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Abstract

Applying deep learning to the field of preclinical in vivo studies is a new and exciting prospect

with the potential to unlock decades worth of underutilized data. As a proof of concept, we

performed a feasibility study on a colitis model treated with Sulfasalazine, a drug used in

therapeutic care of inflammatory bowel disease. We aimed to evaluate the colonic mucosa

improvement associated with the recovery response of the crypts, a complex histologic

structure reflecting tissue homeostasis and repair in response to inflammation. Our

approach requires robust image segmentation of objects of interest from whole slide

images, a composite low dimensional representation of the typical or novel morphological

variants of the segmented objects, and exploration of image features of significance towards

biology and treatment efficacy. Both interpretable features (eg. counts, area, distance and

angle) as well as statistical texture features calculated using Gray Level Co-Occurance

Matrices (GLCMs), are shown to have significance in analysis. Ultimately, this analytic

framework of supervised image segmentation, unsupervised learning, and feature analysis

can be generally applied to preclinical data. We hope our report will inspire more efforts to

utilize deep learning in preclinical in vivo studies and ultimately make the field more innova-

tive and efficient.

Introduction

Histology data derived from tissues is indispensable for evaluating drug efficacy in preclinical

intervention studies. We used Dextran Sodium Sulfate (DSS) induced colitis models in our fea-

sibility study to evaluate epithelial-based histological healing. Crypts of Lieberkuhn are moat-

like invaginations of the epithelium around the villi. The stem cells from the invaginations’

base continually divide and provide the source of epithelial cells in the crypts and villi.
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Cryptitis and crypt distortion are often described as pathological features of human inflamma-

tory bowel disease (IBD). Ideally, a successful drug intervention will prevent crypt loss and

restore epithelial cell dynamics.

In the past, endeavors have been made to semi-quantitatively assess epithelial tissue injury

or healing, which have been used for preclinical model-based efficacy investigations [1–3]. For

colitis models, some researchers have used histological injury scores based on the proportional

damage within crypts [4, 5]. Other methods [6, 7] are based on pathological changes including

hyperplasia and goblet cell reduction [8]. Current proposed histology scoring systems include

crypt features as one of the components. A recent report of crypt associated injury and regen-

eration suggests the morphological variation in crypts are associated with the homeostasis-

injury-regeneration dynamic [9]. Despite efforts to develop improved scoring systems to assess

the crypts, the issue is that current scoring systems use labor intensive manual scoring that is

coarse-grained, and discord among experts is common [10]. Currently, there is a lack of both

reports and common consensus on the morphological changes of crypts observed under thera-

peutic intervention. To address these issues, we present a digital pathology workflow to detect

and segment crypts from WSIs, followed by extraction of minable features used for pre-clinical

efficacy screening.

Image segmentation of crypts contains challenges due to the morphological variation

related to the injury-regeneration dynamic. Both classical computer vision processing and

deep learning based methods have been successfully used for image segmentation in the past.

Segmentation of glandular structure can be achieved by color-gradient-based, morphology-

based [11, 12], or graph-based methods. Multiple convolutional neural network (CNN) archi-

tecture [13–15] based models have been proposed for Gland Segmentation in the Colon

Histology Images, thanks to the GlaS challenge [16]. Most of the deep learning based segmen-

tation models share the core idea of using a down-sampling path and an up-sampling path.

CUMedVision, the top model selected from the GlaS challenge, is a multi-level contextual fully

convolutional network (FCN) that requires post-processing of probability maps, including

smoothing with a disk filter and the radius, filling holes and removing small spurious segments

[17]. Feature Pyramid Network (FPN), which relies on pyramid feature maps over the input

image for feature extraction at multiple levels, has been reported to segment pixels at borders

within clustered objects such as cell clusters [18]. The advantage of this architecture is to take

dual signals such as cell and nucleus for fluorescence microscopy images [19]. It also requires

post-processing steps to improve the results. Pyramid scene parsing network (PSPNet) takes

into account the context of the whole image to predict the segmentation [20]. Finally, U-Net, a

competitive model, has been widely used for biomedical segmentation without complicated

post-processing steps.

