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a b s t r a c t   

Transcriptome analysis of head and neck squamous cell carcinoma (HNSCC) has been pivotal to compre-
hending the convoluted biology of HNSCC tumors. MAPKAPK2 or MK2 is a critical modulator of the mRNA 
turnover of crucial genes involved in HNSCC progression. However, MK2-centric transcriptome profiles of 
tumors are not well known. This study delves into HNSCC progression with MK2 at the nexus to delineate 
the biological relevance and intricate crosstalk of MK2 in the tumor milieu. We performed next-generation 
sequencing-based transcriptome profiling of HNSCC cells and xenograft tumors to ascertain mRNA ex-
pression profiles in MK2-wild type and MK2-knockdown conditions. The findings were validated using gene 
expression assays, immunohistochemistry, and transcript turnover studies. Here, we identified a pool of 
crucial MK2-regulated candidate genes by annotation and differential gene expression analyses. Regulatory 
network and pathway enrichment revealed their significance and involvement in the HNSCC pathogenesis. 
Additionally, 3'-UTR-based filtering recognized important MK2-regulated downstream target genes and 
validated them by nCounter gene expression assays. Finally, immunohistochemistry and transcript stability 
studies revealed the putative role of MK2 in regulating the transcript turnover of IGFBP2, MUC4, and 
PRKAR2B in HNSCC. Conclusively, MK2-regulated candidate genes were identified in this study, and their 
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plausible involvement in HNSCC pathogenesis was elucidated. These genes possess investigative values as 
targets for diagnosis and therapeutic interventions for HNSCC. 

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).   

1. Introduction 

Multifaceted regulatory networks tend to connect genes within a 
myriad of cellular processes. A plethora of genes are involved in 
fundamental biological processes such as cell differentiation, 
growth, and programmed cell death, and their role in many diseases 
is presently known [1]. However, the apprehension of their roles at a 
global level is still incomplete. Gene transcription and regulatory 
networks in conjunction with new genome-wide approaches have 
garnered huge attention in the pretext of gene regulation. Never-
theless, post-transcriptional mechanisms such as transcript stability 
are also highly crucial and require intricate regulation via a multi-
tude of intracellular signaling pathways [2,3]. In particular, the 
modulation of transcript stability through phosphorylation-medi-
ated regulation of RNA-binding proteins (RBPs) by mitogen-activated 
protein kinases (MAPKs) has been a topic of great interest [2–5]. 

Head and neck squamous cell carcinoma (HNSCC) having an in-
cidence rate of ∼600,000 cases yearly, is the seventh most common 
cancer worldwide and one of the most lethal cancers with an overall 
mortality rate of 40–50% [6,7]. HNSCCs are classified either histo-
logically [8] or via the analysis of global transcription that employs 
etiology-specific profiles [9,10]. However, when these parameters 
were used for patient clustering, specific differences were observed 
in the clinical behavior of patients as well as their response to 
therapy [11]. The survival rates of HNSCC patients have not improved 
much, hence, HNSCC has been rightly termed a malignant tumor 
with a low survival rate [12]. Consequently, augmented mechanistic 
insight into the molecular basis of HNSCC pathogenesis is urgently 
required to help in the early diagnosis and development of effective 
therapeutics aimed at improved clinical outcomes [13]. 

The role of differentially expressed genes (DEGs) and endogenous 
RNA networks in HNSCC is not fully deciphered. Past reports on 
genome and transcriptome studies in various human tumors have 
revealed aberrant regulatory programs, driver mutations, and dis-
ease subtypes [14]. The cancer genome study is a valuable tool for 
classification, diagnosis, and prognosis in HNSCC. There have been 
many past reports pertaining to genomic alterations in HNSCC  
[15,16]. Recently, The Cancer Genome Atlas (TCGA) has led to a global 
analysis of major molecular changes, a comprehensive landscape of 
transcriptomic alterations, and pathogenesis-linked signaling path-
ways in tumors, thus, contributing to the identification of novel 
prognostic biomarkers or specific anticancer molecular targets  
[17,18]. However, there is still a need for extensive research insights 
to decipher the prognostic value attributed to these genomic al-
terations in tumors such as HNSCC. A variety of biomarkers such as 
MAPK phosphatase-1 (MKP-1), p16, p27, p53, tumor necrosis factor- 
α (TNF-α), and vascular endothelial growth factor (VEGF) are linked 
with HNSCC [5,19], but they have not been proven to be sufficient in 
accurately defining HNSCC pathogenesis. Single biomarkers have 
generally proven insufficient in the prediction of therapeutic re-
sponse thereby necessitating research on combinatorial markers 
through high-resolution “omics” profiling [20]. Consequently, the 
identification of reliable molecular biomarkers associated with 
HNSCC using omics-based analyses is needed to develop novel po-
tential diagnostic and therapeutic targets [21]. 

Recently, the mRNA regulatory networks involved in tumor 
progression have garnered huge research interest with recent re-
ports showing the role of these intricate networks in tumorigenesis  

[22]. However, research endeavors in this area are quite limited, 
thereby pointing to a pertinent need for comprehensive analyses of 
mRNAs and regulatory networks and their involvement in tumor-
igenesis. Next-generation sequencing (NGS) has rapidly evolved as 
an important tool for epigenomic, genomic, and transcriptomic 
profiling of cancers. Technological advances in mining and deci-
phering vast transcriptomic data have enabled us to better com-
prehend the complexity of various tumors and have streamlined 
efforts to discover novel biomarkers and therapeutic targets aimed 
at tumor management [23]. In a recent study, our team elucidated 
the role of mitogen-activated protein kinase-activated protein ki-
nase-2 (MAPKAPK2 or MK2) in HNSCC pathogenesis using clinical 
tissue samples, cell lines, and heterotopic xenograft mouse model  
[5]. MK2 was found to be critically important in regulating HNSCC 
via modulating the transcript stability of crucial pathogenesis-re-
lated genes. It was also established that MK2-knockdown attenuated 
tumor progression in a xenograft mouse model [5]. Thereupon, to 
delve deeper into the mechanistic role of MK2 and to decipher the 
molecular markers responsible for MK2-mediated changes in HNSCC 
pathogenesis, a comprehensive transcriptome profiling was per-
formed and evaluated. 

