

1+T(ai)∑n
i=1 (1+T(ai)) = r

n∏
i=1

a

1+T(ai)∑n
i=1 (1+T(ai))

i = rVGPG(a1, a2, . . . , an),

which completes the proof of Theorem 4. �

Lemma 1. Let xj > 0, λj > 0, j = 1,2, . . . , n, and
∑n

j=1 λ j = 1, then

n∏
j=1

(x j)
λ j ≤

n∑
j=1

λ jx j. (21)

By Lemma 1, we have the following theorem.

Theorem 5. Letting {a1,a2, . . . ,an} be a time series, then

VGPG (a1,a2, . . . ,an) ≤ VGPA (a1,a2, . . . ,an). (22)

4. Application in Water, Energy, and Food Efficiency Evaluation

In this section, a case study for the water resource allocation management problem in China is
illustrated to show the application of the proposed VGPG operator. Further, comparisons with the
existing methods are furnished to show the advantages of the proposed method.

4.1. The Case Study

Water resources, energy, and food are the basic resources for human survival, and are also
important research topics for sustainable development for the regional economy and ecological
environment. With the development of economics in China, the water resources decrease, and the
demand for energy increases. Meanwhile, the food production is affected by many factors. It is
necessary to study the efficiency among water, energy, and food. In this paper, we will study the
comprehensive efficiency of each province from 2007 to 2016. The water/energy-food (W/E-F) coupling
efficiencies of 31 provinces from the year 2007 to 2016 in China are listed in Table 1. The W/E-F coupling
efficiency means the efficiency of water and energy to food, that is, the input is water and energy,
and the output is water. The aggregate values of each province in a period time (such as from 2007
to 2016) could be provided to the people’s central government of China to see the comprehensive



Int. J. Environ. Res. Public Health 2020, 17, 3891 9 of 15

efficiency performances. The data are from Zhang and Xu [31]. It is obvious that the data are a time
series, and the VG is suitable for dealing with this problem.

Table 1. The 2007–2016 W/E-F coupling efficiency value of each region.

Province 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Beijing 0.239 0.336 0.335 0.412 0.36 0.16 0.184 0.087 0.132 0.122
Tianjin 1 1 1 1 1 1 1 0.277 0.308 0.348
Hebei 0.726 0.672 0.987 0.761 0.917 0.501 0.517 0.174 0.17 0.159
Shanxi 1 1 1 0.817 0.941 0.896 0.942 1 1 1

InnerMongolia 0.546 0.584 0.554 0.462 0.593 0.642 0.604 0.946 0.991 0.961
Liaoning 0.517 0.527 0.48 0.359 0.497 0.298 0.32 0.155 0.182 0.194

Jilin 0.39 0.358 0.36 0.245 0.383 0.282 0.18 0.105 0.102 0.094
HeiLongJiang 0.728 0.663 0.655 0.493 0.571 0.373 0.31 0.206 0.206 0.189

Shanghai 0.607 0.693 0.551 0.674 1 0.371 0.42 0.176 0.175 0.157
Jiangsu 1 1 1 1 1 0.713 0.524 0.209 0.204 0.242

Zhejiang 0.597 0.79 0.907 0.966 0.939 0.427 0.423 0.162 0.2 0.197
Anhui 0.324 0.438 0.582 0.487 0.615 0.403 0.353 0.348 0.365 0.346
Fujian 0.399 0.379 0.399 0.348 0.438 0.346 0.387 0.164 0.174 0.175
Jiangxi 0.511 0.558 0.395 0.472 0.48 0.183 0.161 0.126 0.099 0.115

Shandong 1 1 1 0.961 0.963 0.541 0.549 0.267 0.264 0.262
Henan 0.583 0.544 0.577 0.695 0.788 0.314 0.293 0.267 0.193 0.161
Hebei 0.633 0.758 0.69 0.665 0.706 0.279 0.268 0.174 0.14 0.132
Hunan 0.39 0.374 0.476 0.424 0.426 0.2 0.176 0.132 0.105 0.099

Guangdong 0.763 0.757 0.697 0.669 0.86 0.453 0.281 0.144 0.144 0.138
Guangxi 0.345 0.505 0.501 0.484 0.467 0.261 0.181 0.101 0.085 0.084
Hainan 0.618 0.561 0.449 0.467 0.36 0.197 0.215 0.084 0.096 0.106