The next challenge for pre-clinical study is that unseen variations of cells or cellular organi-

zation may occurs in the new experimental disease models. A new score system will be unlikely

generated. Direct examination of all ten thousand crpyts from high resolution WSIs is impos-

sible for humans, which is why a new strategy is needed. Ideally, we define and characterize

the pathological state based on histologic structural similarities. This goal can be achieved by

the construction of latent space representations of our segmented images, as latent space visu-

alization techniques allow humans to observe a massive number of the segmented objects in

one two dimensional (2D) map. To construct our visualization, we decided to use an autoen-

coder (AE), which performs a non-linear dimensionality reduction with the ability to learn

non-linear manifolds. We demonstrated that unsupervised learning can create representations

of sets of segmented crypts with different pathological states.

Current digital pathology tools allow us to measure the number and area of crypts, which

are then interpretable by human practitioners. On the other hand, use of more detailed non-
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linear information, which can be encoded by statistical features, is relatively rare, due to its dif-

ficulty for practitioners to interpret. However, non-linear information can still be extremely

useful. In this study, we present an end to end workflow (Fig 1) to show that texture-based sta-

tistical features can help to quantitatively evaluate the effects of drug treatments on the epithe-

lial tissue recovery. Our feasibility study suggests that a deep learning based approach can

accelerate the evaluation of preclinical studies from weeks to hours.

Materials and methods

Datasets description

Archived images with Hematoxylin and eosin stain (H&E) were retrieved for reanalysis from

one study pertaining to colitis models. Description of DSS induction protocol: Female C57BL/

6 mice weighing 21-24g were obtained from the Charles River and allowed to acclimate for a

minimum of one week prior to experimentation. Mice were kept on a 12 hour light dark cycle

and provided access to food and water ad libitum. DSS of 36,000–50,000 polymer MW (MP

Biomedical, 160110) was dissolved in water at a concentration of 3% w/v. On study day 0,

mice were randomly assigned to groups and given 3% DSS solution in water bottles. DSS sup-

plemented drinking water was provided for a total of five consecutive days. Mice were treated

with sulfasalazine (Spectrum Chemical Mfg.) at 600 mg/kg or solvent by oral gavage. All treat-

ments were administered twice daily for the duration of the experiment. A separate group of

untreated naïve mice were provided with water only. Mice were humanely euthanized on day

7 to collect tissue samples. Distal and middle sections of colon were collected, fixed in 10% for-

malin for 24 hours, transferred to 70% ethanol, and processed with standard preclinical

Fig 1. Comprehensive assessment of crypt microstructural changes during tissue injury and recovery a. standard of protocols to evaluate WSIs

using software assistant semi-quantitative assessment. b. Deep learning augmented computational workflow to process digitalized WSIs across

whole tissue fields with various localization.

https://doi.org/10.1371/journal.pone.0252429.g001
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protocols for tissue processing, embedding, cutting, and H&E staining. All experiments were

conducted in compliance with the rules set forth by the Boehringer Ingelheim site Institutional

Animal Use and Care Committee (IACUC) in accordance with the guidelines established in

the National Institutes of Health, Guide for the Care and Use of Laboratory Animals. The

study was conducted in Boehringer Ingelheim’s AAALAC (International, Association for the

Assessment and Accreditation of Laboratory Animal Care) accredited facility. The experimen-

tal protocol was reviewed and approved by the site’s IACUC. Experimentation was conducted

with consideration to minimize subjects’ pain and distress. Euthanasia was performed in

accordance with the guidelines established in the Panel on Euthanasia of the American Veteri-

nary Medical Association.