In the present study, the global mRNA expression profiles in 
HNSCC experimental model sets were evaluated using transcriptome 
analysis on the NovaSeq 6000 system (Illumina Inc., USA). The in 
vitro HNSCC cells, CAL27-MK2WT (wild-type) and CAL27-MK2KD 

(knockdown), cultured in normoxic or the tumor microenvironment 
mimicking hypoxic conditions comprised the first set. The in vivo 
heterotopic HNSCC xenograft bearing tumors from CAL27-MK2WT 

and CAL27-MK2KD cells in immunocompromised mice (as described 
previously) [5] formed the second set. Comprehensive transcriptome 
analysis in the experimental models highlighted certain specific 
MK2-mediated DEGs and regulatory networks that play an integral 
role in HNSCC pathogenesis. Furthermore, specific gene expression 
assays on the nCounter system (NanoString Technologies, Inc., USA) 
were carried out to obtain a sensitive, highly multiplexed, and reli-
able detection of the defined mRNA targets based on the initial 
transcriptome profiling. The assays yielded highly precise and re-
producible data that confirmed the transcriptome findings and 
yielded three MK2-regulated candidate genes (IGFBP2, MUC4, and 
PRKAR2B) intrinsically involved in HNSCC pathogenesis. Finally, 
cross-validation of the nCounter assay results in an in vitro setting, 
using immunohistochemistry (IHC) and mRNA transcript stability 
experiments through real time-quantitative polymerase chain re-
action (RT-qPCR) was performed and it was found that these MK2- 
downstream genes showed dependence on MK2 for their expression 
and regulation in HNSCC tumors and cells (Fig. 1). The findings 
corroborated recently published results, hence, ascertaining a crucial 
role of MK2 in HNSCC pathogenesis by employing transcript stability 
regulation [5]. These outcomes could potentially aid in the discovery 
of novel molecular markers for HNSCC management and diagnostic 
benefits. 

2. Material and methods 

2.1. Cell Culture and MK2 knockdown using shRNA 

Homo sapiens tongue squamous cell carcinoma cell line CAL27 
(CRL-2095™, ATCC, USA) (RRID:CVCL_1107) was grown in specific 
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Fig. 1. Schematic pictorial illustration of the analysis and validation workflow used for transcriptomic profiling. Represents the key outcomes obtained with the work plan. 
Detailed analysis work plan and validation scheme indicating the two distinct sample types used for the experimental analysis and their output in terms of DEGs, significant 
biologies, important filtered out genes, and their validation. Analysis workflow of the dataset obtained from a) RNA-seq of cell line samples. b) RNA-seq of tumor xenograft 
samples. This section represents the initial filtering of the transcriptome data for the identification of crucial biological processes and genes for all the experimental datasets. 
Additionally, expression levels and gene networks were checked for two categories of genes, first for the genes that are transcriptionally regulated by MK2 and second, for the 
genes having their mRNA stability controlled by MK2 through RBP-mediated regulation. Thereafter, MK2-regulated transcripts that harbor RBP specific regions in their 3’-UTRs 
were identified in all datasets, providing 34 genes in A to D comparisons and 48 in F vs E comparisons which were further analyzed by nCounter gene expression analysis. Finally, 
c) validation workflow of the MK2-regulated transcripts that harbor RBP specific regions in their 3'-UTRs filtered out from cell line and tumor samples, and 7 common DEGs in 
transcriptomic and nCounter gene expression assay were identified, 6 of them from the F vs E dataset were subjected to IHC validation and filtered 3 leads were subjected to 
transcript stability evaluation. 
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media supplemented with 10% fetal bovine serum and 1% antibiotic- 
antimycotic (Gibco, USA). The cells were cultured under normal 
conditions (37 °C, 5% CO2 incubator with 95% humidity) and were 
free from any kind of contamination and found mycoplasma free. 
Cell line was procured from ATCC was supplied with the STR pro-
filing details. The A to D datasets in the study depict in-vitro HNSCC 
cell line samples (A= CAL 27 cells grown in normoxia; B= MK2- 
knockdown CAL27 cells grown in normoxia; C= CAL 27 cells grown 
in hypoxia; and D= MK2-knockdown CAL27 cells grown in hypoxia). 
For normoxia culture, CAL 27 cells were grown in petriplates in a 
humidified incubator (Thermo Scientific, USA) with 5% CO2 at 37 °C 
and for hypoxia exposure, the cultured cells were seeded into pet-
riplates and incubated in 0.5% O2 at 37 °C in a hypoxia chamber for 
48 h (Bactrox, Shel-Lab, USA). Furthermore, MK2-specific short 
hairpin RNA-green fluorescent protein (shRNA-GFP) constructs were 
used to stably knockdown MK2 in cultured CAL27 cells to generate 
CAL27-MK2KD cells as previously described [5]. Briefly, CAL27 cells at 
60% confluence in DMEM media were transfected with psi-U6.1 
vectors expressing different 19-mer MK2-specific shRNA constructs 
using Attractene transfection reagent (Qiagen, Germany). Ad-
ditionally, the transfection was carried out in accordance with the 
manufacturer's protocols, using a non-specific scrambled control 
shRNA in psi-U6 vector (Genecopoeia, USA). CAL27 cells were 
transfected with transfection complexes containing 4 μg shRNA 
constructs and Attractene transfection reagent incubated for 20 min 
at room temperature. Stable transfectants were obtained by passing 
transfected cells into puromycin selection medium (1 μg/ml pur-
omycin, Sigma Aldrich, USA) for minimum 48 h. 

2.2. Xenograft mice model generation 

To mimic the human tumor microenvironment, a biologically 
relevant heterotopic xenograft model of HNSCC was developed in 
non-obese diabetic/severe combined immunodeficient (NOD/SCID) 
mice. The immunocompromised mice were randomly assigned into 
control (CAL27-MK2WT) and experimental (CAL27-MK2KD) groups 
based on the specific cell type injected [5]. Briefly, for xenograft 
generation, 1 × 106 cultured cells suspended in 100 μl of 1x phos-
phate buffered saline were injected subcutaneously into the right 
flanks of mice. Seven weeks post-graft inoculation, the mice were 
euthanized by CO2 asphyxiation; tumors were aseptically excised, 
weighed, and used for tissue embedding or RNA isolation. 

