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Abstract.  We have previously reported the isolation of 
Chinese hamster ovary cell mutants deficient in acyl- 
coenzyme A/cholesterol acyltransferase (ACAT) activ- 
ity (Cadigan, K. M., J. G. Heider, and T. Y. Chang. 
1988. J. Biol. Chem. 263:274-282). We now describe 
a procedure for isolating cells from these mutants that 
have regained the ability to synthesize cholesterol es- 
ters. The protocol uses the fluorescent stain Nile red, 
which is specific for neutral lipids such as cholesterol 
ester. After ACAT mutant populations were subjected 
to chemical mutagenesis or transfected with human 
fibroblast whole genomic DNA, two revertants and 
one primary transformant were isolated by virtue of 
their higher fluorescent intensities using flow 
cytofluorimetry. Both the revertants and transformant 
have regained large amounts of intracellular cholesterol 
ester and ACAT activity. However, heat inactivation 
experiments revealed that the enzyme activity of the 

transformant had heat stability properties identical to 
that of human fibroblasts, while the ACAT activities of 
the revertants were similar to that of other Chinese 
hamster ovary cell lines. These results suggest that the 
molecular lesion in the ACAT mutants resides in the 
structural gene for the enzyme, and the transformant 
has corrected this defect by acquiring and stably ex- 
pressing a human gene encoding the ACAT polypep- 
tide. Secondary transformants were isolated by trans- 
fection of ACAT mutant cells with primary 
transformant genomic DNA. Genomic Southern analy- 
sis of the secondary transformants using a probe 
specific for human DNA revealed several distinct re- 
striction fragments common to all the transformants 
which most likely comprise part or all of the human 
ACAT gene. The cell lines described here should 
facilitate the cloning of the gene encoding the human 
ACAT enzyme. 

vL-coenzyme A/cholesterol acyltransferase (ACAT) ~ 
is an intracellular enzyme that uses cholesterol and 
fatty acyl-coenzyme A (CoA) to form cholesterol es- 

ters (10, 50). The enzyme is localized to the rough endoplas- 
mic reticulum in rat liver (2, 24); is highly regulated in many 
cell types and tissues; and is believed to play an important 
role in cholesterol metabolism in various cells and tissues 
such as the small intestinal mucosa, hepatocytes, and the ste- 
roid hormone-producing tissues (10, 50). 

Although ACAT has been studied intensively, little is 
known about its molecular structure. In rat liver, the active 
site of the enzyme has been localized to the cytoplasmic sur- 
face of the microsomal vesicles using a combination of deter- 
gent and protease treatments (24, 34), but whether the en- 
zyme spans the entire membrane could not be determined. 
Recent chemical modification studies have demonstrated that 
an essential histidyl and sulfhydryl residue(s) may reside at 
or near the active site of the enzyme. ACAT activities from 
different rabbit tissues have different sensitivities to the 
histidyl-modifying reagents, suggesting the existence of dif- 
ferent ACAT subtypes (31, 32). 

1. Abbreviations used in this paper: ACAT, acyl-eoenzyme A/cholesterol 
acyltransferase; CHO, Chinese hamster ovary; CoA, coenzyme A; LDL, 
low density lipoprotein. 

ACAT activity has been solubilized and reconstituted from 
various cultured ceils (4, 17, 29), rat liver (51), and pig liver 
(16). Although these procedures have allowed enzyme activ- 
ity to be measured in a defined lipid environment, little prog- 
ress has been made in purifying the solubilized preparations. 
Partially purified ACAT fractions that contain up to 100-fold 
higher enzyme-specific activity than unfractionated pig liver 
microsomes (16) still contain numerous protein bands when 
analyzed by gel electrophoresis (unpublished results from 
this laboratory). The gene(s) encoding this enzyme has not 
been isolated and no antibodies directed against ACAT have 
been reported. 

Chinese hamster ovary (CHO) cells are a fibroblast-like 
cell line in which cholesterol ester synthesis is highly regu- 
lated by exogenous sources of cholesterol, such as low den- 
sity lipoprotein (LDL) (8, 17, 33), and by endogenous cho- 
lesterol synthesis (7). This laboratory recently reported the 
isolation of CHO cell mutants almost entirely lacking ACAT 
activity (5). All of the isolated mutants belonged to the same 
complementation group and possessed a defect in the ACAT 
enzyme itself or in a factor needed for production of the en- 
zyme. We now report a procedure for isolating revertants that 
have regained enzyme activity. The selection uses the 
fluorescence-activated cell sorter and Nile red, a fluorescent 
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stain with high affinity for neutral lipids such as cholesterol 
esters (22, 23). We have also used this procedure to isolate 
cells expressing high ACAT activity after transfection of 
enzyme-deficient mutants with human high molecular weight 
DNA. A combination of biochemical and DNA hybridiza- 
tion experiments strongly suggests that the transformants 
have acquired and express a human ACAT structural gene. 
The results reported here should facilitate the isolation and 
cloning of the human ACAT gene, which should prove in- 
valuable in efforts to understand the molecular structure and 
regulation of this enzyme. 