Digital image acquisition

Multiple WSIs were scanned 20X (0.5μm/pixel) using Leica Aperio AT 2 scanner. After detect-

ing the part of the image that contains the matter from WSI, all pixels foreground from each

WSI were extracted and saved as images. The tissue size from each slide ranges from 3000–

6000 pixel. The naïve group contained 73 total WSIs from 12 individual animals; each sample

had 4–7 WSIs. 17271 glands were segmented from this group. The DSS group contained 61

WSIs from 11 individual animals. 8070 glands were segmented from this group. Gland loss is a

hallmark for the DSS induced colitis. For the treatment group, we had 76 WSIs derived from

12 samples. Total number of segmented glands were 14317.

Training and validation set generation

To improve the training efficiency, we relied on random image tiling, followed by image aug-

mentation strategies to expand the training image sets to improve the model performance.

Training image tiles were generated using a sliding window approach applied on annotated

WSI. The width and height of the window size were random integer numbers between 256 to

768 pixels. The stride length ranged from 256 to 512 pixel. For each round of training tile gen-

eration, a new set of 100 tiles were generated from each annotated WSIs. These tiles were

resized to 512x512 pixel, which is the input size for the network.

Image augmentation

We generated augmented images before training the segmentation model. Typically, a com-

bination of affine transformations was used to randomly crop and resize image, apply gauss-

ian blur with random kernel, and rotate with random angle. Random resized cropping or

spatial augmentation is used to make model robust to changes in the scale and position of

segmentation objects [21]. The crops of random size of the original size in range 256–768

with a random aspect ratio of the original, followed by final resize to 512x512 (S1A Fig in S1

Appendix). We use this cropped window to scan the WSI with a random stride using integer

number between 256 to 512. Therefore, total number of tiles generated after scanning from

each slide reach about 100. For a training tiles dataset of size N, we can create a synthetic

dataset of 5N. For each round of training, we used total 800 tiles generated from all 8 anno-

tated WSIs. After five rounds, a total 4000 tiles can be used. Color augmentation is optional

and may be used if datasets are affected by multiple batches, fixation condition, overstaining

or understanding. As shown in S1B Fig in S1 Appendix, we found that spatial augmentation

improves the validation accuracy using Glas dataset. We included the results of accuracy

curve and metrics using Glas dataset in the supplement document. We only applied this dur-

ing training.
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Crypts segmentation

We used U-Net as our network architecture (Fig 2a). The input image tiles and their corre-

sponding segmentation maps from the annotated collection are used to train the network. All

images, including augmented images, were used to feed the network during the training, but

only the untransformed original images were used for validation sets. We split 80% for train-

ing, 20% for validation. After we created this pre-trained model, we continue to improve the

model by bootstrapping annotations using Quick Annotator’s approach [22] to accept to cor-

rect erroneously segmented structures identified from new samples. The overall training work-

flow is illustrated in Fig 3. For accurate prediction, the overlap-tile strategy was used to process

the output result (512×512 pixels). For each output tile, we only used an area (480x480 pixels)

from the center of the predicted results. To predict the pixels in the border region of the

Fig 2. A training workflow for histopathology lab. The decision make step is shown in text with question marker.

The arrows indicate the direction. After making the basic pre-trained model, the training can be implemented using

quick annotator or equivalent.

https://doi.org/10.1371/journal.pone.0252429.g002
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image, the missing area was extrapolated. We performed seven rounds of training. F1 and

Dice score were used to evaluate the segmentation model.

Representative learning of crypts using convolutional autoencoder

In this task, our goal is to distinguish or identify morphological variants of the crypts. Specifi-

cally, we are interested in variation in internal structures such as cellular component and secre-

tory content within each crypt. The variation in the shape and sizes of the crypts itself is not

important in this task. Therefore, we need to focus on the central and peripheral region that

Fig 3. a. Architecture of Multichannel Convolutional Networks used for Crypt Segmentation. The boxes represent

cross-sections of square feature maps. Number of map size dimensions were annotated on the lower left, and the

number of channels were labeled on the top of the correponding box. The leftmost input were 512×512 image tiles

sampled from the whole slide. The rightmost of the output is the CNN’s binary ring mask prediction. Arrows represent

operations and convolutions, b. Architecture of Autoencoder Network includes 4 steps. Step 1: the leftmost map

represents gland patches generated from Convolutional U-Net. Step 2: Random extraction of the 24x24 patch from

central and peripheral regions of the gland patch. Step 3: multiple channel convolutional autoencoder architecture.