2.3. RNA extraction and sample preparation for RNA-sequencing 
(RNA-seq) 

CAL27-MK2WT and CAL27-MK2KD cells cultured in normoxia/ 
hypoxia and tumors resected from the xenografted mice were em-
ployed for isolation of total cellular RNA using the RNeasy Mini kit 
(Qiagen, Germany) following the manufacturer’s recommended 
protocol (sample details are provided in Table 1). Consequently, the 
qualitative and quantitative assessment of all the RNA samples was 
performed using a NanoDrop 2000 C spectrophotometer (Thermo 
Fisher Scientific, USA) and Bioanalyzer (Agilent 2100, Agilent Tech-
nologies, USA) (Fig. S1). The RNA integrity number (RIN) value >  5 
was used as an exclusion criterion for this study. RNA samples 
having RIN >  5 was used for cDNA library preparation. For each 
sample, RNA was isolated from at least three biological replicates for 
library construction and further experimentation. 

2.4. cDNA library preparation and sequencing 

Total RNA (5 µg) from each sample was used to isolate poly-A mRNA 
followed by preparation of cDNA library using the TruSeq mRNA sample 
preparation kit v2 (Illumina Inc.). Each sample was tagged with a unique 
TruSeq index tag to prepare multiplexed libraries. Six paired-end 
adapters with unique six base index sequences, permitting accurate 
differentiation among samples, were used for the library preparation. 
The quantification of prepared libraries was performed on a Qubit 
fluorometer using a Qubit dsDNA BR assay kit (Life Technologies, USA), 
while the size and purity of the libraries were examined on a 
Bioanalyzer DNA 1000 series II chip (Agilent Technologies). The flow 
chart of the sequential steps involved in the TruSeq library preparation 
is given in Fig. S2. The libraries (4 from the cell line model and 2 from 
the animal model) had an average insert size of 210 base pairs (bp) and 
were pooled by taking 10 μl from each library. The final pool was loaded 
in one lane of an S2 flow cell using the NovaSeq XP protocol (Illumina 
Inc.) (Fig. S3) [24]. Cluster amplification and generation of sequencing 
data were performed on the NovaSeq 6000 system (Illumina Inc.) using 
2 × 100 paired-end cycles. Raw data quality control was accomplished 
using the NGSQC tool kit v2.3 with default parameters [25]. 

2.5. Reference-based assembly and homology search 

The raw FASTQ files with low-quality reads of sequencing data 
were filtered to obtain high-quality filtered data that were aligned to 

Table 1 
Sample description and comparison details.      

S. No. Analysis Code Sample Type Sample Description  

1. A Cultured Cell Line (in vitro) Normal CAL27 cells (Normoxia) 
2. B MK2-knockdown CAL27 cells (Normoxia) 
3. C Normal CAL27 cells (Hypoxia) 
4. D MK2-knockdown CAL27 cells (Hypoxia) 
5. E Dissected Xenografts 

(in vivo) 
Normal CAL27 cells grafted 

6. F MK2-knockdown CAL27 cells grafted     

Comparison/ Dataset Code Comparison/Dataset Detail  

B vs A or 
CAL27-MK2KD (N) vs CAL27-MK2WT (N) 

MK2-knockdown CAL27 cells (Normoxia) vs 
Normal CAL27 cells (Normoxia) 

D vs C or 
CAL27-MK2KD (H) vs CAL27-MK2WT (H) 

MK2-knockdown CAL27 cells (Hypoxia) vs 
Normal CAL27 cells (Hypoxia) 

D vs B or 
CAL27-MK2KD (H) vs CAL27-MK2KD (N) 

MK2-knockdown CAL27 cells (Hypoxia) vs 
MK2-knockdown CAL27 cells (Normoxia) 

C vs A or 
CAL27-MK2WT (H) vs CAL27-MK2WT (N) 

Normal CAL27 cells (Hypoxia) vs 
Normal CAL27 cells (Normoxia) 

F vs E or 
CAL27-MK2KD (X) vs CAL27-MK2WT (X) 

MK2-knockdown CAL27 cells grafted vs 
Normal CAL27 cells grafted 

Tabular representation of the codes and details of all the samples used for transcriptome analysis and details of the various 
experimental datasets (comparisons) used in the study.  
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the reference genome (genome reference consortium human build 
38 patch release 12, GRCh38.p12). The Kallisto pipeline was used for 
alignment and identification of transcript coding regions followed by 
quantitation and annotation using default parameters [26,27]. Fur-
thermore, the removal of multi-mapped reads was performed, and 
the filtered data were finally converted to read counts for annotated 
genes. Fig. 2a is a flowchart representation of the various steps in-
volved in the sequencing data analyses. 

2.6. Annotation, differential gene expression, and pathway analyses 

Expression of the transcripts in the samples was analyzed based 
on their fragments per kilobase of transcript per million mapped 
(FPKM) values [26]. Transcripts were given a score for their ex-
pression by the Cufflinks-based maximum likelihood method and 
values with FPKM≥ 0.1 were considered significant for downstream 
analysis. Although FPKM≥ 0.1 cut-off indicates a low level of tran-
script expression, this value was essentially used to attain a high 
enough threshold for the number of transcripts in the analyzed 
datasets considering the downstream filter-specific analyses per-
formed in this study. Transcripts uniquely expressed in each sample 
were considered specific and were analyzed separately. The false 
discovery rate (FDR) was employed to correct the statistical sig-
nificance of the p-values for multiple tests. DEGs in the analyzed 
datasets were identified via the DESeq analysis pipeline [28] using a 
fold change (FC) threshold of absolute log2 FC≥ 2 and a statistically 
significant Student’s t-test p-value threshold adjusted for FDR <  
0.001. Consequently, transcripts with FC <  −2 were considered 
downregulated while those with FC >  2 were considered upregu-
lated. Statistically, significant enriched functional classes with a p- 
value adjusted for FDR >  0.05, derived using the hypergeometric 
distribution test corresponding to the DEGs, were determined using 
Student’s t-test with the Benjamini Hochberg FDR test. 

