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A quantitative description of 
the transition between intuitive 
altruism and rational deliberation 
in iterated Prisoner’s Dilemma 
experiments
Riccardo Gallotti   1,2,3* & Jelena Grujić4,5

What is intuitive: pro-social or anti-social behaviour? To answer this fundamental question, recent 
studies analyse decision times in game theory experiments under the assumption that intuitive 
decisions are fast and that deliberation is slow. These analyses keep track of the average time taken to 
make decisions under different conditions. Lacking any knowledge of the underlying dynamics, such 
simplistic approach might however lead to erroneous interpretations. Here we model the cognitive 
basis of strategic cooperative decision making using the Drift Diffusion Model to discern between 
deliberation and intuition and describe the evolution of the decision making in iterated Prisoner’s 
Dilemma experiments. We find that, although initially people’s intuitive decision is to cooperate, 
rational deliberation quickly becomes dominant over an initial intuitive bias towards cooperation, 
which is fostered by positive interactions as much as frustrated by a negative one. However, this initial 
pro-social tendency is resilient, as after a pause it resets to the same initial value. These results illustrate 
the new insight that can be achieved thanks to a quantitative modelling of human behavior.

Decision times have emerged as a new important aspect in experimental game theory. They have been measured 
in a wide range of games like: Ultimatum games1,2, Modified Dictator games3 and Public Goods games4–8. Some 
studies, based on the premise that decisions which take less time are more intuitive, suggest that making unself-
ish, cooperative decisions is a human instinct that is then undermined by rational deliberation4,8. The claim that 
showed that people under pressure make more cooperative decisions in Public Goods games4 failed a recent 
Registered Replication Report9 including 21 independent experiments. Other criticisms include that, after con-
trolling for the strength-of-preference between the two options (as the players could have strong preference of one 
choice over the other), there is no significant difference between the pro-social and the selfish behavior10. A more 
detailed meta-analysis of a large number of experiments suggests that things are more complicated, claiming that 
deliberation inhibits what they called ‘pure cooperation’, however it does not appear to inhibit the strategic coop-
eration11. Studies using fMRI scanners to monitor brain activity of human subjects participating in game theory 
experiments show that selfish participants will cooperate when they have incentive to cooperate: consequently 
cooperation can also be a result of longer deliberation, not just intuitive acts of pro-social individuals12,13.

The standard procedure in these papers is to perform game theory experiments with human subjects and to 
track the mean Response Times (RTs) for pro-social and selfish decisions. It was assumed that players think less 
to make intuitive decisions and longer to make deliberate decisions, and therefore concluded that the type of deci-
sions with smaller RTs are intuitive and those with the longer RTs are deliberate. This simplified approach might 
be the reason why, thus far, a consensus is far from being reached. There are a number of reasons why tracking 
just the mean RT values is not a good idea. First, the experimental RT distributions have a number of properties 
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which prevent it from being properly described by only mean value and standard deviation (as we do in Fig. 1 left, 
where we describe the average RTs for the two iterated Prisoner Dilemma experiments analyzed in this paper, one 
multiplayer played with 8 people at the same time and one played with only one other person). For example the 
distribution it is not Gaussian but a skewed function whose skew actually increases with the task difficulty, while 
the mean value and standard deviation are proportional to one another14 (see also the inset in Fig. 1 left). Second, 
a number of factors influence the speed of decision making, including the quality of information processing (how 
fast one accumulates information) or response caution (how careful we are not to make errors). An a-priori bias, 
telling us what the intuitive decision is, is just one of the factors that could make the RT short. Therefore, before 
we can talk about intuitive and deliberate decisions, we need first to identify a model allowing us to disentangle 
the different factors of influence.

Drift Diffusion Model
Interestingly, in cognitive science and neuroscience, a number of theoretical models have emerged that can be 
used to explain the decision making processes. The most prominent one among these is the Drift Diffusion Model 
(DDM)15, which assumes a one-dimensional random walk behavior representing the accumulation in our brain 
of noisy evidence in favour of two alternative options16.

DDM connects neuroscience to economic behavior by approximating the dynamics of the neurobiological 
process in act while the decision is made17. It thus represents a view complementary to other models describing 
the subject’s actions. It focus on the shorter timescale18 of neurobiology rather than attempting at finding the 
cause of observed behavior as a consequence of natural selection (e.g. evolutionary dynamics), learning process 
(e.g. operant conditioning), or of the individuals’ strategies (e.g. conditional cooperation19, which important role 
in the multilayer experiment studied in this paper has already been described20). It has in particular the unique 
feature of precisely outlining the statistics of decision times, while it is intrinsically limited in its ability of identi-
fying the causes of single actions taken.