Step 4: t-SNE visualization using data from bottom neck.

https://doi.org/10.1371/journal.pone.0252429.g003
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contain important internal structural of the crypts. As shown in Fig 2b, we sample both the

central region and the peripheral border of each segmented crypt to feed the multiple channel

autoencoder. For each of the segmented crypt image, 24 patches (24×24 pixels) were randomly

sampled from the central region and peripheral border of the segmented image. The input size

is 24×24 pixels with a total of 72 channels (3 RGB×24), for the autoencoders. The detailed

parameters were shown in S1J Fig in S1 Appendix. In the encoder network, the model down-

samples 4 times. In the decoder network, the model upsamples 4 times back to 24 x 24 x 36.

We obtained the encoded feature space from bottleneck, followed by t-SNE to generate a 2D

scatterplot. We used ReLU as the activation function, binary crossentropy as the loss function

and adam as the optimizer. For padding options, output have the same length as input. Filter

sizes of the combined autoencoders are 96, 64, 32, 24 in the encoder layers and 24, 32, 64, 96 in

the decoder layers.

Image feature

To include the spatial interaction between image pixels for analysis, we used a Gray Level Con-

currence Matrix (GLCM) model to extract second-order statistical features for the derivation

of the crypts’ textural measure. Based on the segmented crypts and mucosa image patches, we

compute the GLCM texture features including Energy, Contrast, Entropy, Homogeneity, Cor-

relation, Dissimilarity, and Angular Second Moment (ASM), as well as Entropy, Canny, and

Energy.

Histology score

The epithelial scores and inflammation score were generated using a modified method based

on traditional histology scoring [17]. HALO software was used to help examing the slide and

quantifying epithelial scores and inflammatory scores by two pathologists. We used quick

annotator equivalent tools to annotate images. Image annotation was done by drawing and

lines editing.

Statistical and computational methods

The HistoQC, the OpenCV python library and skimage were used to check quality, analysis,

and compute the image features and morphometric value from the segmented images. R and

Python were used for analysis and plot. Python library with Neural Networks for Image Seg-

mentation used for model comparison was from https://github.com/qubvel/segmentation_

models.

Results

Segmentation

Applicable machine model for in vivo study requires a balance between prediction speed and

precision. We used U-Net, an architecture used for semantic segmentation, to locate crypts

from WIS. A more sophisticated model such as mask R-CNN may perform the task well, but

in exchange requires a longer time in training and prediction. Our implementation of the

U-Net model in this paper achieved much more than 90% validation accuracy and runs fast.

Typically, it will take 5 minutes to complete tile generation, prediction, and tile overlapping

in AWS G3 instance. We compared the result from U-Net to the reported specialized gland

segmentation model from GlaS Challenge Dataset Evaluation using the same datasets and

found that U-Net achieved the comparable or better F1 score and DICE score reported by

the top models (S1C Fig in S1 Appendix). We also compared U-Net with other most widely
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used model architectures including FCN-8, FPN, and PSPNet. As shown in S1D Fig in S1

Appendix, all models had resnet18 as backbones and sigmoid as activation function for binary

classification. As is clear from S1E–S1H Fig in S1 Appendix, the accuracy and F1score curve

indicated no other model being test is superior to U-Net in validation test. Therefore, we

adopted U-Net as our model used for segmentation. Fig 4 illustrates the segmentation results

from the naïve, DSS, and SSZ treatment group. In comparison to normal colonic crypts from

the naïve group, one can clearly see that the DSS-induced group massively lost crypts, as

shown in Fig 4b and 4e. After treating these groups with SSZ, these groups usually contained

more crypts than non-treated DSS groups.

