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A B S T R A C T

Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen
enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-
reader (or concurrent) mode, second-reader mode, triage mode, and more recently prescreening mode as when
an AI algorithm is applied to the worklist of images to identify obvious negative cases so that human readers do
not need to review them and can focus on interpreting the remaining cases. In this paper we describe the
statistical considerations for designing a study to test a new AI prescreening algorithm for identifying normal
lung cancer screening CTs. We contrast agreement vs. accuracy studies, and retrospective vs. prospective de-
signs. We evaluate various test performance metrics with respect to their sensitivity to changes in the AI al-
gorithm's performance, as well as to shifts in reader behavior to a revised worklist. We consider sample size
requirements for testing the AI prescreening algorithm.

1. Introduction

Artificial Intelligence (AI) is being applied to medical radiographic
images for the purpose of detecting, ruling out, diagnosing, and staging
disease. AI algorithms can learn features and then use the insights to
assist clinical practice by reducing diagnostic errors and providing
outcome prediction; this can all be done in a short period of time, re-
lative to human reader interpretation [1]. Diagnostic imaging has seen
the most AI applications in medicine to date, with primary focus on
detecting and diagnosing neoplasms [1].

There are four general use cases for AI algorithms in medical ima-
ging: (1) first, or concurrent, reader mode, as when an AI algorithm is
applied first to an image and any findings are then reviewed by a
human reader during the reader's interpretation, (2) second-reader
mode, as when an AI algorithm is applied after a human reader has
performed his/her interpretation for the reader to consider for inclusion
of additional findings detected by the AI, (3) triage mode, as when the AI
algorithm sorts cases according to suspiciousness of findings, and (4)
prescreening mode, as when an AI algorithm is applied to a set of images
to identify negative cases and then generate the clinical report for this
subset of cases, then the human readers focus on interpreting the re-
maining cases. Computer-aided detection (CAD) with AI algorithms are
common in breast, lung, and colon cancer imaging. In these applica-
tions, CAD is most commonly used in a second-reader mode, but first-

reader and triage modes are gaining acceptance. Prescreening AI al-
gorithms are a relatively new application. They differ from CAD algo-
rithms in that CAD algorithms help readers find lesions but the human
readers still interpret all cases and create the reports. In a prescreen AI
algorithm use case, human readers never see a subset of cases, and the
remaining list of cases differs in prevalence of disease and difficulty.
Fig. 1 illustrates these four use cases.

There are three general steps in developing AI tools for medical
applications: training, validation (i.e. fine-tuning the model), and
testing [2]. The last step, testing, can be performed at three levels: di-
agnostic performance, patient outcome, and societal efficacy [3]. While
there is considerable literature on designing and analyzing studies for
testing the diagnostic performance of CAD algorithms in first- and
second-reader modes, there is little in the literature about testing pre-
screening algorithms. In this paper we focus on the statistical con-
siderations for designing a study to test the diagnostic performance a
new AI algorithm to identify negative screening chest Computed To-
mography (CT) images. We discuss study design, performance metrics,
and sample size considerations for this prescreening use case and
compare it to CAD studies. We will focus on first- and second-reader
modes, as these are currently the most common.
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2. Prescreening AI algorithm for detection of lung nodules

Consider a new AI algorithm for lung cancer screening CTs. The AI
algorithm acts as a prescreen, classifying cases as either “negative” (i.e.
negative for lung cancer) or “unknown”. The algorithm generates the
report for cases it identifies as “negative” and no further evaluation of
the image is performed. Contents of this report are determined by the
medical team that uses the AI algorithm The “unknown” cases are in-
terpreted by human readers. The cases that the AI algorithm classifies
as “negative” (no further interpretation needed) will predominantly be
cases which would be easy for a reader to interpret as negative. It is, of
course, possible though for the AI algorithm to classify a case as “ne-
gative” that the reader would have classified positive. The cases that the
AI algorithm classifies as “unknown” (human reader interpretation
needed), will be predominantly be composed of (1) cases that would be
a bit harder for a reader to interpret as negative and (2) cases a reader
would interpret as positive.