More in detail, in the DDM at each moment subjects randomly collect evidence in favour of one of two alter-
native choices, which are in our case cooperation and defection. The continuous integration of evidence in time is 
described by the evolution of an one-dimensional brownian motion (see Methods), whose stochastic character is 
a consequence of the noisy nature of the evidence21,22. The process is starting from a possibly biased initial condi-
tion, and the two options are associated to two absorbing barriers (see Fig. 2 left). The distribution of first passage 
times at those thresholds has been successfully used to model decision time in a wide range of contexts14. The 
most typical context is visual decision making23 where a subject (a human or another primate) needs to determine 
as quickly as possible the direction of a cloud of dots24. Comparing empirical RTs with the model allows us to 
evaluate its free parameters (see Table 1): (i) the threshold a, is the quantity that quantifies response caution; (ii) 
the drift rate v is a measure of subjects’ ability to gather evidence, also dependent on task difficulty; (iii) the bias z 
represents the a-priori inclination for one of the alternatives (with z = 0.5 representing the unbiased scenario, see 
Methods). We also introduce a fourth parameter, the non-decision time t0, that accounts here for the perceptual 
and motor processes associated with the task, processes which play a very minor role here given the longer char-
acteristic timescale of the RTs in our experiments.

In absence of bias or drift, decisions are completely random and the cooperation rate is expected to be 
Cteo(v = 0, a, z = 0.5) = 0.5. Using the DDM, the deviation of the experimental cooperation rate C from ran-
dom behavior can be decomposed into a contribution due to v (rationality) and a contribution due to z (intui-
tion). If only the bias is absent, one would expect a cooperation rate Cteo(v, a, z = 0.5). Therefore, we identify as 

Figure 1.  A classical view on cooperation level and decision times in our iterated Prisoner’s Dilemma 
experiments. (Left) The decision times start from a similar initial value of ≈7 seconds, and then follow two 
different behaviours in the two experiments we analyze. In the inset we illustrate the direct proportionality 
between mean and standard deviations. (Right) The cooperation level also starts from a similar initial value of 
≈0.6 for the two experiments. In the pairwise experiment full cooperation is attained, while in the multiplayer 
experiment the majority of subject opt for defection. In both panels and in the inset blue circles, red “x”, and 
green “+” represent the three phases of the multiplayer experiment (the distinction between these phases 
is not important at the moment and it will be explained later in the text) while yellow triangles the pairwise 
experiment. In this and in all figures of this paper, the error bars represent the very broad 95% confidence 
interval associated to 1.96 standard deviations, while the shaded area represent one standard deviation.
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contribution of the rational deliberation the difference ΔCrat = Cteo(v, a, z = 0.5) − 0.5, and as contribution of the 
intuitive bias the difference between the empirical value and what expected without bias ΔCint = C − Cteo(v, a, 
z = 0.5).

For quantifying how much a decision is influenced by the a-priori bias, in this paper we introduce the ‘ration-
ality ratio’

= |Δ | |Δ | + |Δ | .R C C C/( ) (1)rat rat int

Experiments
The application of DDM to more deliberate economic decision making has been uncertain until recently14, and 
the model is still largely unknown in the experimental game theory community. In the last year, some experi-
ments have showed that DDM can be applied to economic experiments, however only in situations when the 
player has the full information. For example when the outcome does not depend on the action of the opponents 
such as in the Dictators game25–27, or when the action of the opponent is already known, such as on the receivers 
side of the Ultimatum game25. The decision making in the aforementioned works is value-based, but not strategic. 
The players know exactly how much will be their payoff for each decision, and this payoff does not depend at all 
on the actions of other players.

Here we extend the use of the DDM to outline the cognitive basis of cooperative decision making and charac-
terise the evolution of a subject’s behavior when facing strategic choices in game theory experiments, where the 
decision is dependent on the unknown action of the opponent. The application of DDM to Prisoner’s Dilemma 
games is not obvious given the current state of the art, since in the deliberation process includes forming an opin-
ion on what the other player would do. For example, the model proposed in26 takes into account how much the 
players care about themselves and about other players. A similar approach to decisions in complex strategy games 
would require the development of a non-trivial addition to the model trying to predict the decision of the other 
player, but there is no obvious way to include this in the model.

In particular, we examine the results of two different weak Prisoner’s Dilemma experiments iterated over a 
large number of rounds20,28,29: (i) a pairwise game with 16 players associated in fixed couples, iterated 100 times; 

Figure 2.  Drift Diffusion modelling for decision times and cooperation levels. (Left) An illustration of the 
DDM: starting from an initial condition z·a, the agents accumulate random evidence in favour of one of two 
alternative decisions. The x = a threshold is associated to cooperation and the x = 0 threshold to defection. 
Once the amount of evidence reaches one of the thresholds, the associated decision is made. The arrows 
indicate the presence of a negative drift towards defection, as we observe in the multiplayer experiment. The 
two curves with shaded area represent the two parts of the probability distribution for the response times, 
one for the cooperation the other for defection, which are expected to differ in both shape and area. (Right) 
The experimental distribution for fix1 phase, fitted with the theoretical curves for the DDM (r2 = 0.97). To 
distinguish, the response times of defection and cooperation we display them separately (reaction times for 
defection on the negative axis and those for cooperation on the positive axis). The total areas under the two 
curves is normalised to one, so that the area under each of the two curves represents the proportion of defectors 
and cooperators. The logarithmic scale highlights the short tail of the distribution.