Representative learning of crypts to discover morphology pattern

One of the challenges of disease models is that histological manifestation differs in different

animal models. Neither comprehensive pathology information nor pathological structure

Fig 4. Segmentation results from the mouse colon tissue dataset. Whole image of a. Control colon b. colon from DSS model, c. colon from treated DSS model.

Details of b. Control colon c. colon from DSS model, d. colon from Sulfasalazine SSZ treated DSS model. For each panel, upper left: Original H&E image. Upper right:

Predicted probability mask of gland (pixel level). Lower left: H&E overlaid with crypts binary mask. Lower right: H&E overlaid with predicted masks of gland (blue)

and mucosa (orange red).

https://doi.org/10.1371/journal.pone.0252429.g004
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annotation exist. This makes supervision-based classification impractical. Therefore, we pro-

posed the use of unsupervised learning methods to represent individual crypts in a two-dimen-

sional map. For implementation, we used a convolutional autoencoder to construct a dense

representation of the images of segmented crypts. As shown in Fig 5, a 2D T-distributed Sto-

chastic Neighbor Embedding(t-SNE) map can help with visualizing the latent space represen-

tation, which reflects the continuum of morphological variants across the Naïve, DSS, and

treatment groups. We observed several visually discernable patterns. Zone 1 contains crypts

with normal glandular structure, and the columnar epithelial cells were arranged in order.

Zone 2 contains atrophic or degenerating crypts, and these crypts had a reduced number of

goblet and epithelial cells, which exhibited squamous morphology. Zone 3 contains crypts

with predominately epithelial cells without mucin secretion, but no colonic goblet cell differ-

entiation. Finally, Zone 4 contains crypts in partial recovery due to the SSZ treatment. It is

noted that the atrophic gland in Zone 2 was reported only very recently, relative to the long

history of DSS model in studies and applications. This exciting development reveals the poten-

tial that the unsupervised approach has. That is to say, it may allow us to discover new, hitherto

unknown histological changes in in-vivo models, which prior knowledge and classification

methods have missed.

Zone 1. Normal

Zone 3. Goblet 
loss with 
Epithelial 
Prolifera on

Zone 1. Normal Gland

Zone 2: atrophic
lesion

Zone 4. Par al recovery

Zone 4. Par al recovery

NormalAbnormal

Fig 5. Visualization of a dense representation of all the crypts in the study. The convolutional autoencoder is built to learn

representative of segmented glands patches obtained from U-Net. A t-SNE was shown with the typical gland image patches to exemplify

the difference. Each data point represents one complete crypt image patch. Total 39655 segmented image of crypts were used in the map.

https://doi.org/10.1371/journal.pone.0252429.g005
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After we project the group information into the map, the majority of crypts from normal

colon tissue are clustered in the right(Zone 1, green), most crypts from the DSS group are clus-

tered in the left(Zone 2, red), and crypts from the SSZ treatment group make up the middle of

the map and are partially co-localized with the DSS group(Zone 3, blue). Notably, within the

SSZ treatment group, the crypts with less cells were located closer to the DSS group, and the

crypts with more epithelial cells were located further away. Both the DSS and treatment groups

contained crypts with a marked loss of goblet cells. However, in comparison to the DSS group,

the crypts from the treatment group had more epithelial cells. Additionally, it was observed

that within the treatment group, while both epithelial and goblet cells had recovery, the recov-

ery rate for epithelial cells was higher than that of goblet cells at the time that the sample was

collected. Taken together, the overall pattern in data manifold indicates that the crypts’ mor-

phology after treatment deviated from the disease group toward normal, undiseased crypts.

This pattern indicates that the SSZ treatment is effective.

Image features correlation

We are interested in identifying features correlated or anti-correlated with the most epithelial

score previously used by histopathologists in practice. After correlating image features with

epithelial score (Fig 6a), we found the texture features such as GLCM contrast and dissimilarity

(Fig 6b) values appear to negatively correlate with the epithelial score provided by pathologists

within the SSZ treatment group. While GLCM Homogeneity and GLCM ASM has the positive

correlation with epithelial score.