In a study to test the AI algorithm, the performance of human
readers with the AI algorithm acting as a prescreen (prescreen arm)
would be compared with the readers' diagnostic performance without
the AI algorithm (control arm). Fig. 2 illustrates the flow of image in-
terpretations in a test study's control and prescreen arms. The perfor-
mance of the control arm is fully based on human readers' subjective
interpretations, while the performance of the prescreen arm is a hybrid
of AI's performance and human readers' interpretations. As with CAD
studies, a paired-reader, paired-reader design is typical. This is dis-
cussed in more detail in the Study Design section.

The intent of the prescreen AI algorithm is not to improve readers’
performance by helping them find lesions, as with a CAD algorithm.
Rather, the goal is to reduce the burden on human readers by removing
the clearly normal cases, allowing the human readers to concentrate on
the more difficult cases. In doing so, the diagnostic performance in the
control arm must be maintained in the prescreen arm. Based on a large
lung cancer screening study [4], the sensitivity and specificity of human
readers interpreting low-dose CT are 0.938 and 0.734, respectively.
Thus, a study must be designed to test that the diagnostic performance

of readers while using the AI algorithm as a prescreen is not degraded
from these performance standards. Simultaneously, the device must
identify enough normal cases to be worthwhile.

We now discuss issues related to designing this study.

3. Study design

3.1. Agreement studies

Agreement studies are common for evaluating AI algorithms be-
cause they are easier to conduct and analyze than accuracy studies. In
these studies, the interpretations of human readers without the AI are

Fig. 1. Illustration of four use cases for AI

Fig. 2. Illustration of the sequence of interpretations in control and prescreen
arms for a prospective study of a prescreening AI algorithm.
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assessed for concordance/discordance with the interpretations if the
prescreen AI had been used. If there is high agreement, then it is con-
cluded that the prescreening with AI can be used without detrimental
effect. Agreement studies are often retrospective, making use of existing
reader interpretations and comparing them to the results from the AI
algorithm.

Table 1 illustrates the potential results for a retrospective agreement
study where existing reader interpretations are compared to the results
from the AI algorithm. For a prescreening AI algorithm, only cases
marked positive by the human reader and “negative” by the AI are
discordant (shaded gray in Table 1). Cases interpreted as negative by
the human reader are of little value because the prescreen arm and
control arm will always be concordant.

Now consider the cases interpreted as positive by the human
readers. The agreement rate for these cases (assuming independence in
interpretations between human readers and the AI algorithm) can be
written:

=
+

++Agreement Rate
Prev(Sens )(Sens ) (1 Prev)(1 Spec )(1 Spec )

(Sens )Prev (1 Spec )(1 Prev)
.readers AI Readers AI

readers readers

(1)

where Prev is the prevalence of cancer in the study sample, Sensreaders
and Specreaders are the sensitivity and specificity of the human readers
in their standard of care interpretation mode, SensAI is the probability
that the AI algorithm determines a cancer case to be “unknown” (aka,
the standalone sensitivity of the AI algorithm), and SpecAI is the
probability that the AI algorithm determines a non-cancer case to be
“negative” (aka, the standalone specificity of the AI algorithm). Note
that as the AI's sensitivity increases, the agreement rate increases; in
contrast, as the AI's specificity increases, the agreement rate decreases.
In other words, as the prescreen AI algorithm improves in specificity,
the agreement is worse, suggesting that the prescreen AI is not effective.
This is a strong disadvantage of an agreement study for a prescreen AI
algorithm, and we do not consider this option further in designing the
prescreening study of lung CTs.

3.2. Accuracy studies

An accuracy study is more complicated to design and analyze than
an agreement study because all cases need a reference standard to de-
termine the true disease status of the patient. One possible option to
reduce the burden of determining truth for all cases might be estimation
of relative accuracy of the prescreen to control arm [5], but here we
consider the situation where truth is known for all cases.

