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Lignin is an abundant natural polymer obtained from lignocel-
lulosic biomass and rich in aromatic substructures. When
efficiently depolymerized, it has great potential in the produc-
tion of value-added chemicals. Fast pyrolysis is a promising
depolymerization method, but current studies focus mainly on
small quantities of lignin. In this Review, to determine the
potential for upscaling, systems used in the most relevant unit

1. Introduction

The growing demand for energy, chemicals, and materials is
met mainly by fossil resources.”” To tackle the intrinsic problems
of these feedstocks, such as their limited supply and effects on
the environment, the use of sustainable resources is of great
importance.” In particular, lignocellulosic biomass is a widely
available feedstock from which valuable products can be
obtained with a low carbon footprint.””

Lignocellulosic biomass is composed mainly of cellulose,
hemicellulose, and lignin. It also contains small amounts of
inorganic components and extractives, the latter being chem-
icals that solvents can extract.” The different building blocks of
lignocellulosic biomass make it a versatile feedstock. The
carbohydrate fraction (i.e., cellulose and hemicellulose) has
enabled the production of the biofuels ethanol and butanol,
platform chemicals such as 5-hydroxymethyl-furfural and lactic
acid, and other commodities such as citric acid.” In the case of
lignin, it has not been exploited to a similar extent.”

Lignin is a complex material rich in aromatic substructures
and has the potential to become a source of valuable
compounds, provided that it is efficiently depolymerized.” The
resulting compounds have a wide range of applications,
including their use as chemical feedstocks, fuels, polymers, and
solvents.”! Nonetheless, industries still regard lignin as a low-
value by-product. The pulp and paper industry extracts over 50
million tons of lignin annually to improve fiber flexibility and to
prevent paper from turning yellow.” In bioethanol production,
lignin is removed to enable the fermentation of the carbohy-
drate fraction."” In both cases, lignin is mainly combusted for
heat and power, with only a few other commercially viable
products."™* Furthermore, a significant amount of residual
lignin is expected to be a by-product of emerging lignocellulo-
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operations of fast pyrolysis of lignin are evaluated. Fluidized-
bed reactors have the most potential. It would be beneficial to
combine them with the following: slug injectors for feeding, hot
particle filters, cyclones, and fractional condensation for product
separation and recovery. Moreover, upgrading lignin pyrolysis
oil would allow the necessary quality parameters for particular
applications to be reached.

sic biorefineries."”? Apart from these industries, which consider
lignin to be a side product, lignin can be primarily targeted
trying to prevent structural degradation that could hamper
further use."” The exploitation of lignin through depolymeriza-
tion could increase the efficiency of biomass conversion,
enhancing economic and environmental benefits."™

Successful valorization of lignin depends on biomass
fractionation, the depolymerization method applied, and the
upgrading of the products.™ Depolymerization can be
achieved by chemical, thermochemical, and biological
methods.™*'¥ Among the thermochemical approaches, fast
pyrolysis stands out as one of the most promising, but its large-
scale implementation remains challenging. Comprehensive re-
views have been published about the pyrolysis of lignocellulosic
biomass."” However, there is a lack of critical analysis of
different reports about the fast pyrolysis of isolated lignin.

Here, we evaluate the systems used in the most relevant
unit operations of fast pyrolysis of lignin to assess their
suitability and potential for upscaling. We start discussing lignin
as a feedstock and its processing by fast pyrolysis. We continue
analyzing the strengths and weaknesses of systems for feeding,
reaction, and product collection. Finally, we summarize the
current technological state and opportunities to consolidate
large-scale processes for fast pyrolysis of lignin.

2. Lignin and Its Processing by Fast Pyrolysis

The characteristics and properties of lignin depend to a great
extent on the source of the biomass and the fractionation
strategy applied to obtain lignin that is separated from
cellulose, hemicellulose, and other biomass components.'
Such aspects are essential concerning further processing
towards aromatics."”

2.1. Lignin structure

Lignin is a polymer composed mainly of three phenylpropanoid
units, namely p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S),
derived from oxidative combinatorial coupling of the mono-
lignols p-coumaryl, coniferyl, and sinapyl alcohols (Figure 1).*
The structure of lignin depends on the type of biomass and the
conditions under which it grows.”®? In general, herbaceous
biomass contains 8-15% lignin, which consists mainly of H, G,
and S units; hardwoods have 20-30% lignin consisting primarily
of G and S units, while softwoods have 25-38% lignin with
mainly G units and smaller amounts of H units."**?" Nonethe-
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Figure 1. Main monolignols used to produce lignin by oxidative combinato-
rial coupling.

less, a large number of other substructures, incorporated during
lignin biosynthesis, may also be present.?*“¢ These moieties
are linked by different types of connections (e.g., f-O-4, B-5, -
[, 5-5, 5-0-4, and p-1) and may have various types of functional
groups, thus resulting in intricate structures.”?