Unsupervised hierarchical clustering of DEGs was performed 
using Cluster 3.0 and visualized using Java TreeView [29,30]. Gene 
ontology (GO) and pathways that harbor expressed transcripts were 
identified using the DAVID functional annotation tool (http://david. 
abcc.ncifcrf.gov/home.jsp) [29–31] (Fig. 2a). For the DEGs, heat maps 
and volcano plots were generated using the ‘gplots’ and ‘heat map’ 
packages. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses were performed for the assembled transcripts 
with reference to the UniProt database. Data of the total DEGs (up-
regulated and downregulated) were explored further using Cytos-
cape v3.5.0 (http://www.cytoscape.org/) to better understand the 
gene regulatory networks and for mapping of the results [32]. In 
figures depicting the gene regulatory networks, the gene nodes/cir-
cles are sized according to their p-values and colored according to 
their FC where red shows upregulation, green depicts down-
regulation, and yellow displays baseline expression; processes are 
shown in rectangular boxes and colored in blue. 

2.7. The nCounter gene expression assays for primary validation 

To validate the leads obtained from the transcriptomic profiling, 
custom-designed molecular barcodes (NanoString Technologies, 
Inc.) were utilized for single-molecule imaging, thereby making it 
possible to detect and count hundreds of different transcripts in one 
reaction (Fig. 1 and S4). RNA quality was assessed using the Agilent 
2100 Bioanalyzer (Agilent Technologies) (Fig. 1 and S1). Gene ex-
pression was analyzed on the nCounter system (NanoString Tech-
nologies, Inc.) following the manufacturer’s recommendations. 
Briefly, the custom synthesized probes were hybridized overnight to 
the target RNA followed by washing away of the excess probes, 
immobilization of the CodeSet/RNA complexes in the nCounter 
cartridge, and finally data collection on the nCounter system (Fig. 1 
and S4). The gene expression levels were measured in triplicate for 

total RNA from the cell line and xenografted tumor samples, nor-
malized to the four housekeeping genes (HKGs), and analyzed using 
nSolver software (NanoString Technologies, Inc.). Each nCounter 
assay contained synthetic spike-in controls in the preparatory mix to 
allow correction of the sample-to-sample variation arising due to 
common experimental errors such as differences in the amount of 
input transcripts or reagents [33]. The counts were normalized to the 
positive controls and averaged for the samples of each mRNA type. 
Normalization involved spiked-in positive and negative control 
probes for background correction in addition to the 4 HKGs. Data 
analyses were performed on the nSolver 3.0 analysis software (Na-
noString Technologies, Inc.). 

2.8. Immunohistochemical analysis for secondary validation 

The levels of expression and activation status of specific proteins 
were analyzed using IHC in the tumor sections from the in vivo xe-
nograft model to validate the findings of the transcriptomic and the 
nCounter gene expression analysis. The animal study was approved 
by the Institutional Animal Ethics Committee (IAEC) of CSIR-IHBT, 
Palampur, India (Approval No. IAEC/IHBT-3/Mar 2017). IHC was 
performed according to the previously reported protocol [5]. Briefly, 
5 µm thin sections fixed on poly-L-lysine coated slides were depar-
affinized and rehydrated. Antigen retrieval was performed using 
sodium citrate buffer (pH 6.0) followed by quenching of endogenous 
peroxidases using BLOXALL™ blocking solution (Vector Laboratories, 
Inc., USA). Furthermore, incubation of the sections with 2.5% normal 
horse serum blocked the exposed sites. Sections were then in-
cubated with appropriately diluted specific primary antibody (Table 
ST1) overnight at 4 °C followed by horseradish peroxidase-con-
jugated secondary antibody for 1 h at room temperature. The rinsed 
sections were then incubated with 3,3'-diaminobenzidine substrate 
and Mayer’s hematoxylin served as a counterstain. Five field views 
were obtained from each section for the designated antibodies and 
used for quantitative analysis of protein expression. 

2.9. Gene expression analysis and MK2-regulated transcript stability 

To determine the role of MK2 in regulating transcript stability, 
the expression levels of selected genes and the stability of their 
transcripts were assessed in the presence/absence of MK2 using RT- 
qPCR in CAL27 cells. shRNA constructs were used to generate CAL27- 
MK2KD cells as previously reported [5]. MK2-knockdown was con-
firmed using western blotting (WB), following which CAL27-MK2WT 

and CAL27-MK2KD cells were treated with 1 µM actinomycin-D (Act- 
D) to inhibit transcription. Total RNA was isolated at 6 time points (0, 
0.5, 1, 2, 4, and 8 h) using the RNeasy Mini kit (Qiagen) according to 
the manufacturer’s recommended protocol. The purity of the iso-
lated RNA was determined using a NanoDrop 2000 C spectro-
photometer (Thermo Fisher Scientific) and the 260/280 ratios were 
found to be between 1.9 and 2.1. Further RT-qPCR was performed 
using a Verso 1-step RT-qPCR kit (Invitrogen, USA) as previously 
described [5]. GAPDH was used as an internal gene control and the 
difference in cycle threshold (Ct) was calculated following the 2-ΔΔCt 

method. The relative fold change was calculated by comparing the 
CAL27-MK2KD (designated as shMix group, cells were treated with a 
combination of an equal amount of MK2 targeting shRNA complexes 
1, 2, 3, and 4) at the 6 mentioned time points with CAL27-MK2WT 

(designated as mock or scramble control group, cells were treated 
with scrambled shRNA). shRNA constructs and vector maps have 
been described previously [5]. 