Both retrospective and prospective accuracy studies are possible. In
a retrospective design, the clinical site's original readers' interpretations
are used in the analysis, whereas in a prospective design, different
readers interpret the images in a controlled experimental setting. A
prospective design allows investigators to control how and what the
readers provide in terms of interpretation. For example, investigators
can control whether prior images and/or clinical history is given to the
readers, and whether confidence scores (needed for ROC analysis) are
collected, in addition to common binary clinical decisions.
Furthermore, in testing a prescreen AI algorithm, a prospective study
allows investigation of how the prescreening is affecting the readers.

Recall from Fig. 2 that when readers interpret after the AI prescreen,
their worklist is reduced to the cases classified as “unknown” by the AI
algorithm. Reader behavior after the AI prescreen could be affected by:
(1) a change in prevalence of disease in the reader's worklist (e.g. if the
prevalence of disease is 1%, and if 50% of the normal cases are removed
by the AI device, then the prevalence of disease in the worklist nearly
doubles), (2) a change in the mix of cases in the reader's worklist (e.g.
there is a higher proportion of more difficult normal cases in the
worklist), and (3) a subjective reaction to the case being labeled “un-
known” by the AI device. These potential effects can be studied in
prospective designs but not in a retrospective design. Thus, for testing
the prescreen AI algorithm of CT lung images, we consider an accuracy
study with prospective reading of the images.

3.3. Comparison with CAD studies

In studies testing CAD algorithms, accuracy studies are the norm
because it's critically important to determine if new findings detected
with CAD are TPs (i.e. also positive by a reference standard) or FPs (i.e.
negative by a reference standard); such a distinction is not possible with
an agreement study. Similarly, prospective reader studies are a re-
quirement for testing a CAD algorithm because the human readers in-
teract directly with the CAD findings, accepting or dismissing them.
This interaction can only be evaluated in a prospective reader design. In
contrast, the prescreen AI algorithm impacts the reader only through
changes in the worklist of the remaining “unknown” cases. Research is
needed to investigate if and how changes to the worklist impact readers'
accuracy. If the impact is negligible, then prospective reader studies
may not be needed for testing a prescreen AI algorithm. However, as a
first application, a prospective reader design seems necessary for the
prescreen lung cancer study.

CAD reader studies often use an enriched study sample with up to
50% of subjects with the disease, based on the reference standard
[6,7]]. Similarly, for the lung cancer study using biopsy results and/or
two-year follow-up imaging as the reference standard, 50% of the study
sample will be subjects with lung cancer and 50% without lung cancer.

The typical CAD study uses a paired-reader paired-case design (i.e.
all study readers interpret all study cases in both the control and study
arms). A typical reading order randomization scheme for a CAD paired-
reader paired-case study can be adopted here for testing the prescreen
AI algorithm. The modifications needed for a prescreen AI algorithm
are illustrated in Table 2, where a pre-study session is needed for the AI
algorithm to be run to identify the “unknown” cases and block 2
readings include only the subset of cases classified by the algorithm as
“unknown” instead of all cases. As with CAD studies, readers should
receive sufficient training prior to Session 1.

For the subset of cases classified as “unknown” by the AI algorithm,
the readers provide an interpretation both without knowledge of the AI
result (in Block 1) and with knowledge of the AI result (in Block 2). This
subset of cases can be used to investigate the potential impact of the
prescreening AI on reader behavior.

4. Performance metrics

Here we focus on discrimination performance indices, rather than
calibration performance indices, due to the classification nature of our
specific AI example [2]. For a prescreen AI algorithm identifying ne-
gative cases as illustrated in Fig. 2, the sensitivity and specificity of the
prescreen arm are given as follows:

= ×Sens _ Sens Sensprescreen arm AI readers (2)

= + ×Spec _ Spec (1 Spec ) Specprescreen arm AI AI readers

In the prescreen use case assuming no shift in reader performance
when human readers interpret cases that they know were “unknown”
by AI, the prescreen arm's sensitivity cannot be greater than the control

Table 1
Potential results from agreement study of prescreen AIa.