Fractionation to procure lignin can irreversibly alter the
native state of the lignin®® as well as affect other biopolymers®!
present in the biomass. Lignin can be obtained by delignifica-
tion, by which it is liberated from the biomass in the form of a
solid precipitate or a depolymerized oil, and a carbohydrate-
rich pulp is produced (e.g., by Kraft pulping, sulfite pulping, and
soda pulping).”>™ These procedures can be performed under a
wide range of conditions, including alkaline, acidic, reductive,
oxidative, or others (e.g., in the presence of ionic liquids for
solubilization of the entire biomass, extracting lignin and
hemicellulose by means of ionosolv pulping, or by mechanical
pretreatment followed by solvent extraction)."” Other methods
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convert and solubilize carbohydrates by acid-catalyzed hydrol-
ysis (e.g., the Klason method), enzyme-catalyzed hydrolysis, or
thermal processes.*'!

In a fractionation process, the operating conditions and the
type of reactor strongly influence the characteristics of the
resulting lignin. Consequently, they determine the reactivity
and the possibilities for valorization of the lignin. For example,
Kraft lignin is obtained by means of the common process that
utilizes sodium hydroxide and sodium sulfide, which provide an
alkaline environment that promotes biomass delignification and
lignin solubilization under harsh conditions. The lignin is
degraded by cleavage of the ether bonds and the formation of
more carbon-carbon linkages, which cause the structure to
condense, a disadvantage for further processing.”* In addition,
the presence of bisulfide ions promotes the incorporation of
sulfur in the form of thiol groups, which hinders downstream
processing.”*®'! Some methods preserve the structure of the
native lignin to a greater extent, as is the case with the
extraction of lignin by means of y-valerolactone-based solvent
systems."®2% Similarly, processes based on active stabilization
mechanisms prevent lignin condensation." Schutyser et al.l"”!
described different fractionation methods and their influence
on lignin characteristics.

2.2. Fast pyrolysis of lignin

Fast pyrolysis is a depolymerization method in which the
processed material is rapidly heated (using heating rates
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between 20 and 20 000°Cs™") to temperatures between 400
and 800°C in the absence of oxygen. Figure2 shows a
conceptual flow diagram of a fast pyrolysis process, including
its most relevant stages and some alternative features. Lignin
begins to decompose as the moieties of the polymer are
removed, thus generating oligomers.”” Further decomposition
leads to gases, liquids (lignin pyrolysis oil), and char."”? Gaseous
products are formed due to decomposition to low-molecular-
weight compounds, while char forms during repolymerization
processes. There are a number of interesting applications for
these solids and gases, but other thermochemical processes are
better suited for obtaining them (i.e., gasification and carbon-
ization, respectively).”® The liquids compose the most valuable
product, containing compounds such as phenols and hydro-
carbons with a large variety of substituents and functional
groups. The product distribution depends on the lignin used as
well as on the pyrolysis conditions.””!

Decades of research have been devoted to finding the best
conditions for fast pyrolysis in order to maximize the yield of
pyrolysis oil and improve product selectivity. The main focus of
these studies has been lignocellulosic biomass. However, lignin
represents an attractive raw material. It is abundant and has the
potential to produce a wide variety of chemicals. Fan et al.>”
reviewed the conditions of lignin fast pyrolysis, including
temperature, feeding rate, residence time of the pyrolysis
vapors in the hot zone, types of catalysts, the reactor, and the
lignin structure.

3. Feeding

The development of large-scale biorefineries is complicated by
the heterogeneity of the feedstocks and deficiencies in their
logistics.”” Lignin as a feedstock could solve several of these
problems; some lignins can be produced in large amounts at
specific locations. However, the characteristics of the lignin
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Figure 2. Conceptual flow diagram of a fast pyrolysis process (with
alternative features in parentheses).
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must be considered in order to determine the appropriate
feeding strategy.

3.1. Obstacles to lignin feeding

The pyrolysis process begins with feeding the lignin into the
reactor. This initial step is of great importance, not only to
ensure proper operation (e.g., in continuous flow), but also to
acquire the appropriate feeding rate relative to the energy
input. If the feeding rate is too high or too low for the energy
input into the reactor, the heating rate will be affected,
changing the yield and chemical profile of the products.®?