Materials and Methods 

Reagents 
Oieyl-CoA was synthesized as described by Stadtman using oleyl anhydride 
(49) and [3H]oleyI-CoA was synthesized by another method (3). Quantita- 
tion of the oleyi-CoA preparations were made assuming an extinction 
coefficient at 260 nm of 15.4 mM -I cm -I (57). Purity was judged as 98% 
by TLC analysis in a solvent system of butanol/acetic acid/water (5:2:3) and 
by measuring the A232/A260 ratio (49). Nile red (9-diethylamino-5H- 
benzo[c~]phenoxazine-5-one) was purified from Nile blue (Sigma Chemical 
Co., St. Louis, MO) by the method of Thorpe (53) as modified by Green- 
span et al. (23). Concentrated stocks were made in ethanol and stored at 
4°C protected from light. Compound 58-035 (3-[decyldimethylsilyl]-N-[2- 
(4-methylphenyl)-l-phenylethyl]propanamide) was provided by Dr. John 
Heider (Sandoz Inc., East Hanover, NJ). Mevinolin was a gift from Alfred 
Aiberts (Merck & Co., Inc., Rahway, NJ). Both of these compounds were 
added to the culture medium from a concentrated dimethyl sulfoxide stock. 
pSV2-neo in Escherichia coil strain HB101 was a generous gift from Dr. 
Peter Southern (Research Institute of Scripps Clinic, La Jolla, CA) and 
pBLUR8 in HB101 was provided by Dr. Joanne Zurlo (Dartmouth Medical 
School, Hanover, NH) with permission from Dr. Warren Jelinek (New York 
University Medical Center, New York). The chloroform, methanol, and 
isopropanol used for the cholesterol analysis were from Mallinckrodt Inc. 
(Paris, KY) or Fisher Scientific Co. (Pittsburgh, PA) and were nanograde 
and spectranalyzed grade, respectively. Cholesterol oxidase was generously 
provided by Dr. Albert Chen (Beckman Instruments, Inc., Fullerton, CA). 
Horseradish peroxidase (P-6140), cholesterol esterase (C-1892), phos- 
phatidylcholine type XI (P-2772), and all other enzymes and biochemical 
reagents were from Sigma Chemical Co. Other organic solvents and chemi- 
cals were from Fisher Scientific Co. and were of reagent grade quality. 

Cell Culture 
A primary culture of human fibroblasts was obtained from the foreskin of 
a healthy newborn. The tissue was dissociated using bacterial collagenase 
and trypsin as described by Dayer et al. (15) and the culture was used between 
the seventh and fifteenth passage. Human fibroblasts and CHO cell lines 
were grown as monolayers; human fihroblasts in MEM (Gibeo Laborato- 
ries, Grand Island, NY) supplemented with 2 mM ghitamine; and CHO 
cells in F-12 medium minus linoleic acid. Both media were supplemented 
with antibiotics as previously described (4, 5) and 10% FCS (Sigma Chemi- 
cal Co.). When delipidated FCS was used, it was prepared according to a 
published procedure (6) as modified by Chin and Chang (14). Human LDL 
(d = 1.019-1.063 g/ml) was prepared from human plasma by sequential 
flotation in the presence of protease inhibitors as previously described (5). 

Mutagenesis and DNA Transfections 
The ACAT mutant cell line, AC29, was mutagenized with 125/~g/ml N-ni- 
troso-N-ethyhirca as previously described (5). Cotransfections of AC29 
with the plasmid pSV2-neo, which confers resistance to the cytotoxic drug 
(3418 (48), and human high molecular weight DNA were carried out as fol- 
lows. High molecular weight DNA was prepared from cultured cells accord- 
ing to a published procedure (56). AC29 ceils were transfected by the cal- 
cium phosphate coprecipitation technique of Graham and van der Eb (21) 
as modified by Wigler et al. (55) except that the precipitate was left on the 
monolaycrs for 12 h. During the course of this work, it was found that the 
frequency of G418-resistant colonies obtained by transfection could be in- 
creased significantly by the addition of 100/zM chloroquine to the medium 

(Hasen, M., and T. Y. Chang, manuscript in preparation). This modifica- 
tion was used in the isolation of the secondary transformants. 48 h after the 
initial plating, the transfected cells were grown in medium containing 500 
#g/ml G418 (Gibco Laboratories). Medium was replaced every other day 
for 1 wk, and then the cells were allowed to grow for 1 wk more without 
a change of medium. The resistant colonies were then pooled and main- 
tained at 100 #g/ml G418 while the brightest Nile red-stained cells were 
isolated. 

Isolation of Nile Red-positive Cells 
All solutions used in preparing the cells for the cytofluorograph and fluores- 
cence microscopy were in sterile Hank's balanced salt solution containing 
no phenol red. Confluent monolayers were washed three times and in- 
cubated with 0.003% trypsin for 15-20 min at 37°C. Cells were transferred 
to a sterile tube containing 1/10 vol of 0.075% soybean trypsin inhibitor 
(Sigma Chemical Co. T-9253) and then 2 vol of 150 ng/ml Nile red (final 
ethanol concentration, 0.2%) was added. The cells were gently mixed and 
allowed to sit for 15 min at room temperature protected from light. The 
stained cells were analyzed for green fluorescence (excitation wavelength 
488 nm; emission wavelength 515-530 nm) using the Ortho Diagnostic Sys- 
tems, Inc. (Raritan, N J) cytofluorograph system 50H with the brightest 0.1% 
or 0.2% ceils sorted into plates containing medium without sodium bicar- 
bonate (to keep the pH from becoming too alkaline). The media containing 
the sorted cells were diluted tv~- to threefold with media containing bicar- 
bonate and placed in a 5% CO2 incubator at 37°C. The next day the 
medium was replaced with bicarbonate-containing medium. After 10 d 
colonies were visible and could be prepared for another round of cell sorting 
or examined under a low power phase microscopy for the presence of intra- 
cellular lipid droplets. 

Fluorescence Microscopy 
Cells were grown on glass cover slips. To prepare for viewing, the cover 
slips were rinsed five times and then stained for 6 min at room temperature 
with 100 ng/ml Nile red. After staining, the coverslips were rinsed, mounted 
onto slide chambers, and kept moist with the salt solution. Immediately 
thereafter, the cells were viewed using a Carl Zeiss, Inc. (Thoruwood, NY) 
universal microscope and a 67x achromat oil-immersion phase-contrast ob- 
jective (Carl Zeiss Inc.) with differential-interference contrast or epifluores- 
cence (excitation 485 :l: 10 nm; emission 520-560 nm) optics. Paired 
micrographs were taken with TMAX-400 film (Eastman Kodak Co., Roches- 
mr, NY) and developed according to instructions given by the manufacturer. 