Chongqing 0.289 0.372 0.341 0.302 0.343 0.182 0.198 0.15 0.166 0.169
Sichuan 0.523 0.592 0.606 0.49 0.484 0.382 0.274 0.164 0.167 0.188
Guizhou 0.677 0.668 0.788 0.573 0.426 0.433 0.271 0.392 0.362 0.368
Yunnan 0.388 0.481 0.46 0.389 0.445 0.448 0.48 0.228 0.219 0.248
Xizang 0.118 0.097 0.088 0.07 0.083 0.067 0.052 0.019 0.025 0.044
Shaanxi 0.77 0.781 0.897 0.829 0.857 1 1 1 1 1
Gansu 0.438 0.436 0.323 0.251 0.351 0.334 0.273 0.124 0.126 0.124

Qinghai 0.897 1 1 1 1 1 1 0.363 0.269 0.292
Ningxia 0.524 0.566 0.492 0.471 0.595 0.603 0.704 0.426 0.407 0.468
Xinjiang 0.929 1 1 0.763 0.819 1 1 1 1 1

In order to compute the comprehensive efficiency of each province, the following steps are involved.
For the data of Beijing, the VG is shown in Figure 3. The horizontal line (x axis) denotes a time

series of 10 years, and the vertical line (y axis) denotes the efficiencies values for each year in Figure 3a,
and Figure 3b is the topology of Figure 3a. By Equation (12), the visibility matrix of Beijing is:

V =



0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 1
0 0 0 1 0 1 1 0 1 1
0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 1 0 1
0 0 0 1 1 0 1 0 1 0


By Equations (13) and (14), the support matrix of Beijing is:
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Sup =



0 0.903 0 0 0 0 0 0 0 0
0.903 0 0.999 0.924 0 0 0 0 0 0

0 0.999 0 0.923 0 0 0 0 0 0
0 0.924 0.923 0 0.948 0 0 0 0 0.71
0 0 0 0.948 0 0.8 0.824 0 0.772 0.762
0 0 0 0 0.8 0 0.976 0 0 0
0 0 0 0 0.824 0.976 0 0.903 0.948 0.938
0 0 0 0 0 0 0.903 0 0.955 0
0 0 0 0 0.772 0 0.948 0.955 0 0.99
0 0 0 0.71 0.762 0 0.938 0 0.99 0


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Figure 3. The visibility graph of Beijing. (a) the histogram shows a time series with eight data values; 
(b) The visibility rays in the histogram define the links connecting the nodes in the graph. 
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Figure 3. The visibility graph of Beijing. (a) the histogram shows a time series with eight data values;
(b) The visibility rays in the histogram define the links connecting the nodes in the graph.

By Equations (8), (15), and (16), the weights of different years of Beijing are: w = (0.0494, 0.0992,
0.0758, 0.1169, 0.1325, 0.072, 0.145, 0.0741, 0.121, 0.1141).

It shows that the year 2013 has the largest weight, and the year 2011 has the second largest
weight, although these two years have the same visibilities. Similarly, we can obtain the weights for
other provinces, which are depicted in Table 2. Then, by Equation (17), we can obtain the VGPG
aggregated value of Beijing, which is 0.2135. The weights of OWA are shown in Table 3. In the VGPA
aggregation process, we also adopt Equation (13) as the support function.The aggregated values of the
other provinces can be obtained in the same way, which are listed in Table 4. From Table 4, we can
see that Shanxi has the largest W/E-F coupling efficiency and ranks first, and then Xinjiang is second,
and so on. From Table 1, we also know that, although Tianjing has the seven times largest efficiency,
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the efficiencies in 2014, 2015, and 2016 are smaller; thus, in Table 4, its overall VGPG aggregated
efficiency ranks fourth. It is similar for Qinghai.

Table 2. The weights of the proposed method.