Feeding lignin is problematic when using feeders designed
for the pyrolysis of whole biomass. This is due primarily to the
low-temperature softening and melting point of lignin, as
determined by its structure, and which can cause it to melt and
cause blockages before it reaches the reactor.”® Such blockages
are one of the major barriers to the implementation of lignin
pyrolysis,?¥ inhibiting both continuous flow and control of the
feeding rate.

3.2. Pretreatment of lignin before feeding

In contrast to previous theories that linked the melting point of
lignin to the cellulose content®? or the concentration of
oxygenated functional groups,®® Han et al.®* indicated that
the degree of crosslinking and condensation in the lignin
structure are the main factors affecting the melting point. To
approach this, modification of the lignin feed was explored.
Pretreatment with reagents, such as calcium formate®® or
pelletizing with a natural clay mineral®3"" have been shown to
alleviate the problem. Thring et al.*® dissolved lignin in acetone
(1:2 weight ratio) and injected the liquid feed with a syringe
pump to eliminate melting.

Lignin pretreatment may also improve the selectivity of the
process. Using calcium hydroxide, a relatively low-cost, low-
hazard, readily available reagent, Zhou et al.** achieved con-
tinuous feeding, while at the same time improving selectivity to
phenols and aromatics. Lee et al.®¥ obtained similar results with
calcined waste seashells, which decreased the temperature at
which lignin decomposition occurred.

Despite the benefits, some pretreatment (e.g., with clay
additives) may cause an increase in the amount of ash (the solid
inorganic component) that is produced. Ash contains metals,
such as magnesium, aluminum, and calcium, which can act as
vapor cracking catalysts and increase the amount of non-
condensable gases.”” Insufficient separation of the ash from
the vapor stream will leave traces in the oil. The inorganic
content in oil appears to catalyze polymerization reactions,
which increase viscosity and the apparent diameter of the
suspended char, that is, submicron char particles that form
during pyrolysis and are suspended in the pyrolysis oil.“" If the
oil is used for energy, it can also have undesirable effects, such
as high-temperature corrosion and the formation of
deposits."’“ Similarly, ash in the char by-product is undesirable
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if it is combusted for heat and power;*? other applications with
the char (e.g., to improve soil) might also be impacted. Aside
from the ash content, pretreatment may be costly or require
nonrenewable feedstocks.

3.3. Reactor feeders: screw and slug injectors

Screw feeders are often used in biomass handling and can
transfer lignin to the reactor by positive displacement.*?
Although screw feeders may function successfully,*? in most
cases melting of the lignin obstructs continuous operation.
Such feeders have been modified, for example, by using a
cooling water system; however, in some cases, there was only a
slight decrease in the melting of lignin.®**** A collaborative
effort involving 14 laboratories across Europe and the USA also
used liquid nitrogen, dry ice, and polyethylene glycol for
cooling and had more success.”> Beis et al.*” passed a high
flow of nitrogen gas through a screw feeder at a lignin feeding
rate of 04gmin~' to minimize plugging. However, such
adaptations are likely to be impractical and more costly for
upscaling the process.

In some cases, lignin is fed into the reactor by an
intermittent slug injection system,”? which may prevent highly
cohesive material from blocking the system and undergoing
undesirable reactions during feeding. A pneumatically activated
pinch valve releases small amounts of lignin into a horizontal
tube; the lignin accumulates to form a slug. Intermittent pulses
of an inert gas, controlled by a solenoid valve, propel the slug
into the reactor, preventing the feed from settling in the tube.
A continuous gas flow is used to prevent back-flow, and an
additional cooling jacket may be used in the feeding line to
prevent melting. With the slug injection system, continuous
feeding at rates of up to 600 gh™' have been achieved,
meaning that there is potential for upscaling the system while
enabling feeding without altering the lignin structure. Further-
more, the rubber pinch valve sleeve, which is easily replaced, is
the only component subject to wear, so operating costs are
low. Berruti etal” reported details of the system and its
optimization. Based on the above information, a slug injection
system is the system of choice for unmodified lignin. However,
further studies are required to analyze the effects of this type of
feeding on the fast pyrolysis process itself.