Reader finding Prescreen AI finding Endpoint Result

negative “negative” concordant
negative “unknown” concordant
positive “negative” discordant
positive “unknown” concordant

a In an agreement study of a prescreen AI algorithm, the grayed row shows
the only situation of discordance.
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arm's sensitivity, while there is a potential for improvement in speci-
ficity. Metrics that take both sensitivity and specificity into account are
advantageous because the net result of any loss in sensitivity and gain
in specificity can be assessed. Some possible summary metrics applic-
able to the lung cancer study are (i) negative predictive value (NPV),
(ii) negative likelihood ratio (NLR), and (iii) the area under the ROC
curve (AUC). The NLR and NPV of the prescreen arm are defined in
Equations (3) and (4).

= = ×
+

_ _
_

NLR
{1 Sens }

Spec
{1 (Sens Sens )}

{Spec (1 Spec )(Spec )}prescreen arm
prescreen arm

prescreen arm

AI readers

AI AI readers (3)

=
+

+ +
_NPV

(1 Prev)(Spec [1 Spec ]Spec )
(1 Prev)(Spec [1 Spec ]Spec ) Prev(1 Sens Sens )prescreen arm

AI AI readers

AI AI readers AI readers

(4)

It's important that the performance metric chosen for the study be
sensitive to changes in the AI's standalone accuracy. For example, as the
AI's sensitivity and/or specificity increase, the accuracy in the prescreen
arm should increase. Also, the performance metric chosen should not be
strongly affected by shifts in readers' positivity threshold when inter-
preting a worklist of “unknown” cases because these shifts may be
reader-dependent and evolve over time.

Fig. 3 illustrates the effect of the standalone accuracy of AI on the
difference in accuracy between the prescreen and control arms for the
lung CT prescreen example, assuming no shift in the readers' positivity
threshold. The sensitivity and specificity of the AI algorithm are set at
0.95–0.99 and 0.1–0.5, respectively, based on preliminary validation
studies. The prescreen arm's AUC is superior to the control arm's AUC
except when AI's sensitivity is 0.95 and specificity is < 0.3. This is not
true, however, for NPV and NLR. In particular, the NPV is near zero
unless AI has very high sensitivity, where it shows only a marginal
improvement in the prescreen arm. Note that this is in part due to the
low prevalence in screening situations (set at 4% our example). With
such a low prevalence, the NPV in both the prescreen and control arms
is quite high and there is very little room for improvement in the pre-
screen arm (even with large gains in specificity). Because the NPV is
affected negligibly by improvements in the AI's standalone accuracy, it
may not be a good choice for testing this prescreen AI algorithm. The
NLR, which decreases as accuracy improves, is superior in the prescreen
arm only when AI has very high sensitivity. This metric is sensitive to
improvements in the AI's standalone accuracy (i.e. the difference be-
comes smaller as the AI improves), but the AI would need better stan-
dalone accuracy if the NLR is the chosen performance metric instead of
the AUC in order to show the benefit of the prescreen AI algorithm.

Now we consider the situation where readers' performance is af-
fected when interpreting a worklist of “unknown” cases. We assume
that readers perform on the same ROC curve with and without the AI
(since the AI algorithm is not helping them identify diseased subjects)
and that the new worklist shifts the readers' threshold for calling cases
negative and positive to the right (i.e. higher sensitivity/lower speci-
ficity). Fig. 4 illustrates the behavior of various accuracy endpoints as a

function of the accuracy of lung CT prescreen AI in this situation. The
NPV again is only slightly affected by the AI standalone performance,
thus is very insensitive. Because we're assuming the impact of the
prescreen AI is simply to shift the readers' decision threshold (and the
ROC curve provides a summary across thresholds), there is no impact to
the ROC curve. The AUC, therefore, behaves consistently in Figs. 3 and
4. The NLR, however, which is a measure of accuracy at a particular
threshold, is affected dramatically by the shift in readers' positivity
threshold. Thus, we conclude that the AUC is a good choice as an ac-
curacy metric for testing the lung CT prescreen AI algorithm because it
is sensitive to improvements in the AI's accuracy, yet is not affected by
changes in shifts in readers' positivity thresholds.

