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Abstract

Phosphorus (P) is arguably more limiting than nitrogen for forest ecosystems being free of

disturbances for lengthy time periods. The elucidation of multivariate relationships between

foliar P and its primary drivers for dominant species is an urgent issue and formidable chal-

lenge for ecologists. Our goal was to evaluate the effects of primary drivers on foliar P of

Quercus wutaishanica, the dominant species in broadleaved deciduous forest at the Loess

Plateau, China. We sampled the leaves of 90 Q. wutaishanica individuals across broad cli-

mate and soil nutrient gradients at the Loess Plateau, China, and employed structural equa-

tion models (SEM) to evaluate multiple causal pathways and the relative importance of the

drivers for foliar P per unit mass (Pmass) and per unit area (Parea). Our SEMs explained 73%

and 81% of the variations in Pmass and Parea, respectively. Pmass was negatively correlated

to leaf mass per area, positively correlated to leaf area, and increased with mean annual

precipitation and total soil potassium. Parea was positively correlated to leaf mass per area,

leaf dry weight, and increased significantly with total soil potassium. Our results demon-

strated that leaf P content of Q. wutaishanica increased with total soil potassium in the

Loess Plateau accordingly.

Introduction

Leaf nitrogen (N) and phosphorus (P) play crucial roles in productivity and other biological

processes [1–6]. In terrestrial ecosystems, N and P are the most common limiting elements,

either individually, and/or in combination [7–11]. Nitrogen supply increases with on-going

increases in atmospheric N deposition [12]. By contrast, a fixed complement of P is primar-

ily derived from rock weathering, and even very small losses of P may not be readily replen-

ished [13]. The availability of P declines during long-term ecosystem development, and may

eventually lead to P-deficient soils [5, 7, 13]. Although N is frequently proposed as the
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primary limiting nutrient in forests (particularly in boreal and temperate biomes), P is argu-

ably more limiting for systems that have been free of disturbances for lengthy time periods

[11, 14].

This relative P limitation may be further intensified under continuous and widespread

anthropogenic N emissions [11, 15]. High N deposition, typically from anthropogenic emis-

sions, decreases soil C:N ratio and increases N supply to plants [12]. In China, which is cur-

rently, by far, the largest creator and emitter of anthropogenic N globally, foliar N was

observed to increase significantly between 1980 and 2000 across all plant species; however,

foliar P was not altered over the same time period [15]. As a vital element for energy storage

and cell structure, P has emerged as a key limiting nutrient to plant development and growth,

spanning from regional to global scales [1, 4, 16].

Leaf P per mass (Pmass) and per unit area (Parea) are two important indices for leaf P status,

and their respective advantages remain under discussion. Pmass appeals more to researchers

who are concerned with plant growth and economics, such as resource investment and return,

whereas Parea has a greater appeal for researchers who are interested in photosynthetic physiol-

ogy, which focuses on the implementation of leaf functions [17–19].

On an extensive regional or global scale, leaf resident N and P increases from the tropics to

the cooler and drier mid-latitudes [7]. Moreover, the first global quantification of the relation-

ship between leaf phosphorus status and soil nutrients indicated that leaf P was positively cor-

related to soil P; however, soil P was negatively associated with precipitation [20]. Thus, it

remains unclear as to whether foliar P is determined by soil P or precipitation. Potassium (K)

is the most abundant cation in plant cells and the second most abundant nutrient after N in

leaves, but is a limited nutrient in 70% of all studied terrestrial ecosystems [21]. Soil K is critical

to K supply for plants because the loss of K from leaves through leaching is more pronounced

than for other elements [22, 23]. K deficiency reduced photosynthesis [4], and impaired

phloem transport of sucrose to root systems, which are important for the fine root growth and

absorption of mineral nutrients, including P [24–28]. We therefore hypothesize that soil resi-

dent K is positively associated with foliar P.

The intraspecific relationships between leaf morphological traits (LMT) and leaf P gradually

got more attention in recent years, especially for widespread species. Leaf mass per area

(LMA) quantifies the leaf dry-mass investment per unit of light-intercepting leaf area [29, 30].

