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Purpose: Lens adapted smartphones are being used regularly instead of ophthalmo-
scopes. The most common causes of preventable blindness in the world, which are
glaucoma and diabetic retinopathy, can develop asymptomatic changes to the optic
nerve head (ONH) especially in the developing world where there is a dire shortage
of ophthalmologists but ubiquitous mobile phones. We developed a proof-of-concept
ONH biometric (application [APP]) to use as a routine biometric on amobile phone. The
unique blood vessel pattern is verified if it maps on to a previously enrolled image.

Methods: The iKey APP platform comprises three deep neural networks (DNNs) devel-
oped from anonymous ONH images: the graticule blood vessel (GBV) and the blood
vessel specific feature (BVSF) DNNs were trained on unique blood vessel vectors. A non-
feature specific (NFS) baseline ResNet50 DNN was trained for comparison.

Results: Verification reached an accuracy of 97.06% with BVSF, 87.24% with GBV and
79.8% using NFS.

Conclusions: A new ONH biometric was developed with a hybrid platform of ONH
algorithms for use as a verification biometric on a smartphone. Failure to verify will
alert the user to possible changes to the image, so that silent changesmay be observed
before sight threatening disease progresses. TheAPP retains a history of all ONH images.
Future longitudinal analysis will explore the impact of ONH changes to the iKey biomet-
ric platform.

Translational Relevance: Phones with iKey will host ONH images for biometric protec-
tion of both health and financial data. The ONHmay be used for automatic screening by
new disease detection DNNs.

Introduction

Many global communities continue to have a dire
shortage of medical personnel yet have ready access
to telemedicine with their mobile phone, a supercom-
puter. Rapid advances in camera technology mean
that Smartphone ophthalmoscopes, such as the iphone
D-Eye, have been proven to be easier to use than
traditional ophthalmoscopes.1 For the first time, the

color image of the retina is available without any
clinical expertise. Artificial intelligence of such images
can automatically detect manifest glaucoma cupping,2
diabetic retinopathy,3 and age related maculopathy4
with high sensitivity and specificity, as well as systemic
changes, such as aging, cardiovascular disease,5 renal
disease,6 and even Alzheimer’s disease.7

We have chosen to start with the easiest part of
the retina to capture with a small pupil, the optic
nerve head (ONH), for use as a routine biometric.
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Figure 1. Three automatic stages of iKey algorithm preparation are shown. The ONH is automatically cropped from the image before
automatic vessel segmentation. The green channel blood vessel features are extracted for GBV and BVSF methods.

We wanted to develop software that could bring the
color fundus image, with a motive to regularly use
and update the image from childhood, to the ubiqui-
tous mobile phone. The more regularly the image is
taken, the easier it is to incidentally detect any change
to the image which might indicate disease, either with
automatic artificial intelligence or telemedicine. For
example, prompt notification of silent ONH changes
could herald Glaucoma, expected to affect 111 million
people by 20408 yet usually undiagnosed until at least
25% sight is lost.9

We present a new biometric, a feature-specific
hybrid platform of artificial intelligence and computer
vision algorithms for automatic analysis of the ONH
image. It will map a new ONH image with a previ-
ously registered one for verification. If they do not
match, for example, due to features belonging to a
different person, or being obscured with hemorrhage
or new vessel changes, then verification will fail. The
iKey includes supervised specific feature deep neural
networks (DNNs), so that routine verification should
not be possible when, for example, the image of specific
blood vessel features change, as with some potentially
blinding diseases or life-threatening systemic condi-
tions.

Methods

A hybrid software platform of automatic ONH
image analysis and verification was developed using

three processes: (1) a ResNet-based10 baseline
non-feature specific (NFS) system with no feature
engineering, (2) a supervised “Graticule” blood vessel
feature-specific system (GBV) where the features are
engineered from the intersection of vessels with a
geometric fixed size graticule, and (3) a partially super-
vised blood-vessel specific feature (BVSF) matched
computer vision processing system, which does not
require a training set (see Fig. 1).

