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1. Introduction
Ovarian cancer has the third highest incidence of 
gynecological cancer in women globally, and the second 
most common gynecological cancer mortality [1]. The 
incidence and mortality of ovarian cancer show remarkable 
geographic variations at higher rates in industrialized 
countries. For instance, incidence and mortality in high/
very high human development index (HDI) districts are 
approximately 7.0 and 3.8 per 100,000 women and 5.7 
and 4.0 for 100,000 women in low/medium HDI regions, 
respectively [2]. Lifestyle factors and genetic predisposition 
are the main risk factors for ovarian cancer development 

[3]. The etiology of this disease is poorly understood. The 
key principles are continuous ovulation and gonadotropin 
overproduction [4]. Malignant transformation may result 
from overexcitation due to hormonal factors, including 
estrogen-rich follicular fluid after erosion or extreme 

gonadotropin levels leading to stimulation via estrogen or 
estrogen precursors [4]. The high mortality rate of ovarian 
cancer is linked to difficulties in diagnosis of the early stages 
of the disease, high rate of recurrence, platinum resistance, 
and inflammation [5]. Glycogen synthase kinase-3 (GSK-
3), an enzyme to regulate glycogen synthesis, has a key 
role in regulating immune and inflammatory responses 
by activities of various transcription factors that have been 
well reported [6].

Inflammation, oxidative stress, and DNA damage are 
causative factors in carcinogenesis [7]. Ovulation itself 
has been reported to be related to inflammation at the 
epithelial and follicle level [8]. In addition, talc exposure, 
endometriosis, and pelvic inflammatory diseases are 
other risk factors for developing ovarian cancer, but they 
do not directly affect ovulation and sex hormone profile 

[9]. Modern treatment of ovarian cancer is associated 
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with drug resistance, a high risk of recurrence, and severe 
side effects in some cases [10]. Thus, the investigation 
for natural compounds with fewer side effects and easy 
availability is on demand. Studies have shown that high 
isoflavones content in soy products prevents ovarian 
cancer [11]. In addition, high soy oil consumption 
significantly decreased the occurrence of ovarian cancer in 
women [12]. Isoflavones, a major class of phytoestrogens, 
are plant-derived compounds present in soy products and 
other legumes. Genistein (5,7,4’-trihydroxyisoflavone), 
the most commonly studied natural isoflavone, has been 
shown to affect the cell cycle of cancer cells progression and 
apoptosis [13]. In SK-OV-3 cells, genistein prevents cellular 
proliferation and induces cell cycle hold at the G2/M phase 
in a dose- and time-dependent manner [14]. In addition, 
it has been shown that genistein downregulates vascular 
endothelial growth factor (VEGF) receptors, which are 
considered critical targets for ovarian cancer treatment. 
Genistein is compared to other isoflavones, with a potent 
inhibitory property on VEGF protein secretion [15]. In 
ovarian cancer cells, high concentrations of genistein 
induce apoptosis and cell death while low concentrations 
exhibit antioxidant potential without any cytotoxic effect 
[16].

To evaluate the effects of genistein in ovarian cancer, 
laying hens are suitable experimental models because 
they spontaneously stimulate ovarian cancer largely when 
stopping egg production similar to women. However, 
other animals such as mammals and rodents do not 
spontaneously develop ovarian cancer [17]. In addition, 
the risk of developing ovarian cancer in chickens as well as 
in women increases with age and the number of ovulation 
for life [18]. The high prevalence of ovarian cancer in laying 
hens depends on age, genetic predisposition, reproductive 
history, and diet. Due to the similarity between ovarian 
cancer in laying hens and human ovarian cancer, laying hen 
is a proper experimental animal model for translational 
research [19]. This study examined the supplemental 
genistein properties on inflammatory biomarkers and 
glycogen synthase kinase-3 signaling pathway in laying 
hens with ovarian cancer.

2. Materials and methods
2.1. Animals and design
Three-hundred laying hens (104-week-old; ATAK-S 
hybrid, Gallus domesticus) were used in this work. The 
Animal Experimental Ethical Committee of Poultry 
Research Station (Ankara, Turkey) permitted the study. 
The birds were divided into three groups (n = 100) and 
treated as follows: group 1, animals fed a standard diet 
containing 16.83% crude protein (CP), 11.15 MJ/kg 
metabolizable energy (ME), and 22.39 mg genistein per 
kg of diet (Table); groups 2 and 3, birds fed a standard 

diet reconstituted with the adding of 400 mg or 800 mg of 
genistein per kg of standard diet at the expense of corn, 
respectively. The genistein (Bonistein™, 98% aglycone, and 
2% starches as a carrier) was provided by DSM Nutritional 
Products Inc. (İstanbul, Turkey). Animals received 3.01, 
52.48, and 106.26 mg genistein/hen per day in the control, 
low genistein, and high genistein groups, respectively. 
The birds had food and water ad libitum during the 
experimental period (78 weeks).