The negative correlations between LMA and Pmass were observed in Phragmites australis and

Robinia pseudoacacia [31, 32], which was coordinated with the relationships at interspecific

scale [17, 31, 33, 34]. The limitation of P initiates reductions in leaf area (LA) and leaf growth

due to both the direct effects of P shortage on leaf expansion rates, and the reduction of assimi-

lation products that are required for growth [35, 36]. However, the associations between LA

and leaf dry weight (LDW), which are independent of LMA [37–39], and foliar P remain

poorly understood.

Recent literature has revealed that intraspecific variation in leaf traits is greater than previ-

ously supposed [40, 41]. To better understand the determinants of foliar P within species, we

studied the Pmass and Parea of the Liaotung oak (Quercus wutaishanica), which is a dominant

and widely distributed species of the temperate deciduous broad-leaved forests along natural

gradients of climate and soil nutrient variability in the Loess Plateau, in Northern China

[42]. Here, we tested following hypotheses that: (i) in addition to LMA, LA and LDW may

also contribute to the variation of foliar P; (ii) the influences of environmental, especially for

soil K, and leaf trait variables on Pmass and Parea differ in strength and even directions. By

using structural equation modeling (SEM) [43], we examined the influences of climate, soil
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nutrients, and the morphological traits of leaves on the variations in leaf Pmass and Parea of

Q. wutaishanica.

Materials and methods

Study area

This study was conducted on the Loess Plateau in Northern China, where Q. wutaishanica is

primarily distributed. The 30 sites were distributed across six mountains, with the same loca-

tions as Xing, Kang (28) (Table 1 and S1 Table). The mean annual temperature (MAT) and

mean annual precipitation (MAP) ranged from 4.1 to 10.3 ˚C, and 554 to 880 mm, respec-

tively, whereas the elevation ranged from 1252 to 2303 m (Table 1). In the upper 0–20 cm soil

layer, total soil N, P, K were on average 2.48 mg g-1, 0.52 mg g-1, and 19.57 mg g-1, respectively

(Table 1).

Sample collection

To ensure a wide coverage of habitat conditions, we selected sample sites at every 100-m eleva-

tion interval on each of the six mountains, and a total of 90 samples from 30 sites were col-

lected. Subsequent to confirming that every sample site was at least 50 m from any clearing,

and 100 m from any roadway, we randomly sampled three healthy Q. wutaishanica trees, and

collected 20 canopy leaves from the sun-exposed side of each tree. Within a 400 m2 vicinity,

three soil samples were randomly collected from a 0–20 cm soil depth, where the bulk of the

fine roots of most plants occur, and large amounts of N, P, and K accumulate, due to uplift and

release at the surface by plants through litter fall and fine root turnover [44, 45]. Three soil

Table 1. Description of sampling range, environmental conditions, and leaf traits.

Variables Mean SD Minimum Maximum CV (%)

Elevation (m) 1700 - - 1252 2303 - -

Longitude (˚) - - - - 106.68233 113.50182 - -

Latitude (˚) - - - - 34.04959 37.13302 - -

MAT (˚C) 6.7 1.84 4.1 10.3 27

MAP (mm) 637 94.47 554 889 15

TSN (mg g-1) 2.48 1.84 0.90 9.60 71

TSK (mg g-1) 19.57 2.56 14.10 25.90 13

TSP (mg g-1) 0.52 0.20 0.20 1.30 39

LMA (g m-2) 77.06 2.16 35.18 132.85 23

LA (cm2 leaf-1) 35.82 11.31 19.50 72.40 28

LDW (g leaf-1) 0.27 14.01 0.13 0.51 30

Nmass (mg g-1) 23.59 3.42 17.60 33.70 15

Narea (g m-2) 1.79 0.39 1.00 3.10 22

Pmass (mg g-1) 1.12 0.29 0.52 1.88 26

Parea (g m-2) 0.09 0.03 0.05 0.23 34

Kmass (mg g-1) 6.71 1.44 2.79 10.88 21

Karea (g m-2) 0.51 0.15 0.26 0.94 29

N:P ratio 21.78 0.54 13.15 41.76 20.8

Abbreviations: MAT, mean annual temperature; MAP, mean annual precipitation; TSN, total soil nitrogen; TSK, total soil potassium; TSP, total soil phosphorus; LMA,