DDM parameter Symbol Interpretation
Used in 
fits

threshold α information required–response caution (perceived difficulty) yes

drift rate v information gathering–task complexity yes

bias z a-priori inclinations yes

non-decision time t0 perceptual and motor process yes

Table 1.  Free parameters of the model. Across all analyses done in this paper, we considered all four parameters 
of the DDM as free and are estimated directly from a fit to the subset of data considered. Note that high values 
of the drift rate v represent fast information gathering which in turn can be sometimes associated to lower task 
complexity.
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(ii) a multiplayer game on 13 × 13 lattice with 8 neighbours, where in every round each player makes a single 
action (cooperate or defect) which applies to a game against each neighbour. All participants of the multiplayer 
experiment played a total of 165 rounds in 3 separate phases: fix1, rand, fix2 (in that order). In the phases fix1 and 
fix2 the network is fixed and all players play with the same neighbours. In the rand phase the network is randomly 
shuffled after every round, so the players always play with different neighbours. (For more details see the Methods 
or the original papers20,28,29). The alternation between a static and a changing network was originally intended as 
a sort of “control” in the experimental setup. Serendipitously, it allowed us to compare a more complex task (the 
static network, where the history of all interactions with the different neighbors can be in principle considered) 
with an easier one (the random network, where there is no information on the previous actions by other players 
that one would need to consider in order to make the decision.

In both experiments, the cooperation level starts from a value close to 60%. In the multiplayer game, this then 
converges to low cooperation (≈20%), while in the pairwise game an almost full cooperation is attained after 
about 70 rounds (see Fig. 1 right). Thus, these two experiments allow us to observe two different scenarios: one 
where the cooperation is not established, and one where it is. Thanks to this broad variability in subjects’ behavior, 
we can also control if the strength of preference is influencing or not our conclusions10.

It might be surprising that we chose two experiments with such different setups. However, we have a good 
reason for that. We originally only analysed the large network experiment, but eventually we realized that we 
need to test if our conclusions would still hold in cooperative environment. Achieving cooperation in the large 
experiment by tweaking small number of parameters was very uncertain. Furthermore, this kind of experiments 
where almost 200 people play the game at the same time are logistically very difficult and quite expensive. Finally, 
it was unnecessary to have a similar experiment, when the only thing we wanted to know is how the cooperative 
environment influence the bias and the drift. Therefore we opted to perform the simplest experiment where we 
knew the cooperation will be established. Evidently, since the details of the two experiment are quite different, 
in order to avoid drawing any conclusion that could be influenced by these differences here we only discuss the 
different cooperation level finally attained.

Results
In Fig. 2 right and Supplementary Fig. 3 we show the Probability Density Functions (PDF) of the Response Times 
t where we separated RTs for defections and cooperations by assigning negative RTs values to the defections. The 
curve is normalized to one considering both positive and negative values, therefore the larger area under the neg-
ative curve, as compared to the positive curve, corresponds to a larger number of defections in the experiment. 
The comparison between the empirical scattered data and the theoretical curves (solid lines) shows that DDM 
successfully fits the empirical RTs of the different phases of our experiment. In the following, we show what one 
can observe by tracking the evolution of the DDM parameters in our experiments. This allows us in general to 
describe the learning process of the subjects of game theory experiments from a novel perspective aiming at 
distinguishing between rational deliberation (described by the drift v) and intuition (associated to the a-priori 
bias z). The fits have been performed using the HDDM python tool30, which fits simultaneously the distribution 
of decision times for cooperative choices, defections, and the fraction of cooperation using Hierarchical Bayesian 
Estimation. (In Supplementary Fig. 4) we provide the R2 values of all the fits proposed in this paper.)

Threshold.  Corresponds to the perceived difficulty of the task and therefore drops over time in all experi-
ments. In both experiments, the threshold starts from the same value of a ≈ 5 sec

1
2 , in the first round where no 

information on the others’ behavior is available (see Fig. 3(a)) Then, the threshold parameter drops for the pair-
wise experiment. While it initially grows for the more complex multiplayer experiment, a drop can be then 
observed starting from round 5.

The value of a is the main factor determining the average decision time. In Fig. 4(a) we show how our experi-
mental results align along the theoretical relationship 〈 〉 =t a

4

2
 valid in absence of bias and drift (z = 0.5, v = 0, see 

Methods). The value of the average decision time in our experiment is thus dominated by the caution with which 
the players consider their response. The decisions become thus progressively quicker mostly because less infor-
mation is demanded for the final deliberation. We emphasise that the fit is done simultaneously for both deci-
sions, therefore the observed evolution of the threshold parameter equally influences RTs for both decisions.

Drift.  Corresponds to deliberation. In the first round of both scenarios the drift speed v is zero (Fig. 3(b)), 
which is consistent with the lack of information to consider for a rational deliberation. It then progressively 
diverges to positive values (towards cooperation) for the pairwise interaction and to negative values (toward 
defection) for the multiplayer game. These opposite trends directly reflect the level of cooperation finally attained 
at the end of the two experiments: the game experience is therefore providing evidence suggesting cooperating 
among cooperators and defecting among defectors.