Evaluation of epithelial healing using image features

The epithelium change (Fig 7a) were scored by histopathologists to show the epithelial healing

in DSS group. From the computation, it was determined that the DSS group had a reduced

number of crypts compared to the control, and the crypts from the DSS group had a lower

gland/mucosa area ratio (Fig 7b). Analysis of the above features within the treatment group

indicates that the treatment causes partial recovery. As expected, the epithelium change score

and gland/mucosa ratio decreased with a significant p-value in the DSS group and increased

with a significant p-value in the DSS+SSZ group (Fig 7b). The loss of normal crypts’ histologi-

cal architecture in the DSS group decreased the value of GLCM contrast (Fig 7c) and dissimi-

larity (Fig 7d).

Based on the segmented crypts and mucosa image patches, we computed several types of

features (Fig 8a). Entropy is a first order statistic texture descriptor. The entropy value of the

whole slide did not contain any significant differences between the naïve, DSS, and DSS+ sulfa-

salazine groups (Fig 8e). In contrast, the entropy value within segmented or masked crypts

decreased in the DSS group, and increased in the DSS+SSZ group, for both individual mice

levels (Fig 8f). This indicates that image segmentation enables the use of first order texture

descriptors to perform analysis. Compared to human generated score or some interpretable

measurement, GLCM features (Fig 8g–8l) generally have less variability. Therefore, these fea-

tures may improve statistical power during hypothesis testing. We proposed that in our case,

GLCM texture features may be a useful tool to predict tissue damage or the recovery process.

We can use them as a surrogate healing marker to screen the initial results from histology data

from preclinical model, followed by verification from pathologists.

Our results demonstrate the importance of evaluating both pathologist-interpretable fea-

tures such as counts, size, and geographical distribution patterns, and subvisual features which

are not easy to interpret by humans. The latter category includes first and second order statisti-

cal features, reflecting the textural changes of the segmented image. The results of PCA analysis
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Fig 6. Summary of image features for histology assessment at slide level. A total number of 186 slides were used. a. Correlation map for

texture features including histopathologic derived epithelium changes score by pathologist, entropy in masked gland, distances between the

nearest glands, and the angle difference between the two nearest glands, GLCM (ASM, homogeneity, entropy, energy, dissimilarity,

correlation, glcm_contrast). Agreement between histopathologic derived epithelium change scores and segmentation-derived entropy

measures. b. Correlation scatter plot of GLCM contrast with epithelim change score. Each dot represents one individual slide. c. Correlation

scatter plot of GLCM dissimilarity with epithelial change score. Each dot represents one individual slide. Pearson correlation coefficient and p-

value were shown.

https://doi.org/10.1371/journal.pone.0252429.g006
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Fig 7. Group comparison among Ctrl (Naïve animal), DSS (DSS-induced colitis), and Treatment (colitis treated with SSZ) at individual slide level using a.

histopathologic derived epithelium change score; b. gland and mucosa ratio score; c. GLCM contrast value in masked crypts; d. GLCM dissimilarity value in masked

crypts. Data were summarized for individual slides. Each data point represents the average value extracted from all segmented crypts from each slide. All statistical

analyses between groups were performed using unpaired two-sided Student’s t tests with unequal variance.

https://doi.org/10.1371/journal.pone.0252429.g007
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Fig 8. Group comparison among Ctrl (Naïve animal), DSS (DSS-induced colitis), and Treatment (colitis treated with SSZ) at individual subject

level. Data were summarized for individual animals. Each sample represents the average value from all slides derived from individual animal in the study.