leaf mass per area; LA, leaf area; LDW, leaf dry weight; Pmass, leaf phosphorus per unit mass; Nmass, leaf nitrogen per unit mass; Kmass, leaf potassium per unit mass;

Narea, leaf nitrogen per unit area; Parea, leaf phosphorus per unit area; Karea, leaf potassium per unit area; SD, standard deviation; CV, the coefficient of variation.

https://doi.org/10.1371/journal.pone.0201350.t001
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samples were combined to make a composite sample from each sample site, yielding a total 30

composite soil samples for laboratory analysis [46].

Variable measurements

Leaf nutrients and morphological traits were measured or calculated for each sampled Q.

wutaishanica tree. We determined the average LA (cm2 leaf-1) of each tree by scanning the

fresh leaves. Subsequent to oven drying these leaf samples at 80˚C for 48 hours, we quantified

the average LDW (g leaf-1), and LMA (g m-2) was calculated by LDW/LA. The oven-dried

samples were then pulverized using a plant sample mill and sieved through a 0.15 mm mesh

screen. We employed the CHNS element analyzer (Vario EL III, Elementar Analyser systeme

GmbH, Hanau, Germany) to determine the N concentrations (Nmass, mg g-1) of each sample.

The P concentrations (Pmass, mg/g) of each sample were quantified using inductively coupled

plasma atomic emission spectrometry measurements (ICP-AES, SPECTRO ARCOS EOP,

SPECTRO, Germany) after dissolved 65% nitric acid (HNO3). The Parea and Narea were calcu-

lated as Pmass and Nmass × LDW/LA, respectively [47].

Soil samples were oven-dried at 50˚C to constant weight, pulverized using a soil sample

mill, sieved through a 0.15 mm mesh screen, and then analyzed for total soil nitrogen (TSN)

(mg g-1) via the CHNS element analyzer (Vario EL III, Elementar Analyser systeme GmbH,

Hanau, Germany). Total soil P (TSP) and total soil K (TSK) were quantified using inductively

coupled plasma atomic emission spectrometry measurements (ICP-AES, SPECTRO ARCOS

EOP, SPECTRO, Germany) after microwave-digestion with for HCl-HNO3 (3:1 by volume)

(Sandroni and Smith 2002).

Mean annual temperature (MAT) and mean annual precipitation (MAP) were extracted

from the WorldClim spatial climate data (period from 1950 to 2000 with resolution at ca 1 km,

available at www.worldclim.org/) based on spatial coordinates (latitude, longitude, and eleva-

tion). The spatial location, i.e., latitude, longitude, and elevation, of each sample tree was deter-

mined via GPSMAP 629sc (Garmin).

Data analyses

Structural equation models (SEMs) have been increasingly employed in ecology to separate

direct and indirect effects between exogenous and endogenous variables [48–50]. An integra-

tive modeling approach has led to a major advance in the ability to discern underlying pro-

cesses in ecological systems [51]. We first examined the bivariate correlation between

variables, and then established an a priori model based on a known theoretical construct,

according to the previous foliar P studies mentioned above, including key variables and possi-

ble paths (Table 1, Fig 1). LMA, LDW, and LA are pairwise correlated leaf morphological traits

influencing leaf P. In order to represent the synthetic effects on foliar P, three traits were incor-

porated into leaf morphological trait (LMT), which was the theoretical concept that combined

three manifest variables to a latent variable (Fig 1). Each of the three observable soil nutrient

variables (TSN, TSP, and TSK) had its path to foliar P, due to their different roles in plant