With the notable exception of the first round, we can note in Fig. 4(b) that the variability of v is here the main 
factor behind the evolution of the cooperation rate CR, with CR ≈ (1 + exp(−5v))−1, as expected for no bias 
(z = 0.5) and with the threshold observed at the first round (a = 5 sec

1
2 ). In our iterated game, cooperation or 

defection therefore emerge here mostly as a consequence of informed deliberation.
The different scenarios explored in the multiplayer experiment also allow us to illustrate how the absolute 

value of v depends on the difficulty of the task16. Indeed, |v| progressively grows between fix1 and fix2, while for 
the random phase the value is stable and, on average, significantly higher than in fix1 and fix2 (see Supplementary 
Table 1). These higher values of the drift speed |v| are consistent with the easier design of the random phase, where 
the information on the previous decisions of the neighbours is not available. At the same time, deliberations in 
the similarly designed fix1 and fix2 become gradually easier, as the players become more and more proficient in 
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processing the information provided. In the random phase of the multiplayer experiment the absolute value of 
the parameter v is higher because the neighbours are changing and therefore they do not need to keep track of all 
relationships.

Bias.  Tells us about the initial inclination people might have towards one of the two options. The initial value 
of the a-priori bias z is ≈60%. This value perfectly reflects the cooperation rate in the first turn: we have indeed 
CR = z when the drift is null (v = 0), as we have in the first turn. In Fig. 3(c) we observe how the bias then grows 
in the pairwise experiment (where players cooperate) and drops in the multiplayer experiment (where they 
mostly defect). This drop is independent from the players’ strategy (see Supplementary Fig. 5). This suggests that 
any inclination prior to rational deliberation is strongly influenced by the other players’ behavior, with the bias 
increased following positive interactions as much as reduced after negative ones. The initial bias towards coop-
eration is however resilient, as in the multiplayer experiment it resets to ≈60% after each pause. The monotonic 
decreasing trend is significant in each of the three phases in the multilayer experiment, if we exclude the last ten 
rounds of fix2, as the Mann-Kendall Test for a decreasing trend is passed with probability 0.04, 1.5 · 10−5 and 
3 · 10−4 respectively. The trend is instead not perfectly monotonic for the pairwise experiment, and if we consider 
the last part of fix2. The sawtooth shape of the evolution of z is not reflected in the cooperation rate, because the 
drift quickly becomes, and remains, the dominant factor in the decision process (see ‘Rationality’ and Fig. 5). 
The bias parameter mostly captures minor deviations of decision time and cooperation rate from the analytical 
tendencies described above (Fig. 4(c,d)).

Non-decision time.  Corresponds to the time before the decision process starts to happen (for exam-
ple, before the participants realize that the new round started or the time they use to press the button on the 
mouse etc). In Fig. 3(d) we show that the perceptual and motor processes associated with the task speed up with 

Figure 3.  Evolution of the DDM parameters in the two experiment. (a) In the first round, the threshold a is ≈ 5 
sec

1
2  in both experiments. For the pairwise experiment we then observe a decreasing trend, while for the 

multiplayer experiment we observe an increase in the second round, followed by a progressive drop in the 
course of the experiments. (b) The absolute value of the drift speed |v| also starts from a common value 
approximatively zero. Its absolute value progressively increases for both experiments, showing how players 
process the information faster. The sign differs between the two experiments, because for the multiplayer case 
the gathered information suggests to defect while for the pairwise interaction it suggests to cooperate. The 
random phase of the multiplayer experiment has higher |v|, which is consistent with the fact that the setup of 
the random phase is easier. (c) Both experiment suggest an initial bias towards cooperation z ≈ 0.55. The bias 
then changes progressively in the direction of the average behavior of the other participants: positive bias for the 
cooperation in the pairwise experiment, negative bias for the defection in the multiplayer experiment (in 
Supplementary Fig. 5 we show that this trend does not depend by the player’s actions). In the multiplayer 
experiment, after each phase the bias resets to its initial value of 0.55, suggesting a resilience in the human bias 
towards cooperation. (d) The non decision time t0 drops after a few rounds to a constant value of ≈0.6 sec for 
the multiplayer experiment and ≈ 0.3 sec for the pairwise experiment. At the first round of the second and third 
phases of the multiplayer experiment, we observe a clear outlier, possibly accounting for the fact that the 
individuals were not ready for the next phase. (In this and all figures, the shaded areas represent the s.e.m and 
the error bars the 95% confidence level).
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repetition, but a stable value is reached after about 5 rounds. In the simpler pairwise experiment the non-decision 
time reaches the value expected for a purely visual reaction time of t0 ≈ 0.3 seconds31. The initial drop in t0 par-
tially accounts for the decrease in RTs over time (Fig. 1 (left)). Notably, the drop becomes significant after the 
pauses in the multiplayer experiment. Excluding the first 5 rounds, the average non-decision time is of 0.29 ± 0.03 
in the pairwise experiment and 0.59 ± 0.03 in the multilayer experiment, for which also the first rounds of rand 