SteroI Analysis 
Cells were grown in 25-cm 2 flasks and harvested in 1 ml 0.2 M NaOH as 
described previously (5). The NaOH sample was neutralized by adding HCI 
and phosphate buffer (8) and then Folch extracted (19). After drying under 
N2, the samples were resuspended in 1 ml isopropanol and aliquots (30 or 
60/A) were taken for cholesterol determination using a fluorometric proce- 
dure (25) either with or without cholesterol esterase preincubation. Control 
experiments using radiolabeled cholesterol revealed recoveries of between 
90 and 100% after extraction. The procedure for preparing the samples de- 
scribed above differs from the one previously used by this laboratory (5). 
In the previous procedure, aliquots were taken from the NaOH sample, ex- 
tracted, dried, and resuspended in a small volume of isopropanoi. The effect 
of the two different protocols upon the values obtained is discussed in the 
Results section. 

ACAT Assays 
For the [3H]oleate pulse, all F-12 media were supplemented with 1.5 mM 
CaCI2 because F-12 medium is low in calcium (0.3 mM) and the binding 
of LDL to its receptor is calcium dependent (20). The monulayers were 
pulsed with a [3H]oleate/BSA solution and analyzed for incorporation of 
mdiolabel into cholesterol oleate as previously described (5, g) except that 
the blank was determined and subtracted from the reported values by puls- 
ing AC29 cells grown in the presence of 58-035, a specific inhibitor of ACAT 
(43). The blank value was between 1.2 and 2.0 pmol/min per nag. For the 
in vitro ACAT assays, cell homogenates were prepared by the hypotonic- 
shock and scraping method 02) and used immediately. The microsomal as- 
say has been described in detail previously (5, 8, 17). The reconstituted 
ACAT assay was performed as described in Cadigan and Chang (4). During 
this study it was found that solnhilized cell extracts diluted into cholesterol- 
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phosphatidylcholine vesicles prepared with different lots of Sigma Chemical 
Co. type XI phosphatidylcholine gave distinct but reproducible enzyme- 
specific activities. Using the phosphatidylcholine lot 67F-8410, ACAT- 
specific activities were approximately half that of the values obtained with 
the lot previously used (46F-8430; these results can be found by comparing 
activities reported in Figs. 5 and 6). TLC analysis revealed no detectable 
contaminants in the two lots. This phenomenon is currently being pursued 
in this laboratory and will not be discussed further in this report. In all three 
assays described above, control experiments using [14C]cholesterol oleate 
as a standard revealed recoveries of 70-77% after extraction and TLC. All 
protein determinations were made using the Peterson modification (40) of 
the method of Lowry et al. (36); no TCA precipitation was performed on 
the NaOH cell extracts in the sterol analysis and the [3H]oleate pulse. 

Southern Analysis 

Whole genomic DNA samples were digested with restriction enzymes (15 
U/tzg DNA) for 36 h at 37°C. The digested samples were run on an 0.8% 
agarose gel and transferred to nylon filters (ICN Laboratories, Inc., Plain- 
view, NY) by the method of Southern (47) as modified by Reed and Mann 
(41). Filters were prehybridized in a solution containing 25 mM KPO4, pH 
7.4, 5 x SSC, 5 × Denhart's solution, 100 #g/ml sonicated and denatured 
salmon sperm DNA, 50% formamide, and 1% SDS for 12 h at 42°C and 
then incubated with an identical solution containing 10% dextran sulfate and 
the denatured 32p-probe. The 300-bp Bam HI fragment of the plasmid 
pBLURS, which contains a human repetitive element of the Alu family (44), 
was used as the probe. The plasmid was digested with Barn HI and the Alu- 
containing fragment was excised from a low melting agarose gel and radiola- 
beled by the oligolabeling method of Feinberg and Vogelstein (18). After 
incubation in the hybridization buffer for 48 h at 42°C, filters were washed 
two times in 2x SSC/0.1% SDS supplemented with 0.05x bovine lacto 
transfer technique optimizer (27), followed by a 0.1x SSC/0.1% SDS wash, 
both at room temperature, before a final wash in 0.1x SSC/0.1% SDS at 
55°C for 60 min. The filters were air dried and exposed to Kodak X-OMAT 
AR film with a Dupont Co. (Wilmington, DE) Lightning Plus intensifying 
screen for 3-5 d before developing. 

R e s u l t s  

Isolation o f  ACAT Revertants and Transformant 

Nile  red is a highly fluorescent c o m p o u n d  which preferen- 
tially part i t ions into hydrophobic env i ronments  such as intra- 
cel lular  neutral  l ipid droplets (22, 23). The  Nile red fluores- 
cent  patterns of the ACAT mutant ,  AC29, and its parental  cell 
line, 25-RA,  were compared.  25-RA was isolated f rom wild-  
type C H O  cells by its resistance to the cytotoxic effects of 25- 
hydroxycholesterol (11). Unl ike  wild- type cells, the uptake of  
L D L  and the rate of  endogenous  cholesterol synthesis in 25- 
RA cells are part ial ly resistant to suppress ion by exogenous 
sterols (5, 11). This  results in an elevated rate of cholesterol 
ester synthesis leading to a large accumula t ion  of  intracel lu-  
lar cholesterol ester (5, 9). In  contrast ,  the mutan t  cell l ine 
AC29 contains  <1% of  the ACAT activity of  25 -RA and has 
greatly reduced intracel lular  cholesterol ester (5). 

As shown in Fig. 1, there is a clear difference in the appear-  
ance of  25-RA and  AC29 cells when  viewed with differen- 
tial-interference contrast (Fig. 1, a and c) and epifluorescence 
(Fig. 1, b and d )  optics. 25-RA conta ined numerous  birefr in-  
gent  per inuclear  particles (Fig. 1 a) which were brightly 
stained with Ni le  red (Fig. 1 b). These  part icles were not  
found in AC29 cells, or  in 25-RA cells grown in  the presence 
of the specific ACAT inhibitor,  58-035 (data not  shown). The 
light, diffuse f luorescence seen in AC29 cells (Fig. 1 d )  is 
seen in all C H O  cells examined thus far that lack cholesterol 
ester. The filters used for the f luorescent micrographs in Fig. 
1 allowed only  green f luorescence to be seen (520 -560  nm).  