Province w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

Beijing 0.0494 0.0992 0.0758 0.1169 0.1325 0.072 0.145 0.0741 0.121 0.1141
Tianjin 0.0676 0.1014 0.1014 0.1014 0.1014 0.1014 0.0991 0.1073 0.1094 0.1094
Hebei 0.0813 0.0796 0.125 0.0792 0.1348 0.0777 0.1373 0.0803 0.1178 0.087
Shanxi 0.0519 0.0779 0.148 0.0699 0.1483 0.0988 0.1256 0.15 0.0779 0.0519

InnerMongolia 0.0634 0.1362 0.1326 0.0687 0.1341 0.1352 0.0649 0.1436 0.0724 0.0488
Liaoning 0.052 0.1022 0.0996 0.0716 0.1781 0.0725 0.1402 0.0733 0.1177 0.0929

Jilin 0.0826 0.0829 0.1015 0.0578 0.1652 0.1104 0.098 0.0939 0.1146 0.0931
HeiLongJiang 0.0675 0.069 0.1102 0.0651 0.1478 0.1035 0.1261 0.0833 0.1261 0.1013

Shanghai 0.0715 0.1261 0.0932 0.1001 0.1368 0.0658 0.131 0.0831 0.1109 0.0815
Jiangsu 0.0571 0.0856 0.0856 0.0856 0.1051 0.1011 0.1261 0.1041 0.1236 0.1261

Zhejiang 0.0589 0.0877 0.092 0.095 0.1129 0.081 0.1555 0.088 0.1303 0.0987
Anhui 0.0633 0.066 0.1076 0.0668 0.1584 0.1118 0.1124 0.1121 0.1363 0.0653
Fujian 0.1043 0.0783 0.1294 0.0756 0.1505 0.0759 0.1392 0.0732 0.0999 0.0737
Jiangxi 0.0453 0.1074 0.0641 0.0889 0.1439 0.0839 0.1281 0.1062 0.1048 0.1275

Shandong 0.0561 0.0842 0.1101 0.0831 0.1326 0.0721 0.1326 0.1041 0.1126 0.1124
Henan 0.1158 0.1132 0.0959 0.113 0.1434 0.0625 0.0863 0.1067 0.0824 0.0808
Hebei 0.0455 0.1132 0.0945 0.0933 0.1543 0.0622 0.1261 0.1044 0.1035 0.103
Hunan 0.069 0.0686 0.1122 0.0702 0.1555 0.0655 0.1318 0.1096 0.109 0.1085

Guangdong 0.0671 0.1098 0.0868 0.0855 0.146 0.1039 0.1119 0.0889 0.1119 0.0883
Guangxi 0.045 0.0694 0.0729 0.0726 0.1311 0.1067 0.1311 0.1106 0.1304 0.1303
Hainan 0.0657 0.0879 0.0675 0.1564 0.1192 0.0663 0.1465 0.0672 0.1229 0.1004

Chongqing 0.0461 0.0928 0.0945 0.0703 0.1944 0.0679 0.1379 0.0901 0.1148 0.0913
Sichuan 0.0467 0.0706 0.1047 0.0696 0.1247 0.106 0.111 0.0934 0.1291 0.1442
Guizhou 0.0619 0.0618 0.1419 0.1269 0.0749 0.134 0.0584 0.1335 0.0931 0.1136
Yunnan 0.0419 0.1277 0.1287 0.0631 0.1286 0.108 0.1574 0.0817 0.0813 0.0817
Xizang 0.0915 0.0748 0.0934 0.0561 0.1662 0.0927 0.1113 0.0744 0.1106 0.1288
Shaanxi 0.0832 0.0836 0.1613 0.1086 0.1102 0.1333 0.0872 0.0872 0.0872 0.0582
Gansu 0.051 0.1408 0.0967 0.093 0.1218 0.1177 0.1148 0.0728 0.0983 0.0929

Qinghai 0.0648 0.099 0.1025 0.1025 0.1025 0.1025 0.0999 0.1093 0.1077 0.1093
Ningxia 0.0466 0.1338 0.1092 0.0895 0.1339 0.0688 0.1578 0.0871 0.0862 0.0871
Xinjiang 0.0601 0.0913 0.1429 0.1082 0.1117 0.1429 0.0935 0.0935 0.0935 0.0624

Table 3. The OWA weights.