Figure 4.  How the DDM parameters are linked to average decision time and cooperation level in game theory 
experiments. (a) The dominant parameter for the decision time is the threshold a. The black solid line 
represents the value 〈t − t0〉 = a2/4 expected in absence drift and bias (v = 0, z = 0.5). (b) The dominant 
parameter for the cooperation level is the drift speed v. The black solid line represents the value Cteo(v, a, 
z = 0.5) = (1 + exp(−av))−1 expected in absence of drift (z = 0.5), where we fixed the threshold at the initial 
value a = 5 sec1/2. (c) The drift z plays a secondary role in the decision time: its values is positively correlated 
with the residual Rt = 〈t〉 − 〈 〉 = .t z

teo
0 5 if v < 0 (as in the multiplayer experiment) and negatively if v > 0 (as in the 

pairwise experiment). For the multiplayer experiment, where we have better statistics, the value of the residual 
is an order of magnitude less than the average decision time. (d) The drift z plays a secondary role also for the 
cooperation level: its values is positively correlated with the residual RC = C − Cteo(v, a, z = 0.5). In the 
multiplayer experiment, the bias alters up to the 10% of all decisions, an effect of the same order of magnitude of 
the finally attained cooperation level of ≈ 20%.

Figure 5.  The players’ choices becomes progressively dominated by deliberation as the experiments progress. 
In figure we represent the ‘rationality ratio’, a quantity derived by the cooperation levels designed to be R = 0 
for totally intuitive decisions and R = 1 for totally rational decisions. Tracking the evolution of R we can see 
how, after a sufficient number of repetitions, the decisions made become mostly a consequence of rational 
deliberation. For the first rounds our fits suggest an almost perfect balance between intuition and deliberation 
(R ≈ 0.5). At round 20 in the multiplayer experiment, and at round 50 in the pairwise experiment, the ratio R 
settles to values higher than 0.8, indicating a stable rational behavior. Error bars represent here the variability 
due to the uncertainty in our estimate of v (see Fig. 3(b)).
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and fix2 has been filtered out. In principle, we could have assumed non-decision time as a constant value across 
all rounds of a given experiment, but the large difference of the first rounds’ values we observed here suggests that 
it is here relevant to keep this fourth parameter in the fits.

Rationality.  In Fig. 5, we represent the evolution of the ‘rationality ratio’ R we introduced in Eq. 1. In case of 
totally intuitive decisions one would expect R = 0 while in case of totally rational decision R = 1. In our experi-
ments, the numerical result for the first rounds in both experiments suggests a compromise between rational and 
intuitive behavior (R ≈ 0.5). It is however important to remark here that for both experiments the value v = 0 lies 
within the margin of errors for the first rounds, and consequently our results are not inconsistent with the hypoth-
esis that the first round are dominated by intuition (R = 0). If for the first rounds we have a balance between intu-
ition and deliberation, it then appears clear that as the players learn how to play the game, their behavior becomes 
ultimately rational as R grows reaching values close to 1.

These results show how rational deliberation, based on the gathered information, quickly becomes dominant 
over an initial intuitive bias towards cooperation. The role of intuition is still decisive when any information on 
the expected behavior of other players is lacking, as in the first rounds or in one-shot experiments2,4,8 where the 
faster decision is the cooperative one. Consistently, in interative experiments, which are averaging the first round 
with a relatively large number of the later rounds3 this trend has not been observed.

Intuition is not however strictly suggesting cooperating, as the bias can turn towards defection after playing 
multiple rounds in an un-cooperative environment. Nevertheless, the resilience of the bias we observe between 
the phases of the multiplayer experiment confirms that we might have a ‘natural’ intuitive optimism concerning 
the social behavior of the others. This is because, although the initial attitude leans toward faster decisions asso-
ciated with cooperation, learning the game implies becoming a rational player. If the rational choice is to defect, 
as in our multiplayer experiment, spontaneous altruism is just a transient effect possibly due to optimistic initial 
expectations32, after which it defection becomes the quicker answer.

Discussion
Our results above are not only proof that the use of the Drift Diffusion Model can be extended to the description 
of the complex strategic actions taken during game theory experiments, but illustrate how an accurate modelling 
of decision times allows us to get new detailed insight on human decision process from a neuro-economical17 per-
spective. This kind of statistical approach is possible when the datasets are large enough to make it possible to sta-
tistically test the exact shape of the empirical decision times distribution. In our case, the multiplayer game with 
169 players allowed us to study every round separately to confirm the remarkable ability of such a simple model 
to summarise very rich experimental results with up to 8000–10000 decisions. Tracking the evolution of the drift 
speed v, the accumulation threshold a, and the initial bias z during the experiment offers a new perspective into 
this learning process. This would not be possible by only studying the average decision times and permits a new 
interpretation of differences between experiments, contexts, experience, inclinations and strategies.