Figure 1. Nile red-stained 25- 
RA and AC29 cells viewed 
with differential-interference 
contrast or fluorescence mi- 
croscopy. 25-RA (a and b) and 
AC29 (c and d) were plated at 
a density of 6.5 x 104 cells 
per 8-cm 2 well containing a 
glass coverslip and F-12 medi- 
um plus 10% FCS and grown 
for 62 h with a medium change 
at 48 h. Coverslips were pre- 
pared and viewed with differ- 
ential-interference contrast (a 
and c) or fluorescence (b and 
d) microscopy as described in 
Materials and Methods. Bar, 
20 ~tm. 
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Figure 2. Flow cytometric analysis of Nile red-stained 25-RA (a); 
AC29 (b); and a revertant, 29CS1 (c), and transformant, 291"1 (d), 
of AC29. 2 x lO s cells were plated in 8-cm 2 wells and grown as 
described in Fig. 1.2~1"1 cells were grown in the presence of 100 
/~g/ml (3418. Cells were resuspended in buffer containing 100 ng/ml 
Nile red and analyzed by flow cytometry as described in Materials 
and Methods. Each histogram corresponds to 104 cells and the 
hatched histograms represent cells that had been plated and grown 
in medium containing 200 ng/ml 58-035. 

When a different filter set is used (one that allows light >520 
nm to be seen) the perinuclear droplets in 25-RA cells ap- 
peared yellow-gold and the diffuse signal in AC29 cells ap- 
peared orange-red. Greenspan and Fowler (22) have demon- 
strated that at low concentrations (100 ng/ml), Nile red 
emitted maximal fluorescence at 576 run (yellow-gold) when 
it partitioned into hydrophobic environments, such as neutral 
lipid droplets. When Nile red interacted with phospholipids, 
maximal emission of fluorescence occurred at 628 nm (red). 
Apparently all the Nile red taken up by 25-RA cells is as- 
sociated with the lipid droplets, so no diffuse staining due to 
other more polar lipids is seen. 

It was previously shown that after Nile red staining, cho- 
lesterol ester-loaded, mouse peritoneal macrophages could 
be distinguished from unloaded macrophages by the cyto- 
fluorograph (23). As shown in Fig. 2, this was also true in 
CHO cells. A sevenfold difference was found in relative 
mean fluorescent intensities between Nile red-stained AC29 
and 25-RA cells when analyzed for green fluorescence (mean 
5: SD for AC29 cells, 83.5 + 34.4; and 25-RA cells, 578.8 
5: 229.1). When grown in the presence of 5g-035, the profile 
of AC29 cells was unaffected, but that of 25-RA was dramati- 
cally altered to become almost identical to AC29 (Fig. 2, a 
and b; hatched curves). 

AC29 cells were mutagenized with N-nitroso-N-ethylurea 
and grown for 5-6 d to allow time for an altered phenotype 
to be expressed. The mutagenized ceils were then stained 
with Nile red and sterilely sorted with the cytofluorograph 
as described in Materials and Methods. After two rounds of 
sorting, two putative revertants were isolated independently, 
29CS1 and 29CS3. After Nile red staining, these cell lines 
had an identical fluorescent profile compared to 25-RA as 
analyzed by the cytofluorograph (Fig. 2 c and data not 

shown), and appeared similar to 25-RA when viewed with 
differential-interference or phase contrast and epifluores- 
cence optics (data not shown). 

It was found that the cell survival after sorting was ex- 
tremely low (2-10%). Changes in the flow rate of the sorting 
(500-2,000 cells/s) or the time between staining and sorting 
(15-120 min) did not affect the survival rate (data not shown). 
To determine the cause of cell death, the experiment de- 
scribed in Table I was performed. Unstained or Nile red- 
stained cells were plated directly into dishes (200 cells/dish), 
or 200 of the 0.2% brightest cells were sorted via cytofluo- 
rography into dishes. For unsorted cells, the results indicated 
that Nile red had no effect on cell plating efficiency, which 
ranged from 25 to 41% for all cell types examined. There was 
a small reduction in cell survival in all cell types when un- 
stained cells were passed through the flow cytometer (11- 
19%). When Nile red-stained cells were sorted, only the cell 
types with high Nile red fluorescence had survival rates com- 
parable to unstained cells. The cells with low Nile red fluo- 
rescence (AC29 and AC29-G418 r, which are AC29 cells 
transfeeted with the plasmid pSV2-neo as described below) 
had a two- to fivefold lower survival rate than the other cell 
types. For our particular purpose, this was an unforeseen ad- 
vantage, since AC29 cells were being selected against by 
their lower fluorescence and by a lower survival rate. 

Approximately 7 x lO s mutagenized AC29 cells were 
sorted and •300 cells (from six separate groups) survived. 
From these survivors, two independent revertants were iso- 
lated after an additional round of sorting. At the setting used 
for the first sort, 0.1% of all AC29 cells and *40% of all 25- 
RA cells would be sorted. Since 29CS1 and 29CS3 cells have 
almost identical fluorescent profiles to 25-RA (Fig. 2 c and 
data not shown), there was an '~4 x 102-fold enrichment 
of the revertants after the sort. In addition, there was proba- 
bly a twofold difference in cell survival between the rever- 
tants and AC29 (Table I). Thus the frequency of isolation of 
revertants in this selection was ~2/3 x 102 x 1/4 x 102 x 
1/2 = 1/1.2 x los. 