The group information was shown with three colors. a. epithelial change scored by histopathologist, b. ratio of crypt/mucosa area c. distance between two

nearest crypts, d. angle changes between two nearest crypts. e: entropy from patches without applying segmentation masks; entropy from unsegmented

slides, f: entropy from masked crypt, g-k: GLCM ASM, Homogeneity, energy, dissimilarity, contrast) l: canny.

https://doi.org/10.1371/journal.pone.0252429.g008
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using all the aforementioned features, including histological score for epithelial changes was

shown (Fig 9a). The texture features explained the most variation. In addition to statistical fea-

tures, we included human based epithelial scores and inflammation scores in analysis using

the hierarchical clustering method, which relates sample with similar features to each other. In

Fig 9. Integration with pathology score. a. PCA plot of crypt image features generated from control, DSS, and SZZ groups were shown. Each dot represents one animal

in the study. b. Clusters of samples from Ctrl (Naïve animal), DSS (DSS-induced colitis), and Treatment groups were shown in heatmap using of GLCM features and

histopathological scores including epithelium changes and inflammation measurement. Z score normalization was performed.

https://doi.org/10.1371/journal.pone.0252429.g009
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Fig 9b, all the samples from the naïve group forms a cluster, one of the samples from treatment

group was also clustered to this group. We confirmed these samples recovered the best among

or the treatment group. Compared to the human based score, the combination of texture fea-

ture scores also yielded similar results. 7 of 12 samples, which form a cluster in the middle,

had already partially recovered in this time point. The results indicate that both human inter-

pretable features and texture features indicate most of the sample had partial recovery in the

treatment group. We also propose that analysis of combined features may be helpful for

pathologists to adopt more statistical features as a surrogate in practice. In summary, the

results of our morphometric feature analysis are consistent with those from the autoencoder

visualization: that the histology of mice DSS crypt groups treated with SSZ, differing from

DSS-treated tissues, undergo recovery toward normality. The GLCM texture features may be

appropriate candidate features to represent current pathology scores. Differentiation of the

complex structure like crypts may rely on second order statistical features.

Discussion

Currently, most of the deep learning applications in biomedical image data analysis serve

as a diagnostic aid. Because the criteria of pathology diagnosis is established, the common

approach is to create a large amount of labeled training data, which are provided by patholo-

gists, to train a convolutional neural network. However, preclinical therapeutic efficacy testing

or in vivo biology research that involves multiple conditions including therapeutics or genetic

manipulations, the types of histopathological changes is unknown or unpredictable. Therefore,

it is difficult to use the classification model in practice. Here we proposed multiple staged

workflows rather then a single deep learning architecture which focus on classification tasks.

Image segmentation is a common task that need training data. To fully make use of the limited

annotation data, we implemented random tiling generation and image augmentation to make

training more efficient. During the training, using bootstrap interactive approaches to correct

erroneously segmented structures greatly improve the training efficiency. For tasks that appear

to be also difficult to pathologist, we proposed to use autoencoder to help classify and visualize

the segmented object for further investigation performed by histopathologists. In addition, a

large amount of morphometry information embedded in images is often under-appreciated

due to the limited availability of highly skilled pathologists to resolve details in this capacity.

From the perspective of computational biology, most of this information is also underutilized.

We propose that deep learning based exploratory research will improve the scalability, quanti-

fication, and interpretation value for preclinical studies. With this approach, the analysis time

can be greatly reduced from weeks to hours. Furthermore, the output data points will increase

a thousand times. To implement this application in a pathology lab, our workflow attempted

to solve several challenges described in the following paragraphs.

Firstly, a high-performance pipeline is needed to accelerate the training and prediction pro-

cess. For deep learning using WSIs, the improvement of accuracy may cost a tremendous

amount of additional math processing operations with significantly higher demand for com-

puter processing power especially for complicated tasks such as segmentation. We adopted a

convolutional U-Net design, which has been the most popular backbone in the medical imag-

ing community due to its impressive result even with a scarce amount of training data.

Secondly, the challenge of the WSIs’ images lie in their large sizes of pixels, densely distrib-

uted target object, which vary greatly in their sizes and shapes. Unlike nuclei or cells, crypts are

structures that are extremely variable especially in different pathophysiological conditions.