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

α = 0.1 0.0007 0.0014 0.0029 0.0061 0.0127 0.0268 0.0563 0.1186 0.2495 0.5250
α = 0.4 0.0576 0.0644 0.0720 0.0804 0.0899 0.1005 0.1123 0.1256 0.1403 0.1569
α = 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
α = 0.9 0.5250 0.2495 0.1186 0.0563 0.0267 0.0127 0.0061 0.0029 0.0014 0.0007

4.2. Comparative Analysis

In order to show the performances of the proposed method, we provide the comparisons with the
existing methods. We also provide the VGPA values, and the OWA aggregation values by different
orness degrees α (α = 0.1,0.4,0.5,0.9). The weights of OWA are shown in Table 3. In the VGPA
aggregation process, we also adopt Equation (13) as the support function. One reason is that the
support function proposed by Jiang et al. [30] does not satisfy the third property as verified in Remark
1, and another is to compare the performances with the proposed VGPG operator under the condition
that they have the same weights. All the aggregated values by these different operators are listed in
Table 4 and described in Figure 4.

From Table 4, we can see that Shanxi ranks first, Xinjiang ranks second except for α = 0.9,
and Shanxi ranks third for all the operators. Tianjin ranks fourth, Qinghai ranks fifth except for α = 0.1,
and Xizang ranks last for all the operators. Other rankings fluctuate by different operators.
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From Figure 4, it is obvious that the values are very different when the α are different. Specifically,
the aggregation values of each alternative increase when the value of α increases. For example, the OWA
aggregation value of Beijing is 0.1126 when α = 0.1, 0.2033 when α = 0.4, 0.2367 when α = 0.5, and 0.3751
when α = 0.9. This also happens for the other alternatives. What is more, we can find that the weights
increase steadily when α < 0.5 from Table 4, and the weight of last time is larger than 0.5. Because
the OWA aggregation first reorders the input arguments in descending order, and the largest input
argument has the lowest weight and the smallest input argument has the largest weight, that is why it
has the smallest OWA aggregation value when α = 0.1. On the contrary, the weights decrease when α
> 0.5, and it have the largest OWA aggregation value when α = 0.9. Further, the OWA aggregation
will become the average aggregation operator as all the weights have the same importance (wi = 1/n).
Overall, the weights are determined when α is specified. This shows that the weights of OWA obtained
by the maximization of the entropy and orness degree show a lack of objectivity. The relationship of
input argument information is not well considered. As the weights of OWA obtained by Equation (2)
are in ascending or descending order, it is difficult for the decision maker to choose the best value of α.

For the VGPG operator and VGPA operator, it shows that all the VGPG aggregation values are
smaller than VGPA aggregation values, and this verifies Theorem 5. All the aggregation values of VGPG
and VGPA lie between the results of the OWA operator when α = 0.1 and α = 0.9. More specifically,
the results of the VGPG operator are smaller than the results of the OWA operator when α = 0.5, and
the results of the VGPA operator are larger than the results of the OWA operator when α = 0.4. For the
VGPG and VGPA operators, the polyline charts are almost consistent with the polyline chart of OWA
aggregation when α = 0.5. The change tendency of the three operators is almost same, which also
shows that the proposed VGPG operator is correct and effective. However, the weights of the VGPG
operator are objective as they are data driven, i.e., the weights of the VGPG operator not only consider
the visibility, but also the similarity (or support) with the connected values.
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Table 4. The aggregation results by different operators.

Province VGPG Rank VGPA Rank α = 0.1 Rank α = 0.4 Rank α = 0.5 Rank α = 0.9 Rank

Beijing 0.2135 29 0.2409 30 0.1126 27 0.2033 30 0.2367 30 0.3751 29
Tianjin 0.6824 4 0.7753 4 0.3704 6 0.7075 4 0.7933 4 0.9965 4
Hebei 0.4743 11 0.5775 9 0.2057 15 0.4684 10 0.5584 10 0.9065 10
Shanxi 0.9594 1 0.9609 1 0.8677 1 0.9427 1 0.9596 1 0.9991 2

InnerMongolia 0.6595 6 0.6794 6 0.5096 4 0.6369 6 0.6883 7 0.9383 8
Liaoning 0.3303 20 0.3600 20 0.1852 20 0.3101 21 0.3529 21 0.5080 22

Jilin 0.2214 28 0.2549 29 0.1116 28 0.2143 29 0.2499 29 0.3754 28
HeiLongJiang 0.3773 18 0.4236 18 0.2156 13 0.3787 16 0.4394 17 0.6783 16

Shanghai 0.4298 13 0.5126 12 0.1934 17 0.4043 14 0.4824 14 0.8352 11
Jiangsu 0.52 9 0.6347 8 0.2604 11 0.5865 7 0.6892 6 0.9895 6