physiology and growth [52]. MAT and MAP also had separate paths to soil nutrients, LMT

and foliar P (Fig 1). Subsequently, we employed stepwise procedures, guided by Akaike infor-

mation criterion values, to obtain the most parsimonious set of predictors [48]. We adopted

several indices to evaluate the suitability of the final models: the chi-square test (χ2), the root

square mean error of approximation (RMSEA), the adjusted goodness of fit index (AGFI), the

normed fit index (NFI) and χ2/d.f. (NC) [53]. SEM analyses were performed with AMOS 20.0

package, and correlation analyses were performed with IBM SPSS 20.0.0 (IBM SPSS, Inc., Chi-

cago, IL, USA).
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Results

Correlations between leaf P content, leaf morphological traits and

environmental factors

Pmass was negatively correlated to LMA (Table 2) and positively correlated to LA (Table 2),

and Parea was positively correlated to LMA and LDW (Table 2). Both Pmass and Parea increased

caused by higher TSK (Table 2). There was also positive correlation between TSK and TSP

(Table 2), and both of which decreased caused by higher MAP (Table 2). There were no clear

relationships between MAT, TSN and leaf traits.

The final SEM model for Pmass

The final SEM model for Pmass had a good fit to the data, and explained 73% of the variation in

Pmass (Tables 3 and 4, Fig 2a). The model revealed that Pmass was impacted by leaf morphologi-

cal traits (including LMA and LA), MAP, and TSK. Leaf morphological traits had the largest

standardized total effect on Pmass (-0.71) among all factors (Table 4, Fig 2a). Increasing TSK

led to an increase in Pmass (0.55). MAP had a positive direct effect Pmass, but a negative indirect

effect via TSK (Table 4, Fig 2a). As the direct and indirect effects of MAP on Pmass were

approximately the same (but in opposite directions), MAP had a limited total effect (0.09) on

Pmass (Table 4).

Fig 1. The a priori model for leaf P concentrations. Single headed arrows indicate a causal influence of one variable upon another. Double headed arrows

indicate correlation between two variables. Abbreviations: MAT, mean annual temperature; MAP, mean annual precipitation; TSN, total soil nitrogen;

TSK, total soil potassium; TSP, total soil phosphorus; LMT, leaf morphological trait; LMA, leaf mass per area; LA, leaf area; LDW, leaf dry weight; Pmass,

leaf phosphorus per unit mass; Parea, leaf phosphorus per unit area.

https://doi.org/10.1371/journal.pone.0201350.g001
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The final SEM model for Parea

The final SEM model for Parea also fit well with the data, and explained 81% of the variation in

Parea (Tables 3 and 4, Fig 2b). Parea was influenced by leaf morphological traits (including LMA

and LDW), MAP, TSK, and TSP. Leaf morphological traits had an effect on Parea (0.68)

(Table 4, Fig 2b). MAP had a positive direct effect (0.30), a negative indirect effect via TSK

(-0.47), and a positive indirect effect via TSP (0.08), resulting in a total effect of -0.09 on Parea

(Table 4). TSK had a positive direct (0.54) and a positive indirect effect through leaf morpho-

logical traits (0.35) on Parea. TSP had a negative direct effect Parea (-0.23), and was positively

correlated with TSK (0.49) (Table 4, Fig 2b).

Discussion

To the best of our knowledge, this study represents the first attempt to describe intraspecific

leaf P variation across a large geographic scale. Meanwhile, mean value of leaf N:P ratio

Table 3. Structural equation model fit indices and evaluation criteria.

Indices Evaluation criteria or critical value for fit Pmass Parea

χ2 P > 0.05 χ2 = 2.886

P = 0.410

χ2 = 5.162

P = 0.396

RMSEA < 0.08 0.000 0.022

NC < 3 0.946 1.034

AGFI > 0.9 0.919 0.902

NFI > 0.9 0.968 0.965

χ2, the chi-square test; RMSEA, the root square mean error of approximation; AGFI, the adjusted goodness of fit

index; NFI, the normed fit index; NC, χ2 divided by its degrees of freedom; Pmass, leaf P concentration per unit mass;

Parea, leaf P concentration per unit area.

https://doi.org/10.1371/journal.pone.0201350.t003

Table 2. Pearson correlation coefficients between variables.