Table. The composition of the basal diet1.

Ingredient g/kg

Corn 625.0
Soybean meal2 274.7
Limestone 75.0
Dicalcium phosphate 15.0
Vitamin-mineral premix3 2.5
Sodium chloride 3.5
Sodium bicarbonate 2.0
Methionine 1.5
Choline chloride 0.8
Chemical analyses, dry matter basis
Crude protein 168.3
Crude fat 37.1
Crude fiber 35.3
Crude ash 111.0
Calcium 38.0
Phosphorus 3.6
Calculated compositions
Methionine 5.6
Lysine 9.6
Metabolizable energy, MJ/kg 11.15

1All analyses were conducted in triplicate. Genistein was added 
to the basal diet at the expense of corn in the amount of 0, 400, 
and 800 mg per kilogram. After reconstitution of the basal diet, 
respective experimental diets contained 22.39, 392.82, and 
792.72 mg of genistein per kilogram. 2Soybean meal contained 
the following: 48% protein, 0.75% fat, 5.3% ash, 5.8% fiber, 81.5 
mg of genistein/kg, and 68.2 mg of daidzein/kg. 3Supplied per 
kilogram of diet: retinyl acetate, 12,000 IU; cholecalciferol, 2400 
IU; dl-α-tocopheryl acetate, 30 mg; menadione sodium bisulfite, 
2,5 mg; thiamine-hydrochloride, 3 mg; riboflavin, 7 mg; niacin, 
40 mg; d-pantothenic acid, 8 mg; pyridoxine hydrochloride, 4 
mg; vitamin B12, 0,015 mg; vitamin C, 50 mg; folic acid, 1 mg; 
D-biotin, 0,045 mg; choline chloride, 125 mg; Mn (MnSO4-
H2O), 80 mg; Fe (FeSO4-7H2O), 30 mg; Zn (ZnO), 60 mg; Cu 
(CuSO4-5H2O), 5 mg; Co (CoCl2-6H2O), 0,1 mg; I as KI, 0,4 mg; 
Se (Na2SeO3), 0,15 mg.
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2.2. Sample collection
Blood samples and ovary tissues were collected from 
10 birds, with ovarian cancer from each group. After 
centrifugation (3000 × g for 10 min), serum samples 
were collected and stored at –80 °C until further analyses. 
ELISA (Elx-800, Bio-Tek Instruments Inc, Vermont, USA) 
determined serum TNF-α, IL-6, IL-8, and VEGF with the 
chicken Assay Kit (Cayman Chemical Co., Ann Arbor, 
MI, USA). The interassay and intraassay coefficients of 
variation were 4.3% and 6.1% for TNF-a, 3.6%, and 6.8% 
for IL-6, 4.9%, and 7.2% for IL-8, and 5.5% and 8.1% for 
VEGF.
2.3. Molecular analyses
For this purpose, Western blot analyses were done as defined 
previously [17]. Briefly, samples were homogenized at 1:10 
(w/v) in 10 mM Tris-HCl buffer at pH 7.4 containing 0.1 
mM NaCl, 0.1 mM phenylmethylsulfonyl fluoride, and 5 
mM soluble soybean powder (Sigma, St. Louis, MO, USA.) 
as a trypsin inhibitor. Samples were centrifuged (15,000 
´ g at 4 °C for 30 min), and supernatants were obtained. 
Protein was separated by 10% SDS-PAGE and transferred 
onto nitrocellulose membranes. TNF-α, IL-6, IL-8, VEGF, 
p-IRS-1, p-AKT, p-GSK3-α (Ser21), and p-GSK3-β 
(Ser9) antibodies (Abcam, Cambridge, UK) were diluted 
at 1:1000 in the buffer containing 0.05% Tween-20 and 
used in this study. The membranes were incubated with 
the primary antibody at 4 °C overnight and subsequently 
incubated with horseradish peroxidase-conjugated goat 
antimouse IgG (Abcam, Cambridge, UK). Protein loading 
was confirmed using an anti-b-actin antibody (Sigma, 
St. Louis, MO,  USA). Protein levels were measured 
densitometrically using the image analysis software 
program Image J (National Institutes of Health).
2.4. Statistical analysis
All data were shown as the mean ± standard error of the 
mean. Data were evaluated by analysis of variance using 
the General Linear Model with the SAS program (SAS 
Institute Inc.). When a significant F statistic (p < 0.05) was 
noted, the least-squares mean procedure was performed to 
differentiate between tools that were significantly different 
(p < 0.05).