2.10. Statistical analysis and quantification 

All the experiments were conducted at least in triplicates unless 
mentioned otherwise. IHC staining intensity was observed and 
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Fig. 2. Differential expression analysis, annotation, and functional enrichment analysis a) Workflow of sequencing analysis showing sequential steps and various tools and 
pipelines employed for transcriptome profiling. b), c) A comparative bar diagram representation of the number of (b) DEGs; and (c) Significant biologies/Biological processes, 
present in various datasets in the transcriptome profiling study. d) Pie chart representation of the top five GO terms and pathway summary based on all the DEGs in the various 
datasets showing approximately 5% of the total DEGs belonging to the pathways involved in cancer progression. e) Non-hierarchical heatmap representation depicting the 
expression profile and variation in average log2 fold change among DEGs in various datasets in the transcriptome profiling study. The color bar represents the expression values 
with green representing the lowest (downregulation) and red representing the highest (upregulation) expression levels. The various datasets used for expression profiling are 
labeled on the top. f) Volcano plot representation of the complete transcript list according to their average log2 fold change and p-values for various datasets in the transcriptome 
profiling study with differential transcripts highlighted in blue. The plot displays DEGs along the dimensions of biological significance (average log2 fold change) and statistical 
significance (p). Genes with an absolute log2 fold change >  2 and a p-value <  0.05 were considered as DEGs. g) Venn diagram representation created using Venny 2.1.0 showing the 
77 common elements in the transcriptome profiling of the in vitro HNSCC cell line model (A-D datasets). h) Venn diagram representation created using Venny 2.1.0 showing the 
five common genes in the 77 common elements in the transcriptome profiling of the in vitro HNSCC cell line model (A-D datasets). i) Venn diagram representation created using 
Venny 2.1.0 showing the two common genes in the 16 common elements in the transcriptome profiling of the in vitro HNSCC cell line model (A-D datasets). 
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analyzed by an expert pathologist in a single-blinded fashion using a 
BX53 bright field microscope (Olympus Corporation, Japan). 
Quantification of protein expression for IHC and WB was performed 
using ImageJ software 1.8.0 (https://imagej.nih.gov/ij/). The images 
were RGB stacked, and the color threshold was adjusted according to 
the expression of specific proteins in the tissue section. For quanti-
fication, the expression was presented as a composite score of the 
percent area of the total tissues using ImageJ software. The statis-
tical/imaging parameters used for the various transcriptomic ana-
lyses have been detailed with their explanations in their respective 
sections in the manuscript. GraphPad Prism 7.0 software (GraphPad 
Software, Inc., USA) was used for the data analysis of IHC and RT- 
qPCR quantified datasets. 

3. Results 

3.1. Qualitative assessment of the generated cDNA library followed by 
filtering and assembly of reads depicted optimum alignment 

The quality assessment of the isolated total-RNA from the ap-
propriate cells/tissues, as well as the cDNA library generated, was 
performed using a Bioanalyzer (Agilent 2100, Agilent Technologies). 
It was found that the RIN values of all the RNA samples and the cDNA 
library were >  5 suggesting that they were of suitable quality for use 
in downstream experiments (Fig. S1 and S3). 

Deep sequencing of RNA obtained from the NovaSeq 6000 plat-
form (Illumina Inc.) resulted in 349 million raw reads (∼58.2 million 
raw reads per sample) with an average insert size of 210 bp. Fig. S5 
and S6 summarizes the quality check (QC) results of the sequencing 
experiment. The raw FASTQ sequences were filtered using the 
NGSQC tool kit to obtain high-quality (HQ) reads based on the pre-
defined parameters, generating 258 million filtered HQ reads (∼43.1 
million HQ reads per sample). This amounted to 74.1% of the total 
raw reads, implying that the obtained data were of good quality. 

The HQ reads obtained were further examined in the down-
stream analyses and mapped over the human reference genome. The 
alignment performed by employing the Kallisto pipeline yielded 
optimum HQ reads mapped to the human reference genome as 
detailed in (Fig. 2a and Fig. S6). 

3.2. Annotation and differential gene expression analyses revealed 
candidate genes 

The present study was conducted using two distinct experi-
mental datasets as mentioned in Fig. 1 and Table 1. Using the criteria 
of FPKM≥ 0.1, 62791 expressing transcripts on an average were 
identified per sample, which further represented ∼13000 genes. A-D 
datasets depict the in vitro HNSCC cell line samples while F vs E 
illustrates the in vivo xenograft dataset. As detailed in Fig. 1 and  
Table 1, analyses of MK2KD vs MK2WT in normoxia and the tumor 
core emulating the hypoxic niche were performed to obtain a 
comprehensive picture of the changes in the global gene expression 
pattern. The differential gene expression in the analyzed datasets 
was evaluated and a large pool of the DEGs, precisely 1403 in B vs A, 
924 in D vs C, 1360 in D vs B, 1456 in C vs A, and 984 in F vs E were 
found as assessed by the predefined cutoff values. Fig. 2b represents 
the total number of upregulated (FC > 2) and downregulated 
(FC < −2) genes among all the DEGs in the analyzed datasets. 

3.3. Pathway enrichment analysis revealed the biological significance of 
the findings 

The multitude of DEGs in the transcriptome profiling datasets 
was implicated in hundreds of significant biologies/biological pro-
cesses as summarized in Fig. 2c. To gain further insight into the 
biological significance of the variations in gene expression and to 

attain a global picture of the molecular pathways possibly con-
tributing to HNSCC pathogenesis, pathway enrichment analyses 
were performed using the KEGG database. The resultant integrated 
network analysis revealed the top biological processes enriched in 
the analyzed datasets. The top GO pathway analyses for the DEGs are 
depicted in Fig. 2d. Notably, a significant percentage (∼5%) of the 
total DEGs in the analyzed datasets belonged to the pathways in-
volved in cancer progression (Fig. 2d). The DEGs showing significant 
changes among various groups were then selected, followed by the 
generation of heat maps to assess the clustering of gene expression 
profiles among the analyzed datasets (Fig. 2e). Fig. 2f further depicts 
the distribution of all the transcripts on the two dimensions of -log 
(P) and FC by way of volcano plots with differentially expressed 
transcripts highlighted in blue. 

In the A-D datasets, the DEGs belonged to a multitude of biolo-
gical processes thereby limiting the information that could be har-
nessed. Henceforth, to filter down the data to attain meaningful 
outcomes and fulfill the aim of extracting valuable leads, the 77 
elements/biological processes that were common in A-D datasets 
were selected using Venny 2.1.0 (http://bioinfogp.cnb.csic.es/ tools/) 
(Fig. 2g). These processes belonged to the various categories listed in 
Table ST2. Based on this knowledge, the common genes in these 77 
biological processes were further filtered down using the same ap-
proach (Fig. 2h). Consequently, 5 genes common in the A-D datasets 
were obtained namely death-associated protein 3 (DAP3), EH do-
main binding protein 1 (EHBP1), inositol hexakisphosphate kinase 2 
(IP6K2), runt related transcription factor 1 (RUNX1), and SMC5- 
SMC6 complex localization factor 2 (SLF2) as listed in Table ST3. It is 
worth mentioning here that these MK2-regulated genes portray 
essential roles in HNSCC pathogenesis [34–36]. Hence, further ex-
ploratory investigations of these putative molecular targets are 
deemed essential for elucidating their relevance in HNSCC man-
agement. 