In particular, we show here that analyzing the empirical results using DDM is a method surely more appro-
priate for the difficult task of distinguishing between deliberation (described by the drift) and intuition (asso-
ciated to the bias) than simply comparing the average response times. We see here that it is not in general true 
that faster decisions are dictated by intuition, nor that the intuition necessarily suggests cooperating. The drift 
in the DDM embodies the effects of strength-of-preference10, as it can be seen as representing how the different 
utility between the chosen and unchosen options is estimated during deliberation21. When the context of the 
game suggests the players to defect, cooperative decisions are faster only in the first round, or equivalently in 
one shot games. In this case, the decision is indeed dictated by intuition, since there is no game experience to 
base a rational decision on, and the cooperation level equals the value of the bias z. But if then the decision 
process is repeated, rational deliberation becomes dominant over an initial intuitive bias towards cooperation. 
As we learn the game, the value of |v| grows as the process of integration of evidence becomes more efficient, 
allowing us to make faster but more rational decisions. This process is coupled with a progressive drop in 
the threshold a, as players also become less cautious and demand less information for the final deliberation, 
and with a rapid accommodation of our perceptual and motor systems to the task at hand embodied by the 
non-decision time t0. The transition between naive and informed decisions demands only a few rounds (See 
Fig. 5), after which the effect of the initial bias towards cooperation becomes marginal. At this point, the play-
ers decision are no longer naive but mostly rational, however the underlying bias also is subject to an evolution 
which depends on the context of the game. When we play a game where most of the players are defectors, the 
intuitive decision progressively becomes to defect, while when we play with cooperators we become even more 
biased towards cooperation. The good news is that after only a short pause, the bias towards cooperation resets 
to its initial ‘natural’ value of 60%. This ‘natural’ bias is therefore resilient to short term experiences. These 
phenomena we observed here for Prisoner’s Dilemma can be tested with different experimental setups, such 
as different games and possibly include tasks of different complexity and time-pressure, with the only design 
constrain being a large number of repetitions.

More in general, the possibility of monitoring in real time the learning process by studying a single and easy 
to measure quantity, response times, allows for the development of new practices to test whether the players 
(humans or animals) have mastered the task and to eliminate any initial transients by verifying if they have 
reached a steady state. Future studies can take advantage of the apparent universal validity of DDM, the range of 
use of which spans from memory retrieving, to perceptual, value based, and strategic decision making. Indeed, 
this suggests that the neurophysiology behind all these types of decision is similar, and that a set of decision 
models with a more elaborate architecture, which can be re-conducted to DDM under some parametric choices, 
represent natural candidates for a more detailed description of strategic decision making15.
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Materials and Methods
Multiplayer experiment.  The game theory experiment was performed in April 2009, at the Universidad 
Carlos III de Madrid in Spain. The participants were 169 students from the Engineering Campus of Leganes. The 
subject’s age ranges between 18 and 26 years old. They played a Multiplayer Iterated Prisoner’s Dilemma game 
on a square lattice, simultaneously with eight neighbours (Moore’s neighbourhood: up, down, left, right and 
diagonally). The lattice had periodic boundary conditions as if the players were placed on a torus. They had to 
choose one action: Cooperate (C) or Defect (D), which would be then applied to the game with each of their eight 
neighbours. For each neighbour, they would earn the payoff which is presented in the table:

	 (0)

If they both cooperate, they each earn a “Reward for mutual cooperation” R = 7 cents, if they defect and the 
other person cooperates they earn a “Temptation to defect” T = 10 cents, and if the other player defects they earn 
nothing. Therefore “Punishment for mutual defection” and the “Suckers payoff ” are both zero P = S = 0. Notice 
that this is a so-called weak Prisoner’s Dilemma, meaning that “Punishment” and “Sucker’s payoff ” are here 
equal. If the other player defects, the focal player earns nothing in any case and there is no cost in switching to 
cooperating. The reason for choosing a weak Prisoner’s Dilemma setup is to make the game more cooperative 
than a strict Prisoner’s Dilemma. In the original experiment, which was designed to test if the cooperation could 
be established, it was important to set the conditions as favorable to cooperation as possible. Here, this particular 
choice is however not relevant. For each round, the total payoff for each player is then calculated as a sum of the 
outcomes from all eight games. At the end of the experiment, the participants are rewarded proportionally to the 
payoff accumulated in Euros.