Table L Effect of the Fluorescent Stain Nile Red and the 
Cytofluorograph on Cell Survival 

Cell survival 

Unsorted Sorted 

Cell type Unstained Nile red Unstained Nile red 

% % % % 

25-RA 29.6 + 3.3 30.6 + 3.7 16.3 + 2.0 23.6 + 3.8 
AC29 25.5 + 2.2 28.6 + 3.7 16.1 + 2.2 7.1 + 0.7 
29CS1 28.3 4- 1.0 29.0 4- 2.5 19.3 4- 1.0 13.8 4- 3.3 

AC29-G418'  32.0 4- 0.5 32.1 4- 3.0 10.8 + 3.0 3.3 4- 0.3 
29T1 33.0 4- 4.7 41.0 4- 3.0 18.3 + 2.7 16.6 + 0.7 

Monolayers were grown to confluency in F-12 medium plus 10% FCS 
(AC29-G418 r and 29T1 were grown in medium containing 100 #g/ml G418) 
and cells were resuspended in buffer with or without 100 ng/mt Nile red as 
described in Materials and Methods. Each sample was then subjected to the 
cytofluorograph and 200 of the 0.2% brightest cells were sorted into 100-ram 
dishes as described in Materials and Methods. In addition, the cell concentra- 
tion of each unsorted sample was quantitated using a bemocytometer and 200 
cells were plated directly into 100-mm dishes. After 10 d, the cell survival was 
determined by counting the number of colonies in each dish. The values are 
given as the mean of three dishes + SD. 
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Table IL Cholesterol and Cholesterol Ester Analysis of 
25-RA, AC29, and a Revertant (29CSI) and Transformant 
(29T1) of aC29 

Cell type Cholesterol Cholesterol ester 

nmol/mg protein 

25-RA 81.9 + 7.7 234.0 + 29.6 

AC29 105.5 -t- 21.6 3.8 + 1.2 

29CS1 72.1 + 12.6 146.3 + 13.7 
29T1 77.8 + 16.7 131.6 + 15.0 
25-RA (58-035) 86.8 + 13.0 12.5 + 2.9 
AC29 (58-035) 81.6 -I- 11.4 2.7 -t- 5.1 

5 x 105 cells were plated in 25-cm z flasks and grown in F-12 medium plus 
10% FCS for 66 h with a medium change at 48 h and 64 h. 29T1 was grown 
in the presence of 100/~g/ml (3418 throughout the experiment. The cells were 
harvested and analyzed for sterol content as described in Materials and 
Methods. Where indicated, 25-RA and AC29 were grown in medium contain- 
ing 200 ng/ml 58-035. Duplicate aliquots were taken from duplicate dishes and 
the results are shown as the mean value + SD. 

Next, we transfected AC29 cells with exogenous DNA to 
determine if we could isolate transformants that had regained 
the ability to synthesize cholesterol ester. AC29 cells were 
cotransfected with high molecular weight DNA from human 
flbroblasts and pSV2-neo, a plasmid containing the gene 
conferring G418 resistance. The transfected cells were iso- 
lated by their acquired resistance to the toxic neomycin ana- 
logue, G418 (see reference 48). In several experiments, 100 
transfection frequencies ranging from 5 x 10 -~ to 1.7 x 
10 -~ were obtained. It is known that cells transfected with 80 
selectable genes by the calcium phosphate precipitation tech- 
nique also take up large amounts of the carder DNA used 
(39), in our case human fibroblast genomic DNA. Of the 1.2 ~ 60 
x 104 G418-resistant colonies obtained, one putative trans- - 

Q. 

formant, 29"1"1, was isolated (Fig. 2 d). The transformant had l 
numerous Nile red-positive perinuclear particles similar to a 40 
25-RA and the revertants, which were not present when the ,.,-~ 
cells were grown in the presence of the ACAT-specific inhibi- 
tor, 58-035 (data not shown). ~ 20 

O 

Cholesterol Ester Metabolism in the Revertants 
and Transformant 

As shown in Table II, analysis of the cholesterol ester mass 
of 25-RA, AC29, a revertant (29CS1), and the transformant 
(29T1) was consistent with the Nile red data, shown in Fig. 
2. The majority of the cholesterol in 25-RA, 29CS1, and 
291"1 cells was in the esterified form, the revertant and trans- 
formant always observed to have less cholesterol ester (~55 -  
65%) than 25-RA cells. AC29 and cells grown in the ACAT 
inhibitor 58-035 had very little cholesterol ester. The values 
shown in Table II are almost twice as high as the values 
reported previously from this laboratory, although the results 
are qualitatively very similar (5). We believe this is due to 
differences in the preparation of the samples before the cho- 
lesterol analysis was performed (see Materials and Methods 
for details). The earlier method of preparing the samples, in 
which aliquots were taken from a NaOH-dissolved cell ex- 
tract, has been found to be nonlinear in the amount of choles- 
terol detected with increasing volume of the aliquots (data 
not shown) which lead to an underestimation of the absolute 
values. The new method, in which the entire sample is ex- 

tracted and then resuspended in isopropanol before aliquot- 
ing for analysis, was found to give a linear response (data not 
shown) and was used in all subsequent experiments. 

The fact that the revertants and transformant had a large 
decrease in Nile red fluorescence and cholesterol ester when 
grown in 58-035 suggested that ACAT is active in these cells. 
To confirm this and to examine whether cholesterol ester 
synthesis is regulated normally in the isolated cell lines, the 
rate of cholesterol ester synthesis in response to LDL present 
in the growth medium was examined by [3H]oleate pulse 
(Fig. 3). LDL is known to activate ACAT in CHO ceils (8, 
17, 33). The rates of cholesterol ester synthesis in 25-RA, 
29CS1, 29CS3, and 29"I"1 cells were all activated at least 50- 
fold by LDL while AC29 showed no response. In this experi- 
ment mevinolin, a competitive inhibitor of 3-hydroxy-3- 
methylglutaryl-CoA reductase (1), was added to the cells 
shortly before and during the incubation with LDL to inhibit 
endogenous cholesterol biosynthesis, which also activates 
ACAT and thus partially masked the activation by LDL in 25- 
RA and its derived cell lines (data not shown). A small 
amount of mevalonate was added with the mevinolin, to per- 
mit the  synthesis of nonsteroidal isoprenoids (45). 