Pmass Parea Nmass Narea Kmass Karea LMA LDW LA TSN TSK TSP MAT

Parea 0.63���

Nmass 0.61��� 0.11

Narea 0.13 0.76��� 0.06

Kmass 0.58��� 0.25� 0.40�� -0.04

Karea 0.23 0.70 -0.13 0.68�� 0.54��

LMA -0.26� 0.54��� -0.53��� 0.74��� -0.23 0.63��

LDW 0.22 0.50��� -0.03 0.45��� 0.16 0.47�� 0.38��

LA 0.42��� 0.05 0.39�� -0.17 0.38�� -0.03 -0.34�� 0.69���

TSN -0.02 0.10 -0.23 0.05 0.07 0.17 0.15 0.09 -0.07

TSK 0.37�� 0.60��� 0.18 0.55��� 0.11 0.39�� 0.35�� 0.28� 0.03 -0.08

TSP 0.03 0.23 -0.07 0.27� 0.13 0.13 0.30� 0.23 -0.01 0.03 0.58���

MAT -0.05 -0.03 -0.17 -0.04 0.03 0.11 0.06 -0.06 -0.11 -0.07 0.09 0.13

MAP 0.03 -0.02 -0.21 -0.17 0.12 0.04 -0.03 -0.02 -0.03 0.59��� -0.53��� -0.36�� -0.34��

Significances are at P < 0.05 (�), < 0.01 (��), and < 0.001 (���). Abbreviations: MAT, mean annual temperature; MAP, mean annual precipitation; TSN, total soil

nitrogen; TSK, total soil potassium; TSP, total soil phosphorus; LMA, leaf mass per area; LA, leaf area; LDW, leaf dry weight; Nmass, leaf nitrogen per unit mass; Narea,

leaf nitrogen per unit area; Pmass, leaf phosphorus per unit mass; Parea, leaf phosphorus per unit area; Kmass, leaf potassium per unit mass; Karea, leaf potassium per unit

area.

https://doi.org/10.1371/journal.pone.0201350.t002
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exceeding the Redfield ratio suggested the P limited status (N:P ratio = 16) of our research sub-

jects [13, 54], which made our research on the primary drivers on leaf P more necessary.

Directly comparing the significant correlations of total soil potassium and leaf P and non-sig-

nificant correlations of total soil phosphorus and leaf P, we were naturally impressed by the

larger role of soil K in determining leaf P instead of soil P, meanwhile multiple determinants

of the leaf phosphorus status can provide us more evidences. Using structural equation models,

we discovered that the Pmass and Parea of Q. wutaishanica in Northern China were collectively

influenced by leaf morphological traits, mean annual precipitation, and soil nutrients. These

complex Pmass and Parea associated causal relationships would be difficult to obtain from small-

scale experiments, or empirical bivariate studies.

Characteristics of the leaf Pmass and Parea variation in Q. wutaishanica
across the Loess Plateau

We found that Pmass and Parea were linked with leaf morphological traits. Consistent with

previous interspecific findings [33, 34], LMA was negatively correlated to Pmass, and positively

correlated to Parea. Across plant species, leaf assimilation capacity per unit area positively cor-

related to Narea and Parea and increased with increasing LMA [34]. By contrast, the foliage

assimilation capacity per unit mass positively correlated to Nmass and Pmass [17], and scaled

negatively with LMA [29]. The positive correlation between LMA and Parea found in

Table 4. Paths and standardized effects each predictor for foliar P.