3. Results
3.1. Effects of genistein on serum inflammatory 
biomarkers
Genistein supplementation (52.48 mg and 106.26 mg) 
significantly decreased serum IL-6 (Figure 1A), IL-8 
(Figure 1B), VEGF (Figure 1C), and TNF-α (Figure 1C) 
levels compared with the control group (p < 0.001). The 
decrease in IL-8, VEGF, and TNF-α was dose-dependent. 
The moderate dose of genistein (52.48 mg) was more 
efficient in decreasing IL-6 level, while the highest dose 

(106.26 mg) exhibited the highest effect on IL-8, VEGF, 
and TNF-α (Figures 1A–1D).
3.2. Effects of genistein on protein expression levels in 
ovarian samples
Both moderate (52.48 mg) and high (106.26 mg) genistein 
supplementation significantly reduced the protein 
expression levels of IL-6, IL-8, VEGF, and TNF-α in the 
ovarian samples, indicating that genistein mediates its 
antiinflammation effects on ovarian cancer through an 
inflammation signaling pathway. Genistein acts in a dose-
dependent manner (Figures 2A–2D).

As illustrated in Figures 3Aand 3B, a significant increase 
in insulin receptor substrate-1 (p-IRS-1) and p-AKT levels 
were observed in the genistein-treated groups, with a 
remarkable effect recorded in animals administered with 
the highest dose (106.26 mg). On the contrary, genistein 
supplementation induced a significant reduction in the 
protein of GSK-3α and β levels compared with the control 
group (Figures 3C and 3D).

4. Discussion
Different experimental and clinical studies propose 
a preventive role of genistein on several cancers such 
as colon  [20], liver [21], thyroid [22], prostate  [23], 
breast  [24], and ovarian cancers [10]. In some patients, 
advanced therapy of ovarian cancer is related to drug 
resistance, increased risk of disease recurrence, poor 
outcome, and severe side effects [10]. Therefore, further 
research is needed for natural compounds with fewer 
side effects and easy availability. Frequent consumption 
of soy products has been recognized to decrease the 
risks of developing ovarian cancer, mainly due to the 
high content in an isoflavone called genistein [10]. In 
the current study, we assessed the properties of genistein 
on inflammatory biomarkers and glycogen synthase 
kinase-3 signaling pathway in the ovaries of old laying 
hens with ovarian cancer. Laying hens, which have been 
shown to have similar features with humans, develop 
spontaneous ovarian cancer at a high rate, supplying a 
favorable experimental model for human ovarian cancer 
[17]. Indeed, laying hens have shown that ovarian cancer 
pathogenesis is related to ovulation-induced DNA damage 
in ovarian cells, similar to humans [25]. Ovarian tumors 
of laying hens have been classified into four subtypes in 
terms of tumor stage and grade, including mucinous, 
clear cell, and serous carcinomas, as those of humans [26]. 
Recently, the same experimental model has been used by 
our research team [17].

In the present study, genistein supplementation 
significantly lowered TNF-α, IL-6, and IL-8 levels in 
serum compared with the control animals. It has been 
demonstrated that tumor initiation and progression in 
the ovary is linked to chronic inflammation activated by 
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oxidative stress [27]. Indeed, tumor cell proliferation and 
migration stimulate inflammatory cytokine production, 
including IL-6, IL-8, and TNF-α [28]. The reduction of 
inflammation biomarkers observed in the current study 
indicates an antiinflammatory property of genistein 
in the ovary of old laying hens. This result is similar to 
that reported by Li and Zhang [29] and Spagnuolo et al. 
[30], who demonstrated that genistein could suppress 
inflammatory mediators such as IL-6, IL-8, and TNF-α. 
Because of the importance of inflammation on cancer 
occurrence and progression, genistein could be a potential 
therapeutic agent for ovarian cancer treatment. 