Table III shows the in vitro ACAT activities of the above 
mentioned CHO ceils plus that of human fibroblasts. As seen 
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Figure 3. Activation of cholesterol ester synthesis by LDL in 25-RA 
(o; dashed line); AC29 (o; solid line); and two revertants, 29CS1 
(o; solid line) and 29CS3 (=; dashed line), and a transformant, 
29"1"1 (zx; solid line), of AC29. 1.2 × 105 cells were plated in 25- 
cm 2 flasks and grown for 2 d in F-12 medium containing 10% FCS 
supplemented with CaCI2 as described in Materials and Methods. 
After 2 d, the monolayers were washed three times with PBS and 
switched to F-12 medium supplemented with 10% delipidated FCS 
+ 35 #M oleic acid and grown for an additional 36 h with a medium 
change 24 h after the switch. Then cells were changed to delipidated 
FCS medium containing 10/zM mevinolin and 230 #M mevalonate 
and grown for 6 h before a fresh medium containing increasing 
amounts of LDL was added. 29"1"1 cells were grown in the presence 
of 1130/~g/ml G418 throughout this experiment. After 6 h of addi- 
tional growth, the cells were pulsed with [3H]oleate and analyzed 
for cholesterol-[aH]oleate formed as described in Materials and 
Methods. Values are the average of duplicate flasks and ranged 
within 10% of the mean. 
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Table 111. Microsomal and Reconstituted ACAT Activity of 
25-RA, AC29, Human Fibroblasts, Revertants (29CSI and 
29CS3), and a Transformant (29T1) of AC29 

ACAT specific activity 

Cell type Microsomal Reconstituted 

pmol/min/mg 

25-RA 90.8 184.8 
AC29 0.6 0.0 
29CS1 68.8 91.1 
29CS3 50.9 88.2 
Human fibroblasts 6.3 30.1 
29T1 69.5 67.8 

For CHO cell lines, 3 x 106 cells were plated in 150-cm 2 flasks containing 
F-12 medium plus t0% FCS and grown for 66-70 h with a medium change 
at 48 h and 2 h before harvest. 29T1 was grown in the presence of 100/zg/ral 
G418 at all times. 7 x 105 human fibrob|asts were plated in 150-cm 2 flasks 
containing MEM plus 10% FCS and grown for 7 d, with medium changes on 
day 4 and 6, and 2 h before harvest. Cells were harvested and assays were per- 
formed as described in Materials and Methods. The values are the means from 
duplicate assays and ranged within 10% of the mean. 

previously, after reconstitution into cholesterol/phosphati- 
dylcholine vesicles, the enzyme activity was elevated com- 
pared to the activity of the enzyme in the native microsomal 
membrane (4, 8, 17). In three separate experiments (Table 
III, Fig. 5, and data not shown), the reconstituted activities 
of 29CS1 and 29CS3 ranged from 39 to 51% and 42 to 48% 
of 25-RA-reconstituted ACAT activity, respectively. The 
ACAT activity of the putative transformant was tenfold higher 
than the activity found in human fibroblasts in the micro- 
somal assay and approximately twice as high in the reconsti- 
tution assay. 

Heat Stability o f  ACAT 

As outlined in the previous section, the revertant and trans- 
formant cell lines isolated from AC29 have similar character- 
istics. Even though the frequency of obtaining the transfor- 
mant was an order of magnitude higher than was found for 
the revertants isolated from mutagenized AC29 cells, the 
possibility existed that 29T1 was a G418-resistant clone 
which had reverted to an ACAT-positive phenotype during or 
after transfection. 

While characterizing the ACAT activity of human fibro- 
blasts, it was found that it was more stable at elevated temper- 
atures than the enzyme activity of CHO cells. I f  29"1"1 is an 
AC29 clone which has acquired the human ACAT gene, then 
its enzyme activity should have the heat stability characteris- 
tics similar to that found in human fibroblasts. This turned 
out to be the case. Fig. 4 shows the heat inactivation curves 
of microsomal enzyme activity at 45°C for the relevant cell 
lines. The inactivation curves, which do not follow simple 
first-order kinetics, revealed a distinct difference between the 
various cell types. The curves for the human fibroblasts and 
the transformant 291"1 were very similar, and demonstrated 
an enzyme activity substantially more heat stable than those 
of the other CHO cell lines. The curve for revertant 29CSt 
was almost identical to the one for 25-RA, while the curve 
for the other revertant 29CS3 was much more heat labile. 

The different heat inactivation curves between the cell 
lines examined in Fig. 4 could arise in part from differences 

in the cellular membrane environment where the ACAT en- 
zyme resides. To rule out this possibility, heat inactivation 
experiments using ACAT activities reconstituted into lipo- 
somes were performed. In this procedure the ACAT enzyme 
is solubilized from its native membrane by detergent and 
inserted into cholesterol-phospholipid vesicles of defined 
concentration (4). As shown in Fig. 5, all of the reconstituted 
enzyme activities were less stable than the microsomal ac- 
tivities, but the difference between the heat stability of the 
human and 25-RA enzyme was even more striking (t,~ for 
the human fibroblast enzyme was 5.5 min; for the 25-RA en- 
zyme it was 1.3 min). The enzyme inactivation profile of 
29T1 was almost identical to the one for human fibroblasts, 
while those for 25-RA, 29CS1, and 29CS3 were very similar. 

When cells are transfected by the calcium phosphate 
coprecipitation technique used in this report, up to 2,000 kb 
of exogenous DNA are stably integrated into each transfor- 
mant (39). Therefore, it is probable that many human genes 
have been taken up and expressed in the primary transfor- 
mant, 29T1. To remove superfluous human DNA not in- 
volved in transforming AC29 to an ACAT-positive cell line, 
we isolated secondary transformants. This was accomplished 
by transfecting AC29 with pSV2-neo and whole genomic 
DNA isolated from 29-1"1 cells. Three secondary transfor- 
mants, 29"12-4, 29T2-8, and 29T2-10, were isolated from 3.4 
× 104 G418-resistant colonies. These cell lines had the 
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Figure 4. Heat inactivation of  microsomal ACAT activity f rom cell 
extracts of 25-RA (e; dashed line); human fibroblasts (o; solid 
line); and two revertants, 29CS1 (n; solid line) and 29CS3 (e; 
solid line), and a transformant, 29"1"1 (zx; dashed line), of AC29. 
CHO cells and human fibmblasts were grown and harvested as de- 
scribed in Table In. Cell extracts at 4°C were preincubated in a 
20°C water bath for 3 min before incubation in a 45°C water bath 
for the indicated times. Samples were then placed on ice until as- 
sayed for enzyme activity as described in Materials and Methods. 
The control values for 25-RA, 29CS1, 29CS3, human fibmblasts, 
and 29"1"1 were 71.3, 51.0, 36.9, 5.9, and 68.5 pmoles/min per mg, 
respectively. Duplicates ranged within 10% of the mean. 
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Figure 5. Heat inactivation of reconstituted ACAT activity from 25- 
RA (e; solid line); human fibroblasts (o; solid line); and two 
revertants, 29CS1 ([]; dashed line) and 29CS3 (I; solid line), and 
a transformant, 29"1'1 (zx; dashed line), of AC29. CHO cells and hu- 
man fibroblasts were grown and harvested as described in Table HI. 
Cell extracts were solubilized and diluted into cholesterol-phospha- 
tidylcholine vesicles according to Cadigan and Chang (4). The 
reconstituted enzyme preparations were treated as described in Fig. 
4 and assayed for activity. The control values for 25-RA, 29CS1, 
29CS3, human fibroblasts, and 29"I"1 were 260.0, 101.2, 109.2, 52.0, 
and 93.9 pmoles/min per mg. Duplicates ranged within 10% of the 
m P ~ r l .  