Image Acquisition and Preparation

The Data analyzed in this report comprise fully
anonymized fundus images from 743 subjects (1486
eyes) acquired from the patients consented to the Irish
Diabetic Retina Screen program.11 At each annual visit
(encounter), two images per eye are captured: one
macula centered image and one optic disc centered.
The dataset contains up to four separate encounters
per patient, taken over 4 years, resulting in 11,844
fundus images. The 45 degree images were captured
with eight different nonmydriatic fundus cameras. The
anonymized images were transferred for analysis. The
anonymization process was independently confirmed
by author A.C. and the RetinaScreen IT service. Analy-
sis of images was performed in full compliance with
the Declaration of Helsinki, the Charter of Funda-
mental Rights of the European Union, the European
Convention on Human Rights, and the European
Union’s Ethics in Social Science guidelines Humani-
ties. The RetinaScreen graders and authors D.K. and
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K.C. (ophthalmologists) excluded 796 (6.7%) images
because of glaucoma, optic nerve head pathology,
myopic distortion, peripapillary pigmentation, and
media opacities.

Dataset Split

The resulting 10,763 images were divided into 3
subgroups to provide a training set 60% (414 patients
or 6450 images) used to train the neural networks of
ResNet based NFS and GBV (not used on BVSF),
a development set 20% (138 patients, 276 eyes, and
2159 images) for knowing when to stop the training
and optimizing the distance threshold for predicting
genuine or impostor, and a testing set of 20% (138
patients, 276 eyes, and 2154 images) used to evaluate
the performance of all 3 systems and compare them
against each other.

The biometric systems work over pairs of images:
a genuine pair is a pair of images from the same eye
taken at different times (e.g. encounter one at year 1 and
another at the annual encounter). An imposter pair is a
pair of images of different eyes. Note that the impostor
pairs can be composed of one right and one left eye
image.

Training Set

The training set was used for training the baseline
NFS and GBV algorithms. The BVSF model does not
require training.

The training set for GBV was augmented by gener-
ating 20 similar feature vectors out of each image.

The NFS training set was augmented by generating
three similar feature vectors out of each image.

Testing and Development Sets

The testing and development sets were not
augmented. The Development Set is used on all
three models (NFS, GBV, and BVSF) to determine
the optimal distance threshold for which a pair will be
predicted as “genuine” or “impostor.”

The number of genuine pairs and impostor pairs is
unbalanced. Genuine pairs are generated by exhaust-
ing all possible combinations of pairs of images of the
same eye. Impostor pairs are generated by exhausting
the possibilities of combining different eyes but choos-
ing randomly only one image per eye of all possible
eyes.

In both cases, the amount of impostor pairs is the
total amount of 276 eyes combinations of pairs ( 2762 ) =
37, 950 impostor pairs, which is much higher than the

possibilities for genuine pairs which is up to ( 42 ) = 6 per
eye, 6 combinations * 276 eyes = 1656 pairs.

The set of impostor pairs is preselected and fixed
for all three methods, consequently, all three systems
are evaluated with the same set of pairs (test set) and
parameters tuned using the same development pairs.

Data Preprocessing

Before processing, images from different cameras
must be normalized so that the extractedONHcropped
areas offer the same angle of view per pixel area,
independent of the camera quality. To conduct this
step, the black background of each image is replaced by
a square background of the size of the circular area of
the fundus part of the image. This involves cropping the
background on the sides and extending the background
on the top and bottom, which differs across cameras
(see Fig. 2).

After making the image square, the resolution is
normalized to a fixed size before extracting the 600 ×
600 pixel cropped area.

Segmentation and Cropping Methods

TheMaharjan12 algorithmwas used for blood vessel
segmentation, intersection-over-union (IOU) of 84%
on the DRIONS-DB dataset.

The Giachetti algorithm13 is used to identify the
center of the ONH. For the purposes of the devel-
opment of the present work, the system only has
to produce a 600-pixel square cropped image that
contains the ONH rather than match the exact area.
The algorithm has a 95.9% accuracy (probability of
finding the ONH) on a sample of 219 adult images.

After this process, a further 2.35% (2530) images
were manually removed (author K.C.) because of
failed cropping and blurred or missed ONH pathology.
Images that are unfocussed (any image for which the
Laplacian14 operator scored under 5) are automatically
filtered out.

Feature Extraction From ONH Cropped
Image

For GBV and NFS models, a Siamese15 network is
trained to classify pairs of those vectors as a genuine
pair (positive class) or an imposter pair (negative class).
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Figure 2. The image is normalized by creating a square frame around the image before extraction of the 600 × 600 pixel area.