The vascular endothelial growth factor (VEGF) is a 
member of proteins, performing many endothelial cell 
functions, such as lymphangiogenesis [31]. VEGF-C is 
the main factor supporting the metastasis of cancer by 
activating the VEGF-C/VEGF-R3 signaling pathway and 
increasing cell mobility and invasiveness [18]. Because 
VEGF-C signaling affects tumor cells directly, the treatment 
of ovarian cancer is also mediated by decreasing VEGF-C 
levels. In the present study, genistein supplementation 
induced a significant decrease in VEGF-C expression level 
after treatment. This result corroborates with the previous 
finding reported by Hu et al. [32], who demonstrated that 
genistein reduced the expressions of VEGF-C levels in the 
synovial tissue. The importance of VEGF-C level reduction 
and the mediation of the treatment via the VEGF-C 

statements would be controversial, considering the main 
effects of bevacizumab on the VEGF-A levels rather than 
VEGF-C levels. Both the paclitaxel and bevacizumab could 
induce VEGF-C expression, which could be related to 
tumoral escape [33,34]. Moreover, the anticancer property 
of genistein observed in the current study is similar to that 
reported previously by our research group with curcumin 
in a spontaneously developing hen ovarian cancer model 
[17].

A possible molecular target for cancer treatment is 
GSK-3, an extremely conserved serine/threonine kinase 

[35]. The hyperactivation of GSK-3 may function as an 
oncogene in different types of cancers, including colon 
cancer [36], and ovarian cancer [37]. On the contrary, 
previous reports indicate that GSK-3 inhibitors are capable 
to suppress the proliferation of malignant cells [38]. Since 
protein kinase B (PKB or AKT) is a key regulator of protein 
translation, transcription, cell proliferation, and apoptosis, 
it is also considered a possible target for cancer prevention/
treatment [39]. The activity of GSK-3β is decreased by the 
phosphorylation of Ser9 and several studies have shown 
that Ser9 in GSK-3β is phosphorylated and inactivated by 
AKT [40]. IRS signals proteins that act as intermediates of 
stimulated cell surface receptors, most remarkably for the 
insulin and insulin-like growth factor receptors [41]. It has 
been reported that IRS proteins interface with numerous 
signaling pathways usually associated with tumor progress 

Figure 1. Effects of genistein supplementation on IL-6 (A), IL-8 (B), VEGF-C (C), and TNF- α (D) serum protein levels. *p < 0.05, **p 
< 0.01 statistically different compared with the control group. TNF-α: tumor necrosis factor-alpha; IL-6: interleukin 6; IL-8: interleukin 
8; VEGF-C: vascular endothelial growth factor-C.
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Figure 2. Effects of genistein supplementation on IL-6 (A), IL-8 (B), VEGF-C (C) and TNF-α (D) protein expression levels in the ovarian 
samples. The intensity of the bands shown was quantified by densitometric analysis. The bar represents the standard error of the mean. 
Blots were repeated at least 3 times (n = 3) and a representative blot is shown. β-actin was included to ensure equal protein loading. *p 
< 0.05, **p < 0.01 statistically different compared with the control group. TNF-α: tumor necrosis factor-alpha; IL-6: interleukin 6; IL-8: 
interleukin 8; VEGF-C: vascular endothelial growth factor-C.

Figure 3. Effects of genistein supplementation on the expression of the phosphorylated protein p-IRS-1 (A), p-AKT (B), GSK-3α (C), 
and GSK-3β (D) levels in the ovarian samples. The bar represents the standard error of the mean. Blots were repeated at least 3 times (n = 
3) and a representative blot is shown. β-actin was included to ensure equal protein loading. *p < 0.05, **p < 0.01, ***p < 0.001 statistically 
different compared with the control group. IRS-1: insulin receptor substrate 1; AKT: protein kinase B; GSK-3α and β: glycogen synthase 
kinase-3 alpha and beta.
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and progression by impacting cell metabolism, motility, 
survival, and proliferation [41]. In cultured bovine adrenal 
chromaffin cells, Sugano et al. [42] presented that the 
rise of Ser9-phosphorylation of GSK-3β was followed by 
reducing IRS-1 and IRS-2 levels. The significant increase in 
p-IRS-1 and p-AKT expression levels after treatment with 
genistein may justify the low level of GSK-3 expression. 
Because the expression of GSK-3 is significantly higher in 
ovarian carcinoma tissues [43], the significant reduction 
in GSK-3α and β expression in the current study after 
treatment with genistein indicates an anticancer effect.

In conclusion, the data presented demonstrate that 
genistein supplementation exhibited an anticancer effect 
by reducing inflammatory biomarkers and modulating 
GSK-3 signaling pathway in the ovaries of laying hens. 
Genistein is a potential candidate in the chemoprevention 
and/or treatment of ovarian cancer.
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