3.4. Gene regulatory networks and pathways depicted the significance 
of the candidate genes in HNSCC pathogenesis 

Gene regulatory networks for the 5 common genes in A-D da-
tasets furnished a detailed overview of the various inter-network 
connections and the biological processes affected by them. 
Collectively, the results showed that DAP3 plays an intrinsic role in 
apoptosis and poly(A)-RNA binding while IP6K2 plays a role in ATP, 
nucleotide, and protein binding as confirmed in past reports [19]. 
These genes showed differential regulation in the in-vitro dataset (B 
vs A) hence, clearly signifying that MK2-knockdown, as well as the 
hypoxic tumor microenvironment, affects the genes and pathways 
via differential regulation, pointing to a central role of MK2 in 
transcriptional regulation of HNSCC. Interestingly, the in-vitro results 
published by our group recently [5] also pointed to the role of MK2 
in modulating the transcript stability of MK2-regulated genes. Si-
milarly, the xenograft dataset (F vs E) potentiated this finding 
(Fig. 3a, 3b). 

Furthermore, to retrieve the information about the MK2-regu-
lated candidate genes intrinsic to HNSCC pathogenesis, the data 
were narrowed down to include only processes that were involved in 
tumor progression for further analysis. This filtering down the da-
taset to 16 cancer-specific biological processes that were common in 
the A-D datasets (listed in Table ST4). In these 16 processes only 2 
genes, DAP3 and RUNX1, were found to be common based on the 
analysis performed using Venny 2.1.0 (Fig. 2i and Table ST5). Col-
lectively, these findings indicated that DAP3 and RUNX1 were dif-
ferentially expressed in the cell line-based datasets analyzed, hence, 
potentiating their intrinsic involvement in HNSCC pathogenesis and 
warranting further investigation. Notably, the 16 processes were 
found to be clustered in 5 major biological pathways (Fig. S7) in-
cluding apoptosis and transcription, thereby, clearly showing that 
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MK2 portrays an intrinsic role in the hypoxic tumor microenviron-
ment by regulating these processes, hence, substantiating the latest 
in vitro findings from our group [5]. 

Similarly, in comparing the mice bearing CAL27-MK2KD tumors 
with those bearing CAL27-MK2WT tumors (F vs E xenograft dataset), it 
was found that the DEGs were clustered in 14 biological processes 
relevant to tumor pathogenesis as listed in Table ST6. The genes in-
volved in these biological processes were assessed and Fig. 3b shows 

the gene regulatory network. This analysis provided certain MK2- 
regulated candidate genes, such as TRAF2 [35] (apoptosis); EPB41L1  
[36] (cytoskeleton); FOXO3, H2AFY, and YAP1 (transcriptional regula-
tion) [37–39]; and DIDO1 (RNA binding) [40] which are involved in key 
cellular processes in the xenograft model (Fig. 3b). These findings can 
be explored further to decipher the putative role of the potential 
candidate genes in HNSCC pathogenesis with the aim to define the 
probable therapeutic targets for HNSCC management. 

Fig. 3. Gene regulatory network of common genes. Figure depicting a detailed overview of the various interconnections and the significantly enriched biological processes 
affected by the 5 common genes (DAP3, EHBP1, IP6K2, RUNX1 SLF2). Network represented in 77 common elements in the datasets where MK2 knockdown is present; a) B vs A 
comparison of the transcriptome profiling of the in vitro HNSCC cell line model. b) Gene regulatory network depicting a detailed overview of the various interconnections and the 
significantly enriched biological processes affected by the DEGs in 14 cancer-specific biological processes in the transcriptome profiling of the in vivo heterotopic HNSCC xenograft 
dataset (F vs E comparison). The gene nodes are sized according to their p-values and colored according to their average log2 fold change, where red shows upregulation while 
green shows downregulation; processes are shown in rectangular boxes and colored in blue. 
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3.5. MK2 is the master of regulatory networks and functions by 
modulating transcript stability 

The prime objective of this study was to gather comprehensive 
information regarding the various MK2-regulated DEGs and 
pathways that render essential roles in HNSCC pathogenesis in 
normoxic and tumor core mimicking hypoxic conditions. 
Thereupon, keeping MK2 at the nexus of further analyses, this 
study focused on elucidating the regulation of the MK2 pathway 
and its downstream targets in the analyzed datasets. MK2 was 
found to be involved in the regulation of major biological pathways 
as shown in Figs. S7 and S8. Recent findings by our group have 
asserted that MK2 controls the transcript stability of critical genes 
involved in HNSCC pathogenesis via RBP-mediated regulation [41]. 
Hence, we further analyzed the transcriptomic data to decipher 
the role of MK2 in the regulation of mRNA stability. Interestingly, 
MK2 was found to accomplish this task through RBP-mediated 
regulation with HuR (ELAVL1) and TTP (ZFP36) playing intrinsic 
roles (Fig. 4a), thus, clearly affirming the hypothesis and corro-
borating previous findings [5]. The levels of expression of these 
RBPs and hence regulation varied in the analyzed datasets, 
thereby, clearly suggesting that the tumor microenvironment, in 
association with the presence/absence of MK2, plays an important 
role in HNSCC pathogenesis. 

Next, to attain a clear understanding of what was happening at 
the transcriptional level, the analysis was narrowed down by se-
lecting specific genes of the MK2 pathway. The genes were selected 
by literature mining of past MK2-centric studies and included those 
that were analyzed in our recent study [5]. Interestingly, the genes 
selected for this analysis, viz. AUF1, CEBPδ, CUGBP1, HuR, MK2, MKP- 
1, p27, p38, TNF-α, TTP, and VEGF, have been previously shown to be 
involved in several key cellular processes; reviewed in [4]. Elucida-
tion of the MAPK signaling cluster in detail indicated that in the 
background of MK2-knockdown in normoxia (B vs A dataset), TNF-α 
and VEGF tended to show downregulation (Fig. 4b), which is in 
complete consonance with previously published results. The ana-
lyzed genes were clustered into 6 major biological processes as 
shown (F vs E xenograft dataset) in Fig. 4c and Fig. S8. Collectively, 
the results of the transcriptomic analysis corroborated very well 
with previous findings, thereby, robustly verifying the hypothesis 
that MK2 is the master regulator of the transcript stability of genes 
critical to HNSCC pathogenesis. 