Figure 3. Left: The blood vessels of the cropped optic nerve head with the graticule, a set of circles placed over the center. Right: Extracted
vectors plotted (green spots) over the original cropped image.

Non-feature Specific Baseline

The cropped square images of 600 × 600 pixels are
input into the pretrained ResNet50 network truncated
at layer 175. This layer produces vectors of features
of 2048 numbers that correspond to the internal states
of the network. training images were augmented by
changing the contrast of the cropped image.

Graticule Blood Vessel Feature-Specific
System

For GBV, the intersection between the blood vessels
segmentation and a fixed size virtual graticule, placed
at the center of the predicted ONH, is used to extract
vectors of features that represent the relationships
between the blood vessels. This method was devel-

oped to be independent of the shape of the ONH
rim when segmenting the ONH, by allowing repeatable
mapping of vessel cross-sections with a fixed geometric
overlay. This is to avoid possible error due to variations
in peripapillary boundaries, for example, with myopic
eyes or refractive distortion.16

The vectors of features are extracted by dropping
a geometrical pattern of 10 concentric circle graticules
over the center of the cropped ONH image (see Fig. 3).
A histogram of the sum of the intersections between
the circle and the overlying blood vessels is made.
Images were augmented by micro-relocations of the
vessel/graticule intersection, generating the training set
for improved accuracy.

The first 3 internal circles have a histogram of 12
bins, the next three 24 bins and the last four 36 bins,
producing a feature vector of 252 numbers.



Optic Nerve Head Image Biometric TVST | July 2021 | Vol. 10 | No. 8 | Article 1 | 5

Figure 4. Example of BVSF verification of two green channel
enhanced greyscale ONH images, by aligning vectors (black circles)
from the same feature on each image. The percentage of paral-
lel lines reflect the level of accuracy. Movement away from parallel
suggests impostor.

Blood-Vessel Specific Feature

The blood vessel feature algorithm (Fig. 4) is based
on the Oriented FAST and Rotated BRIEF algorithm
(ORB),17 which identifies features on images and
matches across other images. The 600 × 600 cropped
pixel image is resized to 300 × 300 pixels and enhanced
through software filter “Contrast Limited Adaptive
Histogram Equalization” (CLAHE).18 Then the ORB
algorithm is applied to a pair to extract features from
both images, producing a list of matches between them.

Given the list of matches, the algorithm selects the
group of the top matched blood vessel feature matches
that have the highest score, before analysis of the
averagemovement of all individual matches on that top
selection. The Euclidean distance is calculated for each
individual match. The process repeatedly removes the
matches of higher distance than average until reaching
a target set size of matches. The final match score for
alignment comprises the average distance of movement
to each individual match. The average distance to the
average movement from each individual match is the
score of the matching for the whole image, in this
way, images where the matches are aligned have higher
scores.

Deep Neural Network Training Methods

Two Siamese DNNs were trained. The first trained
using the GBV feature-vectors, and the second using
the NFS feature-vectors. Both Siamese DNNs classify
each pair of theONH images as a genuine pair (positive
class) or as an imposter nonmatching pair (negative
class).

Figure 5. Threshold optimization. Calculation of the optimal
accuracy of the system for different threshold values, using the
development set. The result is used to make predictions on the test
set.

Figure 6. Correlation between specificity and sensitivity for differ-
ent threshold values for BVSF, GBV, and NFS, showing the area under
the receiver operating curve (ROC).

Threshold Optimization

Both the Siamese DNNs and the BVSF match-
ing systems produce a distance score for each
pair of images, maximized for impostor pairs and
minimized for genuine pairs. The optimal distance
boundary to discern genuine from impostor pairs is
inferred. Figure 5 shows the results of the accuracy
of genuine pairs (acc genuine pairs, or true positive
rate) plotted against the accuracy of the system reject-
ing impostor pairs (acc impostor pair, or true negative
rate). Each point of the graph is calculated for different
threshold values for which the distance scores of a pair
of images would be classified as a genuine pair. Figure
6 shows the area under the receiver operating curve
(ROC) for correlating specificity and sensitivity for the
three approaches (Siamese GBV and NFS DNNs and
the BVSF DNN).
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Table 1. Verification Performance and AUROC

Accuracy Sensitivity Specificity Equal Error Rate AUROC

BVSF 97.06% 94.75% 99.37% 3.54% 98.79% CI 95% (0.986-0.989)
GBV 87.24% 85.04% 89.45% 13.12% 93.89% CI 95% (0.935-0.942)
NFS (base line) 79.81% 79.03% 80.58% 20.08% 88.18% CI 95% (0.878-0.885)

Confidence interval for the range of AUROC calculations is shown.
AUROC, area under receiver operating curve; CI, confidence interval; GBV, graticule blood vessel; NFS, non feature specific

baseline.