Using a colitis model as an example, scoring has been widely used as a method to incorporate

multiple coarse grainy measurements to include gland/crypt architecture, degree of
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inflammatory cell infiltration, muscle thickening, goblet cell depletion and crypt abscess. In

this report, we focused on one important structure of crypt glands found in the epithelial lining

of the small intestine and colon between the villi. Intestinal crypts contains two types of epithe-

lium cells: mucus-secreting goblet cells and enterocytes that secrete electrolytes and water. For

a preclinical study with an exploratory perspective, it is important to survey all possible mor-

phological variants and the full spectrum of histological changes of the targeted tissue or struc-

ture. We implemented an autoencoder in order to obtain a representative via unsupervised

learning using segmented crypts image obtained from WSIs. The t-SNE visualization of bottle-

neck from a single autoencoder did not achieve discernable clustering. We used separate chan-

nels to randomly sample peripheral region of the segmented crypts as target object, and

another one to randomly sample the central region of the crypts. By separate two sets of input,

the t-SNE visualization started to show better patterns. This technique enables us to quickly

visualize the full spectrum of crypts morphometrics as well as extract typical characteristics.

While human’s pathology learning process rely on slides with typical characteristics, as well as

their variation in a supervised manner, the autoencoder learns in an unsupervised fashion.

Visualize the representative learning result will help us identify novel patterns, which could

appear in new models and novel treatment condition. It also facilitates the cross-validation of

pathologist’s observation. It makes deep learning results interpretable and help to make differ-

entiation of various therapeutics possible.

Thirdly, interpretation of deep learning result remains challenges to the pathology

community.

Crypts mucosa area ratio and the distance between glands is an easy to understand feature

since during the DSS treatment, crypts loss occurs and the distance between glands were wid-

ened. However, statistical features such as entropy in masked glands, are statistically significant

between normal, DSS, and treatment group. Gland feature based analysis strengthen statistical

power of the study. One caveat is that value such as entropy could be interpretable differently

during a variety of conditions. By incorporating the autoencoder results, we realized a signifi-

cant portion of glands from DSS are atrophic, or with less cells and lost texture of mucus, which

will decrease entropy value significantly. Furthermore, compared to DSS group, glands from

treatment group contain more mucus. This explains the recovering of entropy level. Both AE

based unsupervised learning and morphometric analysis suggest SSZ group partially restore the

crypts architecture in DSS model. The intuitive graphic visualization helps the interpretation of

the segmented data, suggesting the necessity to include representative learning information in

analysis. We also find the GLCM texture features to be an appropriate test. Differentiation of

the complex structure like crypts mostly likely need to rely on second order statistical features.

In summary, the aim of this work was to demonstrate a deep learning powered image analy-

sis workflow to enable preclinical efficacy analysis using intestinal crypts as a proof of concept

example. Our workflow is designed for general purpose object segmentation using WSI’s. Dif-

ferent models can be built into the workflow with ease. Implement similar analytic pipeline

enable to generate large scale of relevant data from H&E stained WSI’s, which were ubiqui-

tously available in labs related to the histopathology work to accelerate the in vivo preclinical

exploratory study. For the limitation of the study, our aim is not to compare different segmen-

tation models. Instead, our workflow is designed for general purpose object segmentation and

textual analysis using WSI’s. Different models can be built into the workflow with ease We

hope our report will inspire more efforts in the research field using modern, scalable quantita-

tive automated processes and deep learning algorithms to reduce time, costs, and improve

resource allocation efficiency in drug discovery. We hope our report will inspire more

efforts in the research field using modern, scalable quantitative automated processes and deep
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learning algorithms to reduce time, costs, and improve resource allocation efficiency in drug

discovery.

Conclusion

Digitalization of histopathology in WSIs provides a new source of data that will help patholo-

gists better understand the therapeutic effects at cellular levels. We proposed a computational

workflow to make large quantity of image features, once being too labour intensive to manu-

ally capture, become available and ready to explore for in vivo model based preclinical study.

Through a deep learning approach, quantitative analysis of histological remission can be auto-

mated, reducing the time required from a matter of weeks to hours, increasing the volume of

data that can be analyzed with minimal human supervision.
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