All participants experience the following steps: (i) login; (ii) read the instructions; (iii) test if they understood 
the instructions; (iv) the experiment itself. The experiment has three phases: fix1 (fixed network during all the 
rounds), rand (network reshuffled after every round), fix2 (fixed network, however different from the network 
in the fix1). In the original paper, these phases were called exp1, control and exp2. Here, we are renaming them 
in order to provide more intuitive names for this specific context. The size of the network was a very important 
factor for the original experiment. In particular, the objective was to have a number of players an order of mag-
nitude larger than any previous experiment. Because of the number of participants needed, it was impossible to 
have multiple sessions. However, we believe that the system is large enough to self-average, as a single realisation 
of a large system can be equivalent to averaging over a whole ensemble. In any case, the lack of multiple session 
does not have any influence on the particular analysis in this paper. At all stages, the information provided to 
them on the screen (see Supplementary Fig. 1) is the result of the previous round they played: the actions and 
payoffs of themselves and all of their neighbours. This means that, in the rand phase, the players have no infor-
mation about their new neighbours when they need to make the decision and they only rely on their experience 
and expectations. There was no practice round of the experiment, as it was not intended for the participant to 
receive any experience in the game before it started. However, we did make sure that they understood the rules by 
giving them a 4 different situations which could occur during the game and asking them how much money they 
would earn in those situations. This was done to ensure that each participant understood the game well, given 
that it has been shown that almost 30% of participants of participant will not read the instructions carefully33. 
Understandably the particular choice of the examples could frame the participants, however the risk of them not 
understanding the instructions was far greater and the examples were chosen to be balanced and the least likely 
to frame the participant in one way or the other. It should be also emphasised that all students participated in 
all three phases of the experiment. Therefore the different phases are not independent, since in each phase they 
have the experience from the previous one. Consequently, the phase we call rand is not a proper control of the 
experiment, in which the player without the previous experience would play the game. In order to avoid having 
players defect in the last round, knowing that there is no more game to play and therefore no reason to cooperate 
anymore, the end of the game was decided randomly by computer and it was at round 47, 60 and 58 respectively 
for fix1, rand and fix2. The data set is very large, making in total more than 27000 decisions. The software used 
in the experiment was developed in PHP, javascript with python controlling the background processes. The par-
ticipants had 30 seconds to take an action afterwards the computer would make a decision for them, but there is 
no countdown to the deadline shown. The automatic decisions were excluded from the analysis. As the primary 
purpose of the experiment was not a precise measurement of the decision times, they were recorded on the server, 
not on the client. Therefore there was a certain delay in their measurement. We estimate these delays by analyzing 
the times recorded for the automatic decisions, which are made by the client in exactly 30 seconds. This recording 
goes under the same procedure as the other times. On average the delay in the system was less than 0.03 seconds, 
which makes it only ≈0.5% of the average decision time. More importantly, the standard deviation of the delays 
is even smaller of around only 0.01% (4 · 10−4 seconds). Thus, their influence on the shape of the decision times 
distribution is only of a negligible shift that gets included in the non-decision time t0. Three outliers, with delays 
of more than 30 seconds, were excluded from the analysis.

Pairwise experiment.  This experiment has been performed in 2015 at Brussels Experimental Economics 
Lab, at Vrije Universiteit Brussels. The requirement site is made using ORSEE34. The game played was Weak 
Pairwise Prisoner’s Dilemma; each player played with one fixed partner a Prisoner’s Dilemma with the following 
payoff matrix:
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	 (0)

The participants wereaged between 19 and 32, with the majority being students. There were 18 players playing 
in 9 independent couples for 100 rounds each. They each had 30 seconds to take the action and they had a counter 
on the screen telling them how much time they had left (see Supplementary Fig. 2). However after 30 seconds 
were up, they could still play, but would be given a warning to take action immediately. In most rounds all players 
took their actions in a much shorter time than the given 30 seconds limit. The experiment lasted less than 45 min-
utes from the moment participants entered the room until the moment they left. We adapted the software from 
the previous experiment to be used for this one.

Ethical statement.  Both experiments were performed according to the standards of socio-economics exper-
iments. The participants’ anonymity was always preserved and they were never deceived during the experiments. 
All participants signed an informed consent. For the multiplayer experiment, please take a look at the Ethics state-
ment in the original paper20. For the pairwise experiment, ethical approval by reference number ECHW2015_3 
was obtained from the Ethical Commission for Human Sciences at the Vrije Universiteit Brussel to perform this 
experiment.

Drift Diffusion Model.  For the description of the response times distributions for binary decisions, we use a 
statistical decision model, the Drift Diffusion Model (DDM), which has the advantage of being defined by a sim-
ple linear, first-order, stochastic differential equation. In the DDM, at each moment subjects randomly collect 
evidence in favour of one of two alternative hypotheses. The continuous integration of evidence in time is 
described by the evolution of x(t) as a one-dimensional brownian motion with diffusion coefficient D  and a drift 
v:

ξ= +dx vdt D t( ) (2)

For each dt the quantity x(t) is increased by vdt (drift term) plus a noise ξD t( ) (diffusive term), where v and 
>D 0 are constant and ξ(t) is a white noise. In absence of boundary effects, the probability density P(x, t) of the 

solutions of Eq. (2) is normally distributed with mean μ =  = x(0) + vt and variance σ2 = Dt.
Given two barriers at x = 0 and x = a and an initial condition x(0) = z · a with z ∈ (0, 1), it is well defined the 

commonly called “gambler’s ruin problem”35, where x(0) represents the initial bankroll of the gambler, the absorp-
tion at x = a represents the gambler leaving a possibly unfair game (if v ≠ 0) after collecting her target winnings 
a, and the absorption at x = 0 represents the gambler’s ruin. The probability distribution of the times at which the 
process reaches the origin x = 0 before reaching the exit value x = a is known as Fürth formula for first passages
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which represents the probability distribution that a gambler will be ruined at time t and is characterised by an 
exponential tail.