Table 2. Comparison of Verification Sensitivity of BVSF and GBV DNNs and Cropping Errors

BVSF GBV
Cropping
Errors

Genuine
Pairs

Pairs Without
Cropping Errors

% (Including
Cropping Errors)

% (Excluding
Cropping Errors)

Accepted Accepted 0 6160 6160 83.59% 84.30%
Accepted Rejected 0 822 822 11.15% 11.25%
Rejected Accepted 4 189 185 2.56% 2.53%
Rejected Rejected 58 198 140 2.69% 1.92%

BVSF, blood vessel specific Feature; GBV, graticule blood vessel.

Table 3. Analysis of Overlap Between BVSF and GBV

BVSF GBV Genuine Pairs Impostor Pairs

Accepted Accepted 6160 83.59% 22 0.06%
Rejected Rejected 198 2.69% 33915 89.37%
Accepted Rejected 822 11.15% 217 0.57%
Rejected Accepted 189 2.56% 3796 10.00%

Results

Results of verification are presented in Table 1,
showing performance ranking. The BVSF reaches
97.06% accuracy. The GBF reaches 87.24% and the
baseline NFS reaches 79.8%.

Table 2 shows the results of a test set containing
cropping errors before and after manual removal of the
images which failed to crop. Manual removal improved
verification from 2.69% to 1.92%, improving success-
ful verification to 98.08%. Table 3 shows comparison
between GBV and BVSF methods.

Error Analysis Survey

Results of errors found in images, which failed to
correctly verify, are shown in Table 4, with consider-
able overlap between groups. There were 2.69% images
(198 pairs) that failed verification match by GBV and
BVSF, 58 of themdue to cropping errors.Most of these
missed being filtered out at the preprocessing stage.
Examples of errors are shown in Figure 7 (Fig. 7a

Table 4. Observations on 198 Images Which Failed to
be Correctly Verified by Both BVSF and GBV

Total Genuine
Pairs Failed
Verification 198

Failed
Cropping

58
Other

Reason 140 Unknown 8

Edge artifact 46
Blurred 50 101
Dark 7 71
Monochromatic 52
Peripapillary
atrophy

11 4

Retinal pigment 44
Verified by
Resnet

62

to 7j). Cropping failure was associated with poor image
acquisition, camera edge artifact “blur,” hypopigmen-
tation, or pigmentation ormore than one of these signs.
One image (7d) failed to verify because the 600 × 600
pixel cropped area did not include all of the large optic
disc. Eight images had no obvious reasons for verifica-
tion failure.

A single failed patient eye image caused all pairs
with that image to fail (i.e. from 16 combinations of
up to 4 years of encounters). Several images lacked
contrast between the ONH and surrounding retina
(“monochromatic”). Figure 7e shows a pair of the
ONH images taken from macula centered and disc
centered viewpoint, with a clear vitreous hemorrhage
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Figure 7. (7a-7j) Demonstrate examples of images rejectedbyGBV andBVSFDNNs. Imagepair7gwas verifiedbyNFS, despite the absence
of an ONH on the right image. 7e Shows a posterior vitreous hemorrhage on the right image.

suspended on the posterior vitreous detachment of the
disc centered image on the right. Figure 7i shows failed
cropping due to bright peripapillary hypopigmenta-
tion on the left image macula centered image, whereas
different illumination of the right disc centered image
taken at the same sitting was successful.

Fifty-two of 140 false negatives were verified
by unsupervised nonfeature specific Resnet, despite
several pairs having no image of the ONH to match.
Analysis of images verified by GBV and not BVSF
and verified by BVSF and not GBV revealed no clues

to signs, which might suggest the reason for false
negative verifications. This will be explored in future
research.

Discussion

We have developed a mobile phone proof-of-
concept iKey biometric APP to verify an image of the
ONH with an accuracy of 97.06%. The small ONH,
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as opposed to the larger retina, was chosen for this
biometric development for two reasons: it lies close
to the macula, behind the pupil, allowing for easy
image capture with even a small pupil for a mobile
phone owner, and the ONH contains the uniquely
positioned retinal blood vessels and nerve fibers, previ-
ously only visible to ophthalmologists, reflecting local
and systemic health.