3.6. 3'-untranslated region (3'-UTR)-based filtering furnished 
information regarding important MK2-regulated downstream target 
genes 

In the present study, we focused on the role of MK2 and MK2- 
regulated genes in HNSCC pathogenesis. It is well known that MK2 
can potentially regulate the transcript stability of only those 
downstream targets that possess binding regions for RBPs in their 3'- 
UTRs [41]. Hence, the transcriptomic analysis was narrowed down to 
only those DEGs that harbored RBP-binding regions in their 3'-UTRs 
(Fig. 5), an approach that has lately been the cornerstone of many 
‘omics’ studies [42–44]. The DEGs were filtered based on the pre-
sence of adenylate-uridylate-rich elements (ARE)-regions in their 3'- 
UTRs where RBPs can potentially bind and modulate their function 
possibly via MK2-mediated regulation. To accomplish this task, the 
3'-UTR regions of all the DEGs were fetched using Ensembl (http:// 
www.ensembl.org/) [45]. Next, the domain sequences of RBPs were 
assessed using the catalog of inferred sequence binding preferences 
of the RBPs (CISBP-RNA) database [46]. Last, the transcripts that 
harbor RBP-specific regions in their 3'-UTRs were filtered out using 
the RBPmap v1.1 web tool (http://rbpmap.technion.ac.il/) (Fig. 5a)  
[47]. Once the probable MK2-downstream targets were identified 
(based on the aforementioned approach), the data were reassessed 

focusing on the 16 previously selected cancer-specific pathways in 
the in vitro HNSCC cell line model (A-D datasets) (Table ST4). The top 
2 upregulated and downregulated genes in this dataset were eval-
uated following 3'-UTR filtering which yielded 34 putative MK2- 
regulated genes as listed in Table ST7 (Fig. 5b). Similarly, the topmost 
upregulated and downregulated genes were analyzed in all the 
cancer-specific pathways for the in vivo heterotopic HNSCC xeno-
graft dataset (F vs E dataset) which provided 48 MK2-regulated 
genes that are listed in Table ST8 (Fig. 5c). Collectively, this 3'-UTR- 
specific filtering of the transcriptomic data brought into the lime-
light possible MK2-downstream target genes that could be integral 
in HNSCC pathogenesis. Furthermore, to cross-validate the findings 
of the transcriptomic profiling, these candidate genes along with the 
5 common genes in the 77 common elements in A-D datasets (listed 
in Table ST3) were used for further in vitro validation. H2AFY was 
common in the transcriptomic analysis for both the cell line and 
xenograft analysis (Table ST7 and ST8). Resultingly, a total of 86 
genes (Table ST9) (34 MK2-regulated genes and 5 common genes for 
the A-D datasets, 48 MK2-regulated genes in the F vs E dataset, and 
the common gene, H2AFY, were counted once) were selected for 
further experimental validation (Fig. 1). 

3.7. Highly efficient and precise detection of gene expression via 
nCounter gene expression assays potentiated transcriptomic outcomes 

Routinely, the findings of transcriptomic analyses are generally 
validated in an in vitro setting via gene expression analysis (em-
ploying RT-qPCR) using the same RNA sample to maintain homo-
geneity. In lieu of the high-throughput nature of the validation in 
this study, RT-qPCR analysis could have been very tedious and prone 
to numerous errors. Hence, as a viable and more pragmatic alter-
native, the latest and highly precise gene expression assay-based 
nCounter system approach (NanoString Technologies, Inc.) was 
employed to validate the outcomes of the transcriptome analysis in 
this study. To accomplish this, 90 specific custom-designed mole-
cular probes corresponding to the selected MK2-regulated candidate 
genes were procured to aid in the imaging and fast detection of 
multiple transcripts (90 in this study) in a single reaction with a 
high-fidelity rate (NanoString Technologies, Inc.). The gene set 
comprised 86 selected genes from the transcriptomic profiling as 
well as 4 HKGs (listed in Table ST9 and ST10, respectively). 4 com-
monly used reference genes, viz. ABCF1, GAPDH, POLR2A, and RPL19, 
were selected based on an extensive literature survey and because of 
their baseline expression in both HNSCC as well as in MK2-knock-
down conditions [48,49]. 

The assay was performed using the standard procedure as 
highlighted in Figs. S4 and S9 and detailed in the methods section. 
Briefly, the custom synthesized probes were hybridized to the target 
RNA samples followed by washing off the excess probes. Further, 
immobilization of the probe/RNA complexes on the nCounter car-
tridge was performed, and samples were run on the nCounter in-
strument followed by data retrieval (NanoString Technologies, Inc.). 
Some of these genes were differentially expressed in the analyzed 
datasets as indicated by the statistical analysis (p  <  0.05). Next, to 
make sense of the biological significance of changes in gene ex-
pression in the nCounter data, a KEGG pathway enrichment analysis 
was performed that revealed the top 5 biological processes (Fig. 6a 
and 6b). Furthermore, heat map analysis deciphered the clustering 
of the gene expression profiles among the various datasets (Fig. 6c). 
The results from the nCounter assays correlated with the tran-
scriptomic analysis (Tables 2, 3, and 4), hence substantiating the 
findings. 

Individually, the expression profile and variation in FC among the 
DEGs in the nCounter analysis in the in vitro CodeSet of 39 genes 
(Table ST3 and ST7) and the in vivo CodeSet of 48 genes (Table ST8) 
have been showcased via the heat-map representations in Fig. 6d, 
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respectively. The results depict the upregulated and downregulated 
DEGs in the nCounter assays and the results aligned with the tran-
scriptomic profiling with a high percentage of genes showing a 

similar pattern of expression and even matching FC values as shown 
in Tables 3 and 4. For the B vs A dataset, a total of 39 genes were 
analyzed, out of which 24 matched the transcriptomic analysis 