The parameters v, D and z being interdependent, it is common practice to set D = 1 and use only the other 
three parameters to fit to the data with the curve P(t; v, a, z) = P(t; v, a, z, D = 1). This simplification is equivalent 
to re-defining the process in Eq. (2) as ξ′ = +dx dt t( )v

D
, for a rescaled quantity ′ =x x D/ , which starts at 

′ =x x D(0) /0  and is interrupted when ′ =x a D/  or x′ = 0. By imposing D = 1 we have, for dimensional reasons, 
=a t[ ] [ ]

1
2  and = −v t[ ] [ ]

1
2 , which is consistent with the dimensions of the rescaled constants v′ and a′ (note that 

the dimension of D is sec−1).
For describing decisions in a Prisoner’s Dilemma experiment, we associate here the barrier at x = 0 to defec-

tion and the barrier x = a to cooperation. When v is positive, the gathered information for the deliberation is 
tendentially in favour of cooperation, while when it is negative the evidence gathered is mostly supporting defec-
tion. The module of the drift speed |v| is the signal-to-noise ratio of the drift representing the unbalance in the 
amount of evidence supporting the two alternative options. |v| depends upon the difficulty of the decision. The 
lower |v| the more difficult the task16,23,36. The initial condition x(0) here describes the biases prior to deliberation. 
An unbiased initial condition would be z = 0.5. For values above 0.5 the decision maker has a bias toward coop-
eration and below 0.5 the initial bias is toward defection. The probability distribution P(t; v, a, z) thus describes 
the decision times of rounds where the ultimate decision is defection. Conversely, the probability distribution to 
a ss o c i ate  w i t h  c o op e r at ive  rou nds  i s  P ( t ,  − v ,  a ,  1  −  z ) .  T he  are a  u nd e r  t he  c u r ve 

∫= −  −
∞C v a z P t v a z dt( , , ) ( ; , , 1 )R

teo
0

 corresponds to the fraction of cooperation expected. The curve fit algo-
rithm we used30 fits at the same time the non-normalised distributions P(t, v, a, z) and P(t, −v, a,1 − z), thus 
evaluating at the same time the decision times for cooperation and defection, and the fraction of cooperation.

In the modelling of decision times, the quantity x(t) is associated to the difference in the amount of evidence 
supporting the two alternatives. To better illustrate this point of view, it is convenient to shift the process so that 
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an unbiased initial condition, which lies exactly between the two barriers x(0) = a/2 (z = 0.5), is mapped to x = 0 
and the barriers become symmetrical x = ±a/215. The new quantity x′ = x − a/2 can then be associated to (i) 
the difference in activity (firing rate) in two neuronal populations, each associated to one of the two alternative 
options (neuroscience perspective16); (ii) the difference between the utility expected for the two options (eco-
nomic perspective21). In both cases, |x′| represents the expected benefit obtained from taking the decision which 
is better supported by the evidence. Again from the neuroscience perspective, the final decision is then made by a 
second brain circuit that acts downstream detecting the event of the threshold crossing37.

The distance between the barriers a is the threshold parameter of the DDM, representing the amount of infor-
mation needed for the final decision. Its value can be naturally associated to the average first passage time of the 
diffusion process without drift (v = 0) in the unbiased case (z = 0.5).

Indeed, the average value of the decision times 〈t〉 for this unbiased case has the form15
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v
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2
tanh

2 (3)z
teo

0 5

In the limit for v → 0, we have a pure diffusion process and Eq. (3) leads to the identity 〈t〉 = a2/4 (see Fig. 4a). 
Therefore, we can identify a2/4 as the average first passage time for a similar diffusion process without drift.

Again for the unbiased case, it is possible to compute the fraction of cooperation expected given v and a15 (see 
Fig. 4b):

= . =
+ −
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1 exp( ) (4)R

teo

Higher values of v yield faster and more precise decisions, whereas higher values of a permit averaging out 
uncorrelated noise more consistently, producing slower but more accurate responses. As a consequence, the 
model is able to describe consistently the speed/accuracy trade-off observed for decisions made under pressure38.

Model fitting.  The data were fit using an open-source python library, the HDDM30, based on a hierarchical 
Bayesian estimation of the four free DDM parameters, which are all and the only parameters included in our 
analysis. The decision times and the associated action were indeed fit by pooling data across participants, at 
round level in the multiplayer experiment (169 response times), or aggregated over five consecutive rounds in the 
pairwise experiment (90 response times). We are therefore fitting the model to the group as if the are all copies of 
an ‘average subject’. This assumption is of course limiting, but our choice is motivated by the need of proposing a 
method that can be scaled to what is commonly done in game theory experiments, where the task is repeated only 
few times, and often only once.
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Anonymised data are available from the authors upon request.
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