4.1. Comparison with CAD studies

CAD algorithms often increase sensitivity at a cost of specificity, so a
net measure of accuracy such as the AUC is important for CAD studies
as well as prescreen studies. CAD studies often employ a probability or
ordinal rating scale to capture readers’ confidence in the presence of
disease. Because the goal of CAD studies is often to assess whether the
algorithm can be used to improve reader accuracy at the lesion-level
(i.e. improve their ability to identify cancerous lesions and dismiss non-
cancerous lesions), the confidence score is assigned to each suspicious
lesion identified by the reader. In contrast, for the prescreen AI algo-
rithm this is not necessary since the algorithm is not helping readers
find lesions. Thus, for the prescreen AI algorithm study, readers can
simply assign a confidence score to the case, rather than at the lesion
level.

5. Sample size considerations

For testing a prescreen AI algorithm for lung CT images, the sensi-
tivity and specificity of human readers without the AI algorithm (con-
trol arm) is expected to be 0.938 and 0.734, respectively [4]. The AUC
of a ROC curve with a FPR=1-0.734 and Sens= 0.938, and assuming
a binormal model with binormal parameters A=2.16 and B=1, is
0.937 [8]. A test of non-inferiority is planned, where the null hypothesis
is that readers' mean AUC with the prescreen AI algorithm is less than
their mean AUC without the prescreen AI algorithm; the alternative
hypothesis is that readers’ mean AUC with the prescreen AI algorithm is
not inferior. A non-inferiority margin of 0.05 will be used.

The minimum performance of the prescreen AI algorithm in order to
achieve equivalence in the magnitude of the AUC between the pre-
screen and control arm can be determined. We refer to this as the
equivalence boundary, which provides a useful target in developing the
AI algorithm, as well as planning sample size. Fig. 5 illustrates the
equivalence boundary for this study for three possible shapes of the
ROC curve. If the standalone specificity of the AI algorithm is 0.50 and
parameter B=1.0, then its sensitivity must be≥ 0.91. If the standa-
lone specificity is only 0.10, then the sensitivity must be≥ 0.99.

Table 2
aIllustration of reading order randomization scheme for testing a prescreen AI algorithm.

Session and Block # Case ID # Reading Mode

Pre-Study 1–250 AI algorithm classifies cases as “negative” or “unknown”

Session 1, Block 1 1–125 Standard interpretation (control arm)
Session 1, Block 2 The subset of cases from 126 to 250 classified as

“unknown”
Standard interpretation but with knowledge that cases were classified as “unknown”
(prescreen arm)

Wash-out Period
Session 2, Block 1 126–250 Standard interpretation (control arm)
Session 2, Block 2 The subset of cases from 1 to 125 classified as “unknown” Standard interpretation but with knowledge that cases were classified as “unknown”

(prescreen arm)

a Ideally, different readers would be assigned different random subgroups of cases in different randomized order, varying the start with prescreen cases then
control cases.
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Developers of the prescreen AI algorithm for lung CT images esti-
mate its standalone sensitivity and specificity to be 0.94 and 0.30 (in-
dicated with an asterisk in Fig. 5). From equation (2), the sensitivity
and specificity in the prescreen arm are expected to be 0.88 and 0.81.
The AUC of a ROC curve with a FPR=1-0.81 and Sens= 0.88, and
assuming a binormal model with binormal parameters A=2.05 and
B=1, is 0.929. Sample size methods have been developed that take

into account both the number of cases needed (e.g. number with and
without lung cancer) and number of readers needed in order to detect a
specified difference between two modalities or to test a specific non-
inferiority hypothesis [8,9]. There is a trade-off between the number of
readers and number of cases needed, such that investigators can choose
a design with more readers and fewer cases or few readers and more
cases, depending on available resources. For our lung CT prescreen AI