4, Reactors

The reactor can also affect lignin fast pyrolysis, but it has
received relatively little attention. Its importance stems from its
effect on the heating rate, which strongly affects yield and
selectivity. For instance, a low heating rate (below 20°Cs™") will
lead to slow pyrolysis and result in a higher yield of solid
char®” The reactor is a crucial aspect when considering the
upscaling and commercialization of the process. Reactors work
either in continuous or in batch mode (see below, Tables 1-8),
and their potential for upscaling differs.
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4.1. Continuous-flow reactors
4.1.1. Fixed-bed reactor (FBR)

The fixed-bed reactor (FBR; Table 1) comprises a static reaction
bed, a feeding unit, and a gas flow to ensure inert conditions
and to carry the products to the outlet.® Fixed-bed reactors
have been used for the pyrolysis of lignin; they work well with
catalysts, which can be incorporated into the bed in the form of
pellets or the catalyst can also form the bed. Contact of the
primary products of pyrolysis with the catalyst can be
maximized as the vapors pass over the bed,® thus improving
the selectivity of the process.

Shafaghat et al.”® pyrolyzed lignin under different condi-
tions (temperature, catalyst, type of lignin, carrier-gas flow rate)
using a bench-scale fixed-bed reactor. They achieved their
highest yield (36 wt%) of lignin pyrolysis oil with Kraft lignin
(100 g) at 500°C and a carrier-gas flow rate of 600 mimin~".
Strong acidic and basic catalysts, such as H-beta and HY
zeolites, reduced the liquid yield but enhanced selectivity
towards phenols and monomeric aromatic hydrocarbons.”® Lee
et al.*” also increased the selectivity for aromatics, particularly
towards alkylphenols and pyrocatechols, by using a tandem
fixed-bed reactor with both an in situ and ex situ catalyst
(natural zeolite and HZSM-5, respectively). Thring et al.’¥
pyrolyzed 3 g of organosolv lignin using an HZSM-5 catalyst
and achieved a 43 wt% liquid yield with 88.8 wt% of the liquid
product being aromatic, mainly toluene (36.7 wt%), xylenes
(33.0 wt%), and benzene (9.4 wt%).

Despite promising results for fixed-bed reactors, several
critical aspects must be considered. Only small amounts of
lignin have been tested, so their suitability for larger scales is
questionable. A disadvantage that may play an essential role is
that the bed is usually heated from its periphery, resulting in
uneven temperature in the reactor and relatively low heating
efficiency.®® As product yield and selectivity are highly depend-
ent on temperature, this results in a lower yield and
inhomogeneity of the products. The production of char is also a
major problem. Lignin produces a larger amount of char
compared to the whole biomass,"”™ which would affect the bed
and represent operational complications. These aspects indicate
that the fixed-bed reactor would be unsuitable for lignin
pyrolysis on a large scale.

4.1.2. Bubbling fluidized-bed reactor (BFBR)

Within a bubbling fluidized-bed reactor (BFBR; Table 2), a
preheated fluid is forced upwards through a porous distributor
into a bed of solid particles (e.g., sand). Such particles will later
transfer heat to lignin. When the velocity of the fluid is
sufficiently high, the solid bed begins to expand and move,
causing it to behave like a fluid.®® The raw material (lignin) can
be injected into the reactor, where it decomposes to form the
pyrolysis products. Such a system maximizes the interaction
between the lignin particles and the hot fluid, allowing efficient
temperature control and homogeneous heat transfer.” It also
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ensures the homogeneous distribution of heat, which influen-
ces pyrolysis kinetics; reaction rates are limited by the heat
transfer through the particles and the rate of particle heating is
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throughputs but would require careful control to satisfy the
requirements of successful pyrolysis. Little is known about the
application of this type of reactor to lignin fast pyrolysis.
However, it has been tested at a pilot scale using lignin
obtained from the production of lignocellulosic ethanol.®"**
Using a screw feeder, 15 kgh™' of lignin (particle size of 0.25-
3 mm) were fed into the cold part at the bottom of a reactor to
avoid melting.®* The reactor was operated under atmospheric
pressure at 511 to 538°C and a superficial fluidization gas
velocity of 7 ms™". The temperature was controlled by adjusting
the flow rate of the hot quartz sand (0.1-0.6 mm, p=
2600 kgdm™3) fed by a screw feeder. Bed agglomeration was
avoided because of the high gas velocity and the forces applied
to the particles of sand and lignin. Product separation was done
with two cyclones, two scrubbers working at 40°C, and one
cooler. A mass balance revealed the production of 37 wt% of
lignin pyrolysis oil, 43 wt% of char, 11 wt% of water, and 11 wt
% of noncondensable gases. The heat requirements were met
mainly by the combustion of the char and some of the
noncondensable gases in a combustor that was stable at
700°C.5% The rest of the gas was used for fluidization.
Additional fuel was required only at start-up and shutdown. A
main drawback was the deposits in the cyclones and gas lines
of the product, which resulted in a build-up of pressure and
shorter operational periods.?*!