perinuclear particles characteristic of 25-RA and the rever- 
tants and transformant isolated earlier as well as increased 
Nile red fluorescence and high ACAT activity. Fig. 6 demon- 
strated that the reconstituted enzyme activities of the sec- 
ondary transformants had a rate of inactivation at elevated 
temperatures similar to the ones seen in the primary transfor- 
mant and human fibroblasts, and distinct from the one in 25- 
RA cells. 

Southern Analysis of  Transformants Using a Labeled 
Human Repetitive Element 

Alu repeats have been reported to be present in as many as 
6-9 x 105 copies per haploid human genome (26, 42) and 
are found, on average, every few kilobases throughout the 
genome (52). To directly demonstrate that the isolated pri- 
mary and secondary transformants have indeed stably in- 
tegrated human DNA into their genomes, Southern analysis 
using a human repetitive element of the Alu family as the 
probe (44) was performed on restriction enzyme-digested, 
whole genomic DNA from the primary and secondary trans- 
formants. The results of one such experiment are shown in 
Fig. 7. The radiolabeled probe hybridized strongly to human 
DNA but not at all to AC29 DNA (Fig. 7, lanes 1 and 2). 
Note that there is 2,000 times more AC29 DNA blotted onto 
the nylon filter than human DNA. The primary transfor- 
mant, 29T1, was found to have a large amount of human se- 
quences integrated into its genome. The secondary transfor- 
mants, however, contained a relatively small amount of 
human sequences (see Fig. 7, lanes 4-9). These results are 

similar to the ones previously reported by other laboratories 
(28, 35, 37, 46). As indicated in Fig. 7, there were discrete 
restriction fragments that the probe hybridized to, which are 
common to all three secondary transformants in the Hind 
III/Eco RI double digest (Fig. 7, lanes 7-9). Common bands 
of 23, 9.7, 6.8, and 2.2 kbp were also found in the Hind III 
digest (Fig. 7, lanes 4-6). In addition, there were also bands 
common to all three transformants in Eco RI digests (data not 
shown). It is highly likely that these common fragments con- 
tain at least part of the gene which confers human ACAT ac- 
tivity to AC29 ceils. The sum of the common bands in each 
digest added up to 26--42 kbp. The functional gene could be 
smaller than the sum of the common fragments, or larger due 
to significant portions of the gene that do not contain an Alu 
repeat. Further experiments will be needed to more exactly 
define the size of the functional human ACAT gene. 

Discussion 

This report describes a new selection procedure for the iso- 
lation of CHO cells that have regained their ability to synthe- 
size cholesterol ester from a population of AC29 mutant cells 
which are deficient in ACAT activity. The selection proce- 
dure uses cytofluorography and Nile red, a fluorescent dye 
that partitions preferentially into neutral lipid droplets (22, 
23). As shown in Fig. 2, the majority of the fluorescent sig- 
nal is due to cholesterol ester synthesized intracellularly, 
since there is an approximate sevenfold reduction in fluores- 
cence intensity when the cells were grown in the presence of 
the ACAT inhibitor 58-035. Although there is a small dis- 
crepancy between the flow cytometric data in Fig. 2 and the 
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Figure 6. Heat inactivation of reconstituted ACAT activity from 25- 
RA (o; solid line); a primary transformant, 29"1"1 (zx; dashed line); 
and three secondary transformants, 29"1"2-4 (n; dashed~dotted 
line), 2912-8 (m; solid line), and 2912-10 (o; dotted line), of AC29. 
CHO ceils were grown and harvested as described in Table III. Ex- 
tracts were reconstituted according to the procedure of Cadigan and 
Chang (4). The samples were treated as described in Fig. 4 and as- 
sayed for enzyme activity. The control activities for 25-RA, 29T1, 
291"2-4, 2912-8, and 2912-10 were 137.2, 41.7, 39.6, 45.7, and 62.6 
pmoles/min per mg. Duplicates ranged within 7 % of the mean. 
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Figure 7. Southern analysis of enzyme-restricted, whole-genomic 
DNA from AC29, human fibroblasts, and the transformants probed 
with a radiolabeled human repetitive element. Genomic DNA of 
human fibroblasts (lane 1), AC29 (lane 2), 29"1"1 (lane 3), 2912-4 
(lanes 4 and 7), 29I"2-8 (lanes 5 and 8), and 29"I2-10 (lanes 6 and 
9) were digested with Hind I11 (lanes 1-6) or Hind III and Eco RI 
(lanes 7-9), run on a 0.8% agarose gel, transferred to a nylon filter, 
and probed with radiolabeled Alu repetitive element as described 
in Materials and Methods. 20 #g of genomic DNA was used for 
each sample except for human fibroblasts (10 ng) and 29"1"1 (10 #g). 
A Hind III digest of lambda DNA served as molecular weight mark- 
ers and are indicated on the left in kilobase pairs and the Eco 
RI/Hind III restriction fragments common to all the secondary 
transformants are indicated on the right in kilobase pairs. 

chemical determination of cholesterol ester content in Table 
II (29CS1 and 291"1 have ,,060% of the cellular cholesterol 
ester as 25-RA cells, while their Nile red fluorescent profiles 
are almost the same), Nile red can be viewed as an indirect 
assay for cholesterol ester in the CHO cell lines examined. 