Zhejiang 0.4478 12 0.5458 10 0.2102 14 0.4672 11 0.5608 9 0.9184 9
Anhui 0.4262 14 0.4381 17 0.3378 8 0.3988 15 0.4261 18 0.5698 19
Fujian 0.3189 21 0.3376 22 0.1883 18 0.2908 22 0.3209 22 0.4161 26
Jiangxi 0.2371 26 0.2938 24 0.1200 25 0.2570 24 0.3100 24 0.5184 21

Shandong 0.5654 7 0.6568 7 0.3033 10 0.5854 8 0.6807 8 0.9846 7
Henan 0.4224 15 0.4783 15 0.2029 16 0.3778 17 0.4415 16 0.7102 15
Hebei 0.3609 19 0.4482 16 0.1630 22 0.3695 18 0.4445 15 0.7162 13
Hunan 0.2318 27 0.275 26 0.1184 26 0.2371 27 0.2802 26 0.4426 25

Guangdong 0.3967 16 0.4972 14 0.1700 21 0.4064 13 0.4906 13 0.7969 12
Guangxi 0.2095 30 0.2682 27 0.1042 30 0.2491 25 0.3014 25 0.4879 23
Hainan 0.2491 24 0.3088 23 0.1074 29 0.2575 23 0.3153 23 0.5591 20

Chongqing 0.2414 25 0.2556 28 0.1630 23 0.2267 28 0.2512 28 0.3505 30
Sichuan 0.3177 22 0.359 21 0.1876 19 0.3355 20 0.3870 19 0.5758 18
Guizhou 0.4775 10 0.5013 13 0.3222 9 0.4484 12 0.4958 12 0.7152 14
Yunnan 0.384 17 0.3993 19 0.2443 12 0.3479 19 0.3786 20 0.4724 24
Xizang 0.0581 31 0.0659 31 0.0280 31 0.0569 31 0.0663 31 0.1045 31
Shaanxi 0.9073 3 0.9116 3 0.7934 3 0.8852 3 0.9134 3 0.9968 3
Gansu 0.2587 23 0.5847 25 0.1405 24 0.2428 26 0.2780 27 0.4134 27

Qinghai 0.6745 5 0.7676 5 0.3582 7 0.6943 5 0.7821 5 0.9959 5
Ningxia 0.5332 8 0.5412 11 0.4283 5 0.4996 9 0.5256 11 0.6478 17
Xinjiang 0.9455 2 0.9499 2 0.8220 2 0.9284 2 0.9511 2 0.9993 1

5. Conclusions

In the real decision-making process, there are so many time series values that need to be aggregated.
In this paper, motivated by the PG operator and the visibility graph, we develop a VGPG operator.
First of all, all the time series data can be transformed into a VG. Then, according to the links among
different nodes, the visibility matrix can be obtained. According to the visibility of two nodes, we design
a new support function between two values. Then, all the support degrees from others of one value can
be obtained. Finally, the overall value of each alternative at different times can be aggregated by the
developed VGPG operator. Further, some properties of the proposed operator, such as boundness and
idempotency, are investigated. Finally, a real application for water, energy and food coupling efficiency
evaluation in China is illustrated, and comparisons with the existing methods are also furnished to
show the feasibility and advantages of the proposed method.

Compared with the existing method, the proposed method has the following advantages:

(1) The time series data are transformed into a VG, and a visibility matrix is developed to denote the
links of different data, while the other methods do not consider the relationships of different data.

(2) The support function is developed to measure the similarity of two linked values, while the
power aggregation measures the similarity between any two values. It does not consider whether
the two values are linked.

(3) The weights determined by the VG and support function are more objective and reasonable,
while the weights of OWA obtained by various methods are stationary when the parameters are
specified. These methods do not consider the relationship of the input arguments.

In the future, we will explore the proposed aggregation operator in other areas, such as
economics [32], weather forecast renewable energy sources [33], and so forth. Another prominent
interesting future work is to propose the VG-POWA, VG-POWG operators, and this extends to
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other types of values, such as the intuitionistic fuzzy set [34–36], interval-valued intuitionistic fuzzy
set [37], Pythagorean fuzzy group decision making [38], hesitant fuzzy set [39–41], neutrosophic
information [42], etc.
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