Fig. 3. Difference in accuracy between control and prescreen arms for various accuracy metrics as a function of the standalone performance of the AI device. AI
standalone sensitivity is illustrated as 0.95 or 0.99, and its standalone specificity is 0.1, 0.2, 0.3, 0.4, and 0.5. The human reader sensitivity and specificity are set at
0.938 and 0.734, respectively, with disease prevalence of 4%. In the control arm, for the area under the ROC curve (AUC), at a FPR=1-0.734 and Sens= 0.938, and
assuming a binormal model with binormal parameter B=1, we determined that binormal parameter A= 2.16 (based on Sensitivity= +A B FPR( ( ))1 ) [8].
Other parameterizations of the ROC curve will give different results. For AUC and NPV, a positive-valued difference (as illustrated on the y-axis) suggests higher
accuracy in the prescreen arm than the control arm; for the NLR a negative-valued difference suggests improved accuracy in the prescreen arm.

Fig. 4. Difference in accuracy between control and prescreen arms for various accuracy metrics as a function of the standalone performance of the AI device; here
readers' shift to a lower threshold for calling cases positive when interpreting AI's “unknown” cases. AI standalone sensitivity is either 0.95 or 0.99, and its standalone
specificity is 0.1, 0.2, 0.3, 0.4, and 0.5. For the AUC, we supposed that when readers are interpreting cases classified as “unknown” by the AI algorithm, they shift
their specificity from 0.734 to 0.634; if maintaining the same ROC curve (i.e. binormal model with A=2.16 and B=1), the corresponding sensitivity is 0.966. For
AUC and NLR, a positive-valued difference (as illustrated on the y-axis) suggests higher accuracy in the prescreen arm than the control arm. Note that different
magnitudes of readers' shift in threshold for calling cases positive (less shift or more shift) will change the metrics accordingly (less change or more change,
respectively).
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algorithm example, we might assume that readers perform on the same
ROC curve as in the control arm when interpreting the “unknown” cases
(i.e. we do not need to be concerned about shifts in readers’ thresholds).
Then, based on a difference in AUCs in the prescreen and control arms
of 0.929–0.937=−0.008, and using a non-inferiority margin of 0.05,
one potential sample size combination for 80% power and 5% type I
error rate is 10 readers, 125 subjects with lung cancer, and 125 subjects
without lung cancer. Ideally, one would perform a pilot study to in-
vestigate the assumptions underlying the sample size calculations prior
to planning a large pivotal trial.

5.1. Comparison with CAD studies

In studies testing CAD algorithms, it is not possible to directly
translate the standalone performance of the CAD into the expected
performance of readers in the prescreen arm because it's not known
whether readers will accept CAD TP marks or how often they will
dismiss CAD FP marks. Instead, investigators often perform a pilot
study to estimate the improvement in readers' performance with CAD or
take an educated guess. In contrast, for a prescreen AI algorithm the
performance of readers in the prescreen arm can be estimated directly
from the standalone performance of the algorithm. Thus, determining
sample size for testing a prescreen AI algorithm requires fewer as-
sumptions than determining sample size for a CAD study.

6. Discussion

The literature is rich with methodology and applications of CAD as
first- and second-readers [8,10,11]. This methodology has been used to
assess AI first- and second-reader algorithms. For example, Hale et al.
[12] assessed the performance of machine learning models to

differentiate meningioma grades on MRI images using standard diag-
nostic accuracy performance metrics, and similarly Rodriguez-Ruiz
et al. [13] used standard measures of accuracy to compare readers’
performance with and without AI for detecting breast cancer. Pre-
screening AI algorithms are a relatively new application. This applica-
tion has the potential to greatly reduce the time burden to radiologists
and to direct them to more difficult cases. We found that many of the
standard CAD study design strategies and performance metrics are
applicable, with minor modifications, to testing prescreening AI algo-
rithms.