The survival of Nile red-stained AC29 ceils after sorting 
through the cytofluorograph was very low. The data in Table 
I suggested that the Nile red staining plus cell sorting prefer- 
entially killed cholesterol ester-deficient cells, while choles- 
terol ester-rich cells are relatively unaffected. Although the 
reason for this specific killing is not known for certain, it may 
be that after excitation by the laser beam in the cytofluoro- 
graph, the Nile red compound becomes cytotoxic. In cells 
with large amounts of cholesterol ester, the toxic compound 
is trapped in the lipid droplets, thereby enabling the cells to 
survive. Since this is the first report using Nile red for sorting 
actively growing cells in the cytofluorogra_ph, further experi- 
ments will be needed to determine if the unexpected cytotox- 

icity is observed when other cell types are examined. This 
phenomenon was beneficial in the selections described in 
this report, since cells with high mounts  of cholesterol ester 
were enriched. However, it may prove difficult to use Nile 
red in selections where cells are selected for lower Nile red 
fluorescence. 

The two revertants, 29CS1 and 29CS3, isolated from muta- 
genized populations of AC29 cells, have highly regulated 
cholesterol ester synthesis in intact cells and relatively high 
ACAT activity in vitro (Fig. 3 and Table HI). The recon- 
stituted enzyme activities of the revertants are between 39 
and 51% of that found in 25-RA cell extracts (Table llI, Fig. 
5, and data not shown). This reconstitution assay is entirely 
dependent on the exogenous cholesterol present in the vesi- 
cles, which was at saturating amounts in our experiments, 
thus eliminating any differences in ACAT activities due to 
differences in the cholesterol composition of the microsomal 
membranes (4). Therefore, the revertants appear to have ap- 
proximately half the enzyme content of 25-RA cells. The fre- 
quency of obtaining the revertants from mutagenized AC29 
cells was calculated to be 8 x 10 -6, a value consistent with 
other reports of reversion of single genes (9, 13, 30, 38, 54). 
The low frequency of isolation of the ACAT mutants sug- 
gested that more than one gene needed to be inactivated to 
produce the ACAT mutant phenotype (5). We now propose, 
based on the biochemical data and the frequency of isolation 
of the revertants, that there are two active genes in the paren- 
tal cell line 25-RA and that one of the two genes has been 
reactivated in the revertants. 

A transformant was isolated after AC29 cells were trans- 
fected with whole genomic DNA obtained from human fi- 
broblasts. This transformant, termed 29"1"1, appears to be 
very similar to the revertants with respect to cholesterol ester 
metabolism (Fig. 3 and Tables II and 11I). However, the heat 
inactivation curves shown in Figs. 4 and 5 clearly demon- 
strated that the ACAT activity of 29"1"1 has heat stability prop- 
erties identical to that of the human fibroblast ACAT activity 
and distinct from the other CHO cells. AC29 could contain 
a defect in a structural gene encoding ACAT or in a gene 
needed for enzyme production. The heat inactivation data 
strongly favors the first possibility. If AC29 is a production 
mutant and transfection with human DNA corrected the mu- 
tation, the transformant's enzyme activity should have bio- 
chemical properties similar to that found in CHO cells, not 
human fibroblasts. 

Three secondary transformants were isolated indepen- 
dently by transfecting AC29 with genomic DNA from 29"1"1 
and were shown to possess human-like enzyme activity (Fig. 
6). The finding that all three secondary transformants had 
heat stability properties similar to the primary transformant 
suggested that they have acquired the heat-stable (i.e., hu- 
man) gene from the 2ffrl genomic DNA used in the transfec- 
tion. With the transfection protocol used, a very small 
amount of human DNA should remain in the secondary 
transformants (28, 35, 37, 46). This was confirmed by South- 
ern analysis using a human repetitive element as the probe. 
Restriction fragments common to all three secondary trans- 
formants allowed a tentative approximation of the size of the 
structural gene for the human ACAT enzyme. We cannot rule 
out the possibility of more than one structural gene for the 
enzyme, but at present there is no genetic or biochemical evi- 
dence to support this possibility. 

It is interesting to note that the transformants, which most 
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likely contain one human ACAT gene, have much higher en- 
zyme activity than human fibroblasts (Table HI), which may 
have two active genes. The microsomal activity of 291"1 is 
ten times that of human fibroblasts, while the reconstituted 
activity is only twice as high. This suggests that the enzyme 
has more cholesterol available to it in the CHO cell micro- 
somal membrane than in the fibroblasts, not surprising since 
29T1 is a 25-RA-derived cell line and has an elevated rate of 
cholesterol biosynthesis and increased number of LDL re- 
ceptors compared to wild-type CHO cells (data not shown). 
The remaining twofold difference in enzyme activity could 
be explained by an increased level of expression, or a CHO 
cell-specific posttranslational modification of the human 
ACAT enzyme in the transformants. 

In conclusion, the results reported in this paper strongly 
suggest that the molecular lesion in the ACAT-deficient mu- 
tants isolated previously in this laboratory (5) resides in the 
structural gene for the enzyme, which either prevents expres- 
sion or leads to the production of an inactive enzyme. There 
are normally two active ACAT genes in CHO cells, but the 
reversion or transfection of one ACAT gene is sufficient to 
restore an ACAT-positive phenotype. The secondary trans- 
formants isolated possess one human gene encoding the 
ACAT enzyme and all three contain common restriction en- 
zyme fragments which hybridize to a cloned human-specific 
repetitive element. These common fragments probably form 
part or all of the human ACAT gene. It should now be possi- 
ble to isolate the gene from a secondary transformant geno- 
mic library, as has been accomplished for other human genes 
(28, 35, 46). The isolation of a functional ACAT gene will 
be the first step towards the preparation of the molecular 
tools necessary for probing the molecular structure and regu- 
lation of this enzyme. 
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