Verification will fail if the ONH image does not
map onto a previously enrolled image. Asymptomatic
changes to the ONH can occur for many reasons,
including aging, disease, healing, or deterioration for
subclinical reasons. The capture of the image may also
be hampered by media changes, such as cataract and
vitreous opacities.

Lightweight portable retinal cameras are widely
available, furthermore, several fundus camera lens
adaptors have already received full US Food and Drug
Administration (FDA) approval for using the mobile
phone as an ophthalmoscope.19

Once the image is enrolled in the iKey APP, a silent
continuous record is accumulated and may be simulta-
neously processed by all platform DNNs (see Fig. 1).

The ONH contains the root of the uniquely
patterned retinal vessels allowing for easy capture with
even a small pupil. There is a growing demand for a safe
biometric for vulnerable groups, such as children, for
digital onboarding and cybersecurity.20 The iKey verifi-
cation accuracy of 97.06% surpasses that of face recog-
nition technology,21 currently hampered as a biomet-
ric because of coronavirus disease 2019 (COVID-19)
induced mask wearing.22 Unlike face or iris recogni-
tion, a live image of the ONH is internal and gaze
evoked, so it cannot be unknowingly captured or
altered.

There is potential for iKey to be used from an early
age not just for sight protection but also for general
health maintenance. The iKey can work as part of a
multimodal platform allowing analysis by otherDNNs.

Two of the most common causes of preventable
blindness in the world,8 diabetic retinopathy
and glaucoma, can occur with silent ONH
changes.

Diabetic retinopathy is already being screened using
the Remidio-adapted android mobile phone offline
as an edge device.23 Glaucoma-screening algorithms
are more challenging.24 The current lack of clinical
consensus on diagnosis of structural or functional
changes in glaucoma25 hampers the clinical param-
eters used to train DNNs with adequate sensitivity.
The precise pathogenesis of glaucoma remains to be
established, but ONH vasculature changes with silent
glaucoma.26–30 Wang et al. have demonstrated the
importance of mechanical shearing factors on cribri-

form plate and remodeling, with maximum shearing
forces along the vessels.31 Retinal blood vessel shifts
have been postulated to be strongly linked with biome-
chanical forces and differential tissue deformation,
including changes to the ONH shape, with rapidly
progressive glaucoma.32 Optical coherence tomogra-
phy (OCT) and B scan analysis has also confirmed
peripapillary age-related tissue remodeling.33 Prelimi-
nary results on age classification of a limited database
of children are promising, the subject of a future report
on the completed dataset (author communication, and
safe data collection currently curtailed by the COVID
pandemic).

Thakur et al. developed a DNN to predict future
glaucoma on color photographs of ONH, which
progressed to develop glaucomatous optic neuropa-
thy.34 Mendex-Hernandez et al. have reported equiva-
lent sensitivity to glaucoma detection using fast cost-
effective colorimetric on color fundus photographs.35

Jammal et al36 have suggested the use of M2M
DNN training, using DNNs trained with images of
patients with known retinal nerve fiber layer (RNFL)
and functional loss to train diagnostic DNNs on color
fundus images of the same patients in order to improve
detection of fast glaucoma progressors. Bowd et al.37
have combined machine learning gradient-boosting
classifiers combining optical coherence tomography
angiography (OCTA) and OCT macula and ONH
measurements to predict glaucoma.

Future iKeyDNNswith feature relationship change
mapping using OCT, spectral domain-OCT (SD-
OCT), and OCTA images will be included in the multi-
modal APP. The ability to alert to specific vessel feature
change within a short time of the event may allow
more time specific correlation with structural RNFL
and perimetric changes.

ONH vessels have been affected systemic vascular
conditions38,39 as well as cerebral small vessel disease5
and the homology among the retina, cerebral vascu-
lar features, and diseases, such as Alzheimer’s disease is
well established.7 The iKey may have a much broader
role for disease prevention and health monitoring, as
with other wearable technology.40 Future work will
include the relationship of nonvascular features around
the vascular framework within the geometric graticular
space.

There are several limitations to this initial develop-
ment of the iKey platform and all will be addressed
with ongoing research.