CFBR systems are promising due to the large throughput,
the use of side products (char and noncondensable gases) for
heat as well as operation without significant agglomeration.
Nonetheless, the processing of pyrolysis products after the
reactor must be improved in order to increase the duration of
the operation.

Ref.
[52]

Lignin pyrolysis oil: using a water-cooled heat exchanger at 40°C and an

electrostatic precipitator at 20 °C
glycol coolers at —10°C (one tube heat exchanger and a second smaller

Non-condensed water and light after the electrostatic precipitator: two
tube heat exchanger filled with additional glass packing)

Char: using two cyclones after the reactor

Product collection

with a proprietary cat-
alyst as 1-3 mm par-

ticles
Feeder: cooled screw

Rate: 500 gh™'

Lignins were co-fed
Time:3 h

Rate: 500 gh ™'
Time: 20-40 min

Feeding

4000 kgdm ™)
Nitrogen is used as the main gas for

fluidization

hydrogen sources tested, but hydro-

gen ended up mostly in the gas

Utilization of steam and ethanol as
phase

Bed agglomeration is overcome by
adding a rapidly rotating mixer in

more pronounced for lignin having
the reactor

Superficial gas phase residence time
Clogging and bed agglomeration are
lower carbohydrate content

Pyrolysis temperature: 500, 550, and
in the reactor: <1

Major products of lignin pyrolysis oil:
600 (+5) °C

guaiacols, syringols, alkylphenols,

heated, at five times the minimum
and catechols

Notable details

fluidization velocity)

Residence time: 1-3 s

Pressure: atmospheric

Bed: 300 g sample of white alumi-
num oxide (0.56-0.71 mm,

4.1.4. Pyrolysis centrifuge reactor (PCR)

o

Pyrolysis centrifuge reactors (PCR; Table 4) differ from the fixed-
- and fluidized-bed reactors. Instead of a bed material, the heat
transfer medium is the reactor itself. The reactor rotates and
centrifugal forces drive the raw material particles onto the hot
surface of the reactor wall, which is usually heated electrically
to around 500-600°C.""? The heated surface of the lignin melts
and when the material moves away from the wall, the molten
layer decomposes to form the pyrolysis products.®?? Advantages
over other reactors include compatibility with large particles
and efficient pyrolysis oil collection by cause of higher partial
pressure of condensable vapors due to the lack of a carrier
gas." The rotation causes the lignin and any char that is
produced to be moved along the length of the reactor to an
outlet, which ensures a continuous process and inhibits
agglomeration.”” However, the cooling nozzle became plugged
after approximately one hour of operation in multiple cases. To
increase the duration of operation, Trinh et al.?? suggested an
increase in the diameter of the nozzle. They obtained a total oil
yield of 43 wt% and a dry oil yield of 34 wt%; 204-481 g of
lignin fed at 5.6 gmin~' were pyrolyzed in each run.®? Guaiacols
and syringols (phenolics) were the most abundant components
of the oil (27.4 and 18.3 %, respectively). To improve selectivity,

Lignin pyrolysis oil
yield [wt%]
Organic  Aqueous
320 19.9
(wheat
straw lig-
nin B)
244 14.5 Alcell
305 17.1 Gran-
32-51 4-16

Amount py-
rolyzed [g]
1500

production process St1 Cellunolix, variable carbohydrates

Hydrolysis lignins (from the lignocellulosic ethanol
content)

Table 2. continued
Type or source of lignin
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Table 3. Fast pyrolysis of lignin using circulating fluidized-bed reactors (CFBR).

velocity: 7 ms

Type or source of lig- Amount Lignin pyrolysis oil ~ Notable details Feeding Product collection Ref.
nin pyrolyzed yield [wt%]

[g]

Organic  Aqueous

Hydrolysis lignin (from  Pilot-plant 37 1 Pyrolysis temperature: 511-  Feeder: screw Char: using two cy-  [52]
the lignocellulosic scale 538°C Lignin: 15 kgh™" of lignin (particle  clones after the re-
ethanol production (15kgh™ Pressure: atmospheric size of 0.25-3 mm) fed into the actor
process St1 Cellunolix)  of lignin) Superficial fluidization gas bottom of a reactor (cold part) to  Lignin pyrolysis oil:

-1

Bed: quartz sand (0.1-

0.6 mm, p=2600 kgdm 3)
fed using a screw feeder er
Heat supply: combustor

working stable at 700°C

(fuels: char, part of noncon-

densable gases, and pellets)

avoid melting problems using two scrub-
bers working at

40°C and one cool-

Zhou et al.®¥ directly upgraded the pyrolysis vapors in situ
using a downstream HZSM-5-based catalytic fixed-bed.
Although a dry-liquid containing 70 wt% of oxygen-free
aromatics (mainly benzene and toluene) was obtained, the yield
decreased from 27.6 to 5.7 wt% after adding the catalyst. More
research needs to be undertaken to determine whether
catalysts can be effectively incorporated into the PCR or
whether other upgrading methods should be considered.

In addition to the relatively poor compatibility with
catalysts, because the process is surface-area dependent, scale-
up of the PCR may lead to other problems. It may be
challenging to reach the rotational speeds required to ensure
high centrifugal forces and the temperature needed for
adequate heat transfer.

4.1.5. Entrained-flow reactor (EFR)

Based on gasification technologies, the entrained-flow reactor
(EFR; Table 5) heats its processed material by means of a
preheated inert gas stream.""™ The vapor products are
collected by the carrier gas and passed through a condensing
system.

A nitrogen-entraining gas at 700°C was used at the Energy
Research Centre of The Netherlands to process two types of
lignin, a purified soda lignin and a concentrated lignin from
lignocellulosic ethanol production.**9 Continuous processing at
a feeding rate of 40 gh™' successfully achieved a lignin pyrolysis
oil yield of 36.6 wt%.*7 Mukkamala et al.* tested the feeding
of 1 kg of lignin/calcium formate (1:1) at a feeding rate of 1-
2 gmin~' over 6 h. They obtained a liquid yield of 33 wt% with
no agglomeration. Both studies resulted in a high proportion of
deoxygenated aromatic and phenolic products and a reduction
of typical guaiacyl and syringyl products.

The entrained-flow reactor is generally less popular for the
fast pyrolysis of lignocellulosic biomass than other reactors,
such as those with a fluidized bed. This is probably due to the
inefficient heat transfer between the hot gas and the solid
particles, which leads to the requirement for small particles (<
2mm) and high gas flows, both of which would limit scale-

ChemSusChem 2022, 15, €202200343 (9 of 18)

up."™ The lignin feed is usually in the form of a powder; thus,

heat transfer may be less problematic than with the whole
biomass. However, the use of carrier gas results in low partial
pressures of the vapor products, thus affecting product
collection and gas recycling."”? For lignin, the lack of agglomer-
ation in the system may outweigh this disadvantage.

4.2, Batch reactors
4.2.1. Milligram-scale pyrolyzer

A pyrolyzer working with milligrams of sample in a batch
process (mg-scale pyrolyzer; Table 6) is generally used in studies
of fast pyrolysis of lignin. Small quantities enable easy heating
and cooling as well as the coupling of analytical instruments to
allow efficient online separation and analysis of the products.
For example, products can be separated by gas chromatog-
raphy (GC) and subsequently analyzed by mass spectrometry
(MS).5¥ There can also be parallel separations followed by
analyses by means of MS and a thermal conductivity detector
(TCD), to determine high-molecular-weight condensable prod-
ucts and noncondensable gases, respectively.?*? Alternatively,
Fourier-transform infrared (FTIR) spectroscopy®™” or molecular
beam mass spectrometry (MBMS)*® can be used to analyze the
products directly. Some configurations yield products in
amounts that are large enough to be analyzed offline.*”
Another important advantage of milligram-scale pyrolyzers
is that they can be used for kinetic studies. Thermogravimetric
analysis (TGA) is widely used in such research.®® However, the
heating rates are insufficient for fast pyrolysis, and information
about the specific compounds produced is limited (unless a
complementary technique such as MS or FTIR is used). Reactor
setups such as pyrolysis-GC/MS do not have these shortcom-
ings. They can achieve fast pyrolysis processes and accurately
separate and identify the species that compose the product
mixture. This offers the additional advantage of giving access to
information that provides insights into reaction mechanisms.”"
In pyrolysis-GC/MS setups, the lignin is initially immobilized
(e.g., using quartz wool). A platinum coil is commonly used to