Several authors have provided general guidelines for assessing AI
algorithms used in medical image interpretation. Parmar et al. [14]
describe “best practices” and pitfalls for designing and analyzing ima-
ging studies with AI. Parmar et al. [14], Park and Han [2], and Kim
et al. [3] discuss the need for adequate sample sizes for both training
and validation, locked independent external testing cohorts collected
prospectively from preferably multiple sites to avoid biases, proper
blinding of testing cohorts during training as well as while tuning of the
algorithm, and reporting multiple performance metrics (sensitivity,
specificity, AUC, NPV). Park and Han [2] emphasize the need for a
spectrum of disease manifestations for evaluating the AI with external
datasets, including temporal and geographic variations, to avoid over-
fitting and overparameterized algorithms. They suggest assessment of
both discrimination and calibration performance, when applicable.
These recommendations seem equally applicable to AI algorithms used
in first- and second-reader, triage, and prescreen modes.

Some authors have used agreement studies to assess the validity of
AI algorithms. The study by Bien et al. [15] is such an example where
the AI findings on knee MRIs were compared against the majority de-
cision of experts on both an internal and external validation dataset.
Savadjiev et al. [16] point out that comparing AI's findings to experts'
findings can lead to results that are unreliable because of the inherent
subjectivity of the interpretations. They encourage investigators to use
patient outcomes and reference standards for comparisons with the AI
findings. For testing prescreen AI algorithms, we also noted strong
limitations with agreement studies and thus agree with the re-
commendations of Savadjiev et al.

With respect to measures of diagnostic accuracy performance, the
AUC is commonly used in first- and second-reader CAD studies, and we
found it applicable for testing prescreen AI algorithms as part of a
prospective reader study. For retrospective studies where only binary
decisions are available, NPV and NLR are possible options. Biggerstaff
[17] has shown that superiority of one modality over another in ne-
gative likelihood ratio (NLR) implies superiority in negative predictive
value (NPV). With the dependence of the NPV on prevalence, and given
its poor responsiveness to improvements in the standalone performance
of the AI algorithm, we found that the NLR was a better choice than
NPV. However, we also showed that the NLR is strongly affected by
shifts in readers' cutpoints for calling cases positive vs. negative, as
might occur when interpreting “unknown” images after prescreening.
Although calculation of the AUC requires ordinal confidence scores, it
allows investigators to provide a summary measure across thresholds
and therefore offers protection against the aforementioned shifts. Until
there is more research to examine these and other possible metrics in a
variety of situations (i.e. broader range of human readers' and AI's
sensitivity and specificity, broader range of disease prevalence, range of
magnitudes for the inter-reader variability, and effect of the binormal
model for the ROC curve) and to understand the effect of limiting
radiologists' worklists to cases classified by a prescreen AI algorithm as
“unknown”, the AUC from a prospective study seems to be a sound
choice.

7. Conclusion

In designing a study to test the diagnostic accuracy of a new pre-
screen AI algorithm for lung cancer screening images, we first

Fig. 5. Equivalence boundary expressed as the prescreen AI's standalone spe-
cificity (x-axis) and sensitivity (y-axis) corresponding to a control arm with
AUC=0.937. Three boundaries are displayed for three ROC curve shapes:
B= 0.5, 1.0, and 2.0. Above the boundary, the performance in the prescreen
arm is superior to the performance in the control arm, while below the
boundary the performance is inferior in the prescreen arm. The asterisk in-
dicates the AI developers' estimate of the accuracy of the algorithm. The
equivalence boundary was calculated assuming a binormal ROC curve model
[8] and assuming parameter B is the same in the control and prescreen groups.
For pairs of AI standalone sensitivities and specificities, the sensitivity and
specificity in the prescreen arm were calculated from Equation (2), then
parameter A and the AUC were estimated from

= ×A sens spec( ) B (1 )1 1 and = +AUC A B( / (1 )2 , where is the
cumulative distribution function of a standard normal random variable and 1

is its inverse.
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considered a simple retrospective agreement study, and, after evalu-
ating strengths and weaknesses, determined that a multi-reader ROC
study was needed. This process allowed investigators to understand
why the more complicated study design is warranted. We identified
future research areas, including the need to evaluate if and how reader
behavior is impacted by knowledge of prescreen AI results. Further
methodologic research is needed to address study design and analysis of
the various applications of AI algorithms, particularly for assessing ef-
ficacy at the patient outcome and societal levels.
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