Model Predictor Paths Standardized effect

Pmass MAP Direct 0.38���

Indirect through TSK -0.29���

Total 0.09

TSK Direct 0.55���

Indirect - -

Total 0.55

LMT (LMA and LA) Direct -0.71���

Indirect - -

Total -0.71

Parea MAP Direct 0.30���

Indirect through TSK -0.47��

Indirect through TSP 0.08�

Total -0.09

TSK Direct 0.54���

Indirect through LMT 0.35��

Total 0.89

TSP Direct -0.23�

Indirect - -

Total -0.23

LMT (LMA and LDW) Direct 0.68��

Indirect - -

Total 0.68

Significant effects are at P < 0.05 (�), < 0.01 (��), and < 0.001 (���). MAP, mean annual precipitation; TSK, total soil

potassium; TSP, total soil phosphorus; LMT, leaf morphological trait; LMA, leaf mass per area; LA, leaf area; LDW,

leaf dry weight; Pmass, leaf phosphorus per unit mass; Parea, leaf phosphorus per unit area.

https://doi.org/10.1371/journal.pone.0201350.t004
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Q. wutaishanica suggested that leaves of higher LMA enhanced the quantity of photosynthetic

tissues per unit area, similar to the relationship between LMA and Narea across species from

different habitats [29, 34]. Increases in LMA prompt the enhancement of the intercellular

transfer resistance to CO2, and decreases in assimilative leaf compounds, thus leading to the

negative correlation between LMA and Pmass, similar to the relationship between LMA and

Nmass [29, 34]. Collectively, the relationships between foliar P content and LMA in Q.

wutaishanica were similar to those reported across a range of species [34].

Relationship between leaf P content and leaf morphological traits

With the influences of LMA simultaneously accounted for in our structural equation models,

we found, in agreement with our hypothesis, that there were also positive correlations between

LA and Pmass, and between LDW and Parea. The negative correlation between LMA and LA

was similar to the results of Q. ilex [55], indicating a reduction in support tissue per unit area

as the leaf area increases within species. Higher Pmass, and thus higher net photosynthetic rate

per mass [54] in larger leaves appears to be an adaptation of lower LMA [33]. The positive

Fig 2. Final SEMs linking Pmass and Parea and their drivers. Single headed arrows indicate a causal influence of one

variable upon another. Narrow arrows indicate P< 0.05; wider arrows indicate P< 0.01; and the widest arrows

indicate P< 0.001. Values on arrows indicate standardized coefficients. The value at the top-right corner of each

variable (r2) represents the proportion of variance explained. Abbreviations: MAP, mean annual precipitation; TSK,

total soil potassium; TSP, total soil phosphorus; LMT, leaf morphological trait; LMA, leaf mass per area; LA, leaf area;

LDW, leaf dry weight; Pmass, leaf phosphorus per unit mass; Parea, leaf phosphorus per unit area.

https://doi.org/10.1371/journal.pone.0201350.g002

Leaf phosphorus content of Quercus wutaishanica increases with total soil potassium in the Loess Plateau
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correlation between LA and Pmass may have resulted from the positive effects of leaf P concen-

tration on leaf expansion rates, and the increased production of assimilates required for

growth over the duration of expansion [36].

Important effects of both total soil K and P on leaf P content according to

the SEMs

We revealed positive effects of total soil K on Pmass, and Parea. The positive effects of soil K on

both Pmass and Parea of Q. wutaishanica from direct and indirect paths supported the hypothe-

sis that soil K plays critical roles in increasing foliar P. Although leaves of K-deficient plants

accumulate sugars, they rarely increase their root biomass, because they are less able to translo-

cate sucrose to the root via the phloem [24], which decreases root and/or mycorrhizal fungi

biomass for the absorption of P [25, 27]. These processes may be responsible for the positive

effects of soil K both Pmass and Parea we observed in the system with low environmental avail-

ability of inorganic P [8, 15].