© 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH
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U > 4.2.2. Microwave reactor (MWR)
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ez The heat transfer in microwave pyrolysis reactors (MWR;
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3 B ,E»g % 'g = 'g 5 § oil with guaiacols, phenols, and catechols as the main products.
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Additional work permitted kinetic modeling and successful
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Table 5. Fast pyrolysis of lignin using entrained-flow reactors (EFR).
Type or Amount pyro-  Lignin pyrolysis oil ~ Notable details Feeding Product collection Ref.
source of lyzed [g] yield [wt%]
lignin
Organic  Aqueous
Kraft lignin 300 (lignin/ 325 Pyrolysis temperature: Rate: 1-2 gmin™' Char: using a hot-gas filter immediately ~ [36]
calcium for- 500°C Sweep gas: after the reactor at 500°C
mate) Residence time: ca. 3 s 6 Lmin~" Lignin pyrolysis oil: using a condenser
Major products of lignin py-  Lignin pretreated by at 4°C and an electrostatic precipitator
rolysis oil: alkylated phenols  adding Ca(HCOO),

outstanding liquid yield of 90%. Oligomers were the main
component of the oil.

It is possible to scale-up the reactor for a continuous
process. A 3000 kgh™' vacuum reactor for lignocellulosic
biomass pyrolysis was set up by Pyrovac Inc. in Canada."?
However, the project was abandoned in 2002; the large vessels
and piping required for an effective vacuum made the process
complex and costly."”® This means that, at present, such a
reactor is not feasible.

5. Product Collection

The separation and collection of products in fast pyrolysis of
lignin are vital to ensure a high yield and high-quality lignin
pyrolysis oil, which is solid-free, has a low water content, and a
high concentration of monomers. A high water content means
that pyrolysis oil has a low heating value, is highly corrosive,
and is very acidic; as a result, it is unsuitable for fuel
applications.”™ Minimizing the water content during product
collection may make subsequent upgrading unnecessary. In
addition, the oil quality can be increased by limiting secondary
reactions, such as vapor cracking and repolymerization. There-
fore, condensation of the product vapors must be rapid and
balanced with the necessity to remove solid particulates before
that happens. In terms of these criteria, separation systems after
the lignin pyrolysis reactor will be reviewed, including an
assessment of their suitability for upscaling.

5.1. Char removal

Removing the char is important to achieve a homogeneous
product and to limit secondary reactions because the char can
act as a catalyst. Collecting the char is also beneficial as it can
be combusted for heat and power on-site, sold as an end-
product for applications such as to improve soil, or used in
construction.”®

With reactors such as the centrifuge reactor, catch-pots
have been used to remove large, coarse particles.*? The solid
particles fall into the pot, while the vapor stream is channeled
in another direction. The mechanism is simple and effective for
large solid particles. Alternatively, the cyclone system can
remove solids with a wide range of particle sizes. The vapor
stream enters the cyclone at a tangent, causing it to circulate

ChemSusChem 2022, 15, €202200343 (11 of 18)

downwards and form a vortex. The solid particles fall to the
bottom while the clean vapors travel up the cyclone through
the center of the vortex.”” In a review of condensation systems
for biomass pyrolysis, Papari et al.”® found that the content of
char decreased from 2.8 wt% to below 0.5 wt% when upgrading
from one to two cyclones. Although increasing the number of
cyclones may enhance char removal, it also extends the length
of time that the vapor products are under high-temperature
conditions, which can lead to secondary reactions. Therefore,
one or two cyclones is the typical case. Cyclones are particularly
favorable due to their low capital and running costs, reliability,
and suitability for use at high temperature.””

Hot particle filters are used to remove fine solid particulates
and have been shown to have a positive effect on the
composition of the pyrolysis oil. Mei etal.”” observed that
changing the filter temperature at intervals between 350 and
500°C caused a change in the chemical composition and
structure of the pyrolysis oil produced from pine sawdust.
Specifically, increasing the temperature increased the aromatic-
ity of the pyrolysis oil. Further investigations should be carried
out with a lignin feed to determine whether such results can be
reproduced.

5.2. Collection of lignin pyrolysis oil

Condensation and collection of the final lignin pyrolysis oil are
important to maximize yield and reduce water content. Several
systems have been used in the pyrolysis of lignocellulosic
biomass,”® but only a few have been applied to lignin pyrolysis.