The database comprises a filtered predominantly
Caucasian Irish diabetic population with normal
nonmyopic fundi. The iKey is verifying existing
features, notmaking a diagnosis, so it could be expected
to make no difference with mixed populations, but
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this remains to be confirmed in future work over
a broader demographic. It is known that the ONH
area ranges from 1.8 mm to up to 6 mm in various
populations.41 Interindividual variability of the optic
disc area16 and refractive errors can cause signifi-
cant distortion of the ONH image.42 We designed the
GBV DNN in iKey to map vectors on the intersec-
tion of the blood vessels with a concentric graticule
in order to avoid optical errors due to aberrant refrac-
tive distortion of the rim appearance and for potential
mechanical change detection research with progressive
myopia.

The BVSF mapping is designed to optimize verifi-
cation as a biometric, by mapping features common to
unique vessel patterns on both images. The GBVDNN
is, however, based on mapping an identical group of
blood vessel vectors to optimize detection of specific
blood vessel changes. There were 11.15% that failed to
verify with the GBV but were successful with BVSF.
In addition, 2.56% failed with BVSF but succeeded
with GBV. We plan to test iKey verification on images
of the ONH, which have actually developed changes,
such as manifest glaucomatous optic neuropathy and
disc hemorrhages, and are commencing a prospec-
tive longitudinal study of the same. In the interim,
we performed a limited experiment to verify an ONH
before and after applying a fake hemorrhage, drawn
with Procreate APP software and an Apple pencil
(Fig. 8).

The GBV failed to verify, as expected, with occlu-
sion of the BV features, whereas the BVSF accurately
verified the unique features common to both images
despite the hemorrhage. This suggests that the GBV
algorithm is superior, as hoped for, at detection of
change over the blood vessel feature map, but it is too
small an experiment to confirm. Future research will
explore improving sensitivities with modifications of
graticule shape, size, and vector bin size.

Another limitation of this study was due to
problems with the variety of cameras used on a retro-
spective dataset. The verification accuracy of 97.06%
was on a dataset where error analysis on the false
negative results (198 pairs) demonstrated 95 pairs
would not have been included according to data
preprocessing protocols and 58 were due to technical
cropping failure. Eight different fundus cameras were
used for these data from the national diabetic screen-
ing service, mandating an image normalization process
to equalize pixel content. The iKey has been designed
to include use at a one-one verification level with a
self-owned fundus camera, where the image will be re-
taken if unsatisfactory. Correct data preprocessing and
good image capture would have resulted in a verifica-
tion accuracy of 98%.

Figure 8. Top left: ONH before and, bottom left, after segmenta-
tion of vessels. Top right: Same ONH image with a fake disc hemor-
rhage before and, bottom right, after vessel segmentation. Note area
of hemorrhage is devoid of segmented vectors.

Other vessel-centered methods of cropping will be
explored to improve accuracy further.

Some images had obvious signs of media opaci-
ties, as would be expected with this diabetic data
set. Uni-ocular visual field loss is often asymp-
tomatic, being obscured by the contralateral visual
field. Capture failure due to media opacities may have
inherent screening benefits for a diabetic or aging
population.

Cropping was successful below a blur index of
9%. The successful BVSF verification of some blurred
images was surprising, underpinning the sensitivity of
the feature-trainedDNN. Further research will explore
the benefits of lowering the blur threshold further,
versus the possible loss of feature change detection at
too high a blur level.

A strength of the iKey biometric is that it provides
a motive for the APP owner to have their ONH image,
ensuring its concomitant availability, not only for all
data protection, including health-clouds, but also for
use with the growing pool of multimodal diagnostic
retinal algorithms revealing new biomarkers. The iKey
offers a unique ability to detect change. Longitudi-
nal studies incorporating this at the point of struc-
tural change of the various features in the future
might allow timely intervention at the earliest oppor-
tunity to halt functional loss. Future work will include
supervised DNNs trained on nonvascular features
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around the vascular framework within the iKey
graticules.

Here, we present a hybrid platform of ONH
algorithms based on mapping of ONH vascular
features for use on a smartphone in order to anticipate
silent structural change before functional loss. It could
facilitate the real time, longitudinal, self-monitoring
of our optic discs as markers for ocular and systemic
disease. It could join other dashboards of diagnostic
algorithms42 with great potential to narrow the gap in
access to preventative health care measures irrespective
of global location.
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