We found no significant effects of soil resident P on foliar Pmass, but a negative direct effect

of soil P on Parea, while soil N had little effects on either Pmass or Parea. Typically, plant and soil

P are coupled [54, 56], and the Pmass of 753 terrestrial plant species increased significantly with

increasing soil P in China [8]. The lack of the effect of soil P on Pmass in our study may be

attributed to that photosynthetic products that are prioritized to meet requirements for the

growth of roots rather than leaves in low soil P habitats to ensure a necessary supply of P [4,

24, 52, 54, 56–57]. It means that coupled change between leaf P supply and photosynthetic pro-

duction allocated to leaves lead to the non-significant correlation between Pmass and soil P,

even though soil P of more than 6-fold was reported here. Although our bivariate analysis

showed a positive effect of TSP on Parea, similar to those reported previously [34, 58], our SEM

analysis indicates that the direct effect of TSP on Parea was negative, but complimented by the

positive effect of TSK on Parea.

These complex relationships likely involve several mechanisms. In a P limited environment,

plants reduce disparities in the supply of photosynthetic products and nutrients by enhancing

their capacity to acquire the most limiting resource [59], leading to the allocation of additional

photosynthetic products to root systems and less to leaf biomass. Higher plant nutrient con-

centrations in nutrient-poor environments enhanced their competitive capacity associated

with plant growth capacity[16], meanwhile, plants increase leaf thickness in order to cope

with low soil P [29]. Therefore, the negative direct effect of soil P on Parea likely reflects the col-

lective influence of reduced photosynthetic product supplies to leaves and increased leaf thick-

ness for more proportion of mesophyll tissue [29]. Conversely, increasing soil P associated

with increasing soil K, due to their simultaneous provision from weathering of parent materi-

als and uplift, and release at the surface soil layer by plants through litter fall and fine root turn-

over [44, 45] impart a positive effect on Parea. Unlike the overwhelmingly demonstrated

positive effects of P addition on Pmass [11], little is known about the P addition effects on Parea.

To better elucidate the influence of soil P on Parea, future methodical experiments may further

verify the complex mechanisms that we observed in our study.

Different paths leading to the combined effects of precipitation on leaf P

content

In contrast to regional and global level reports [7, 17], mean annual temperature had no effect

on leaf traits in our study (which might have resulted from the limited temperature variation

in our sample set), and was thus excluded from our SEMs. Consistent with Ordoñez, Van Bod-

egom (20) and Maire, Wright (34), the variation of Pmass and Parea that could be explained by
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mean annual precipitation was exacted but modest. Nonetheless, the direct positive and indi-

rect negative effects of precipitation on Pmass and Parea were all of significance. This key envi-

ronmental variable should not be simply ignored due to the different mechanisms involved

with direct and indirect effects. Forest sites that receive higher precipitation are typically char-

acterized by the augmented downward transport of humic substances in the soil profile, and

enhanced transmission of nutrients within the rhizosphere [60], which might assist with

increasing the P supply for Q. wutaishanica. Nevertheless, the indirect effect of precipitation

on foliar P content, mediated via TSK, was negative. This was likely due to soil P and K leach-

ing losses, which increased in conjunction with precipitation [22, 23].

Our study revealed the variation of Pmass and Parea in Quercus wutaishanica leaves along

with multiple factors in the Loess Plateau, China. Consistent with previous interspecific find-

ings, we revealed that leaf mass per area was negatively correlated with Pmass, and positively

correlated with Parea. We also observed positive correlations between leaf dry weight and

Parea, and between leaf area and Pmass. We found that total soil K was the most critical envi-

ronmental driver for leaf P, whereas the total P concentration of the soil had no effect on

Pmass. Moreover, our SEM highlighted a direct negative effect of total soil P on Parea, and indi-

cated that the positive bivariate correlation between total soil P and Parea masked the direct

negative effect of total soil P, and positive effect of total soil K on Parea. Future nutrient addi-

tion experiments might facilitate the testing of mechanistic links between soil P, soil K, and

leaf P, particularly Parea, by simultaneously examining above- and belowground nutrient allo-

cation and leaf morphological acclimation, meanwhile researches focusing on the mechanism

of soil K in determining leaf P and accurate proportion of leaf K, P taken up from different

soil layers have important implications in understanding the forest potassium and phospho-

rus cycling.
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