Bubbling the vapors through a quenching solvent at a low
temperature causes them to condense. The vapor components
are quickly and considerably diluted by the solvent, thus
preventing secondary reactions. Isopropyl alcohol has been
used on several occasions®*'*® due to its suitability for
relatively nonpolar compounds. Trinh et al.®? described the
possibility of esters forming during the reaction of isopropanol
with carboxylic acids; however, it is assumed that this is
negligible at low temperature (<50°C) in the absence of a
strong base or acid. The solvent can be extracted to produce
the raw lignin pyrolysis oil, but the water fraction remains and,
thus, lowers the quality of the oil. Overall, the method is
probably impractical on a large scale; methods of producing oil
with a lower water content and less solvent contamination are
preferable.

© 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH
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any other light components of the vapor. The oil fraction
contained 94% of the phenolic compounds found in the raw
lignin pyrolysis oil and had a water content below 1 wt%. The
quality of the oil produced by fractional condensation is much
higher than that of any other system used in fast pyrolysis of
lignin; fractional condensation should be used when systems
are scaled-up. If particular properties of the lignin pyrolysis oil
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550°C, weight hourly space velocity of 2.18 h™, retention time of 8 min, and system
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may be encountered when upscaling EFR and PCR. PCR is likely
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Table 8. Fast pyrolysis of lignin using vacuum reactors (VR).

Type or Amount Lignin pyrolysis oil  Notable details Feeding Product collection Ref.
source of pyrolyzed yield [wt%]
lignin [a]
Organic  Aqueous
Organosolv  0.05 ca. 90 Optimal pyrolysis conditions: pyrolysis under vacuum (pressure Batch Lignin pyrolysis oil: [72]

lignin

down to 0.3 mbar reached after flushing the system with N,) at
450°C (reached using a heating rate of 8000°Cs™") during 3 s
Major products of lignin pyrolysis oil: oligomers

using fast cooling at
—100°C

to have problems with heat transfer. Similar issues have been
reported for EFR processing lignocellulosic biomass, but these
may be of lesser significance during scale-up when using lignin
due to smaller particle size. Furthermore, with EFR systems, the
low partial pressure of the condensable vapors hinders product
recovery. BFBR has excellent heat transfer, achieving high lignin
pyrolysis oil yields. In contrast to EFR and PCR, BFBR can be
used with catalysts. The primary drawback of BFBR is that
agglomeration within the reactor causes defluidization of the
bed, but there are a number of strategies to deal with this.
Agglomeration can be prevented by pretreating the lignin feed
with reagents such as calcium hydroxide, a low-cost, low-
hazard, readily available substance. Pretreatment can improve
selectivity towards phenols and aromatics and promote the
feeding of the lignin into the reactor, which is otherwise
problematic due to melting of the lignin. Other approaches can
also help combat agglomeration, including the use of uncon-
ventional bed materials, stirring, and a slug injector to improve
the feeding system. In the CFBR system, lignin melting during
feeding and agglomeration do not occur. However, further
testing on larger scales and for longer operation times are
required to evaluate the suitability of this system for scale-up.

Product collection is another vital part of the lignin pyrolysis
process as it influences the characteristics of the resulting
pyrolysis oil. The goal is to achieve the effective separation of
solids, including char and ash, the latter being of particular
importance with pretreated lignin, as well as effective product
collection. Hot particle filters can be used to remove fine
particulates and have had positive results with lignocellulosic
biomass. It is also of interest to determine the effect of hot
particle filters on the composition of the lignin pyrolysis oil.
One or two cyclones can be used to separate solids from the
vapor stream and to condense the vapors as quickly as possible,
thus limiting secondary reactions. Fractional condensation
results in the highest quality of lignin pyrolysis oil as the water
fraction and the organic oil fraction can be collected separately.
Further upgrading could be applied to reach specific desired
properties of lignin pyrolysis oil. Catalysts could also improve
the quality of lignin pyrolysis oils."

The above reactors are conventionally heated by electricity
or nonrenewable fuel combustion, with the known disadvan-
tages of these types of energies. Other alternatives, such as the
combustion of char, are frequently employed to meet heat
requirements and to minimize the waste streams.!’™ An
emerging technology is solar-assisted pyrolysis, whereby the
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required heat is supplied by concentrated solar rays. A renew-
able source of heat increases the sustainability of the process.®?

Tables 1-8 list the differences in the fast pyrolysis of lignin,
depending on the system used. Overall, more effort must be
invested if commercialization is to be achieved, focusing on
promising systems such as slug injectors, fluidized-bed reactors,
cyclones, hot particle filters, and fractional condensation
configurations.
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