Fig. 4. Gene regulatory network of MK2. a) Representation of a gene regulatory network depicting the role of MK2 in the regulation of mRNA stability in the various datasets. 
The figure clearly demonstrates that MK2 regulates transcript stability via RBP-mediated regulation with HuR (ELAVL1) and TTP (ZFP36) playing an integral part. b), c) Gene 
regulatory network showing MAPK signaling cluster of the selected MK2 pathway genes (p38, MK2, AUF1, TTP, CUGBP1, CEBPδ, HuR, MKP-1, p27, TNF-α, and VEGF) in the 
transcriptome profiling data of the (b) in vitro HNSCC cell line dataset (B vs A, normoxic microenvironment) indicating VEGF and TNF-α downregulation. (c) In F vs E comparison, 
these genes which portray essential roles in the MK2 pathway are playing intrinsic roles in certain cellular pathways that are clustered into 6 major biological processes such as 
immune response, regulation of mRNA stability, regulations of cytokines, MAPK signaling, cell migration, and signaling pathways. The gene nodes are sized according to their p- 
values and colored according to their average log2 fold change, where red shows upregulation while green shows downregulation and yellow indicates baseline expression; 
processes are shown in rectangular boxes and colored in blue. 
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(61.6% matching score). The matched genes were then analyzed for 
FC and BRD2 was found to be the only upregulated gene (FC > 2), 
while CLK2 was the only downregulated gene (FC < 2). Similarly, a 
step-by-step comprehensive analysis of all the datasets was per-
formed and 12 DEGs that were common in the transcriptomic and 
nCounter analysis were revealed (the results are summarized in  
Table 2). Notably, these genes are key players in important processes 
such as apoptosis, cell cycle progression, and transcription regula-
tion, hence, potentiating their role as important MK2-regulated 
genes involved in HNSCC pathogenesis (Fig. 7d). Therefore, these 
results strengthen our recent findings that MK2 is critically im-
portant in regulating HNSCC and functions by modulating the 

transcript stability of crucial genes driving pathogenesis. Further-
more, detailed statistical analysis accentuated that the expression of 
only 7 (BMP7, CREB3L1, IGFBP2, MELK, MUC4, PRKAR2B, and 
ZNF662), out of the 12 candidate genes were significantly different 
among the datasets (FC > 2 or < −2, p  <  0.05) (Tables 2, 3, and 4). 
MELK was the only gene belonging to the C vs A dataset (cell line 
comparison) while the other 6 genes were from the F vs E dataset 
(xenograft comparison). Moving forward, these 6 genes (BMP7, 
CREB3L1, IGFBP2, MUC4, PRKAR2B, and ZNF662) were analyzed in 
vitro by IHC and RT-qPCR analyses to ascertain the transcriptomic 
and nCounter findings in an experimental HNSCC xenograft 
model (Fig. 7). 

Fig. 5. 3'-UTR based filtering. Figure represents 3'-UTR based filtering of cancer-specific biological processes from a cell line (16 processes) and xenograft tumor (54 processes) 
datasets to identify MK2-regulated transcripts that harbor RBP specific regions in their 3'-UTRs. a) Schematic representation of the applied workplan. b) and c) Regulatory 
network of MK2-regulated genes harboring RBP specific regions in their 3'-UTRs; b) total 34 in the B vs A, D vs C, D vs B and C vs A datasets, and c) total 48 in the F vs E datasets. 
The gene nodes are sized according to their p-values and colored according to their average log2 fold change, where red shows upregulation while green shows downregulation 
and yellow indicates baseline expression; processes are shown in rectangular boxes and colored in blue. 
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Fig. 6. Data validation through nCounter gene expression assay. Pie chart representation of the top five gene ontologies and pathway summaries based on all the DEGs in the 
various analyzed datasets used for the nCounter gene expression assay for a) in vitro HNSCC cell line model (A-D datasets) and b) in vivo heterotopic HNSCC xenograft model (F vs 
E dataset). c) Representative nonhierarchical heatmap representation depicting the expression profile and variation in average log2 FC among the DEGs considering the complete 
CodeSet of 86 genes post-3’-UTR filtering and d) the individual CodeSet of 39 selected genes for the in vitro HNSCC cell line model (A-D datasets) and 48 selected genes for the in 
vivo heterotopic HNSCC xenograft dataset post-3’UTR-filtering. The various analyzed datasets used for expression profiling are labeled on the top: in vitro HNSCC cell line model 
(A-D datasets) where Lane 1-KDH is Dataset D (CAL27-MK2KD cells in Hypoxia); Lane 2-NH is Dataset C (CAL27-MK2WT cells in Hypoxia); Lane 5-KDN is Dataset B (CAL27-MK2KD 

cells in Normoxia); Lane 6-NN is Dataset A (CAL27-MK2WT cells in Normoxia), and in vivo heterotopic HNSCC xenograft dataset where Lane 3-KDX is CAL27-MK2KD cells grafted (F 
dataset) and Lane 4-NX is CAL27-MK2WT cells grafted (E dataset). Distinct clusters of upregulated and downregulated genes are visible in each combination. The color bar 
represents the expression values with green representing the upregulation and red representing the downregulation expression levels. 
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Table 2 
Summary of the comparison.       

Combination No. of genes 
analyzed 

No. and % of genes matching  
with transcriptome analysis 

Upregulated genes Downregulated genes  

B vs A  39 24 (61.6%) 1 (BRD2) 1 (CLK2) 
D vs C  39 17 (43.6%) - - 
D vs B  39 19 (48.7%) - 1 (SAMD4B) 
C vs A  39 20 (51.3%) - 2 (H2AFY, MELK*) 
F vs E  48 26 (54.2%) 5 (BMP7*, CREB3L1*, IGFBP2*, MUC4*, 

PRKAR2B*) 
2 (CDSN, ZNF662*) 

Tabular representation of the summary of the comparison between the data obtained from transcriptome profiling and nCounter gene expression assay analysis for all the 
experimental datasets. Here, only 7 (shown by asterisk ‘*’ and highlighted in bold), out of the 12 candidate genes were significantly different among the datasets (FC > 2 or < −2, 
p  <  0.05) and taken further for validations.  

Table 3 
List of 39 genes from in-vitro model.   

Tabular representation of the list of 39 genes in in vitro HNSCC cell line model (C vs A dataset) showing the match of the average log2 fold change 
values in the last two columns in both transcriptome profiling and the nCounter gene expression assay (NanoString gene expression assay). The 
average log2 fold change values are colored according to gene expression changes (red indicates upregulation while green indicates down-
regulation). The gene highlighted in bold is the matched candidate DEG that shows a statistically significant change in expression.  
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Table 4 
List of 48 genes from in-vivo xenograft model.   

Tabular representation of the list of 48 genes in the in vivo heterotopic HNSCC xenograft experimental dataset (F vs E dataset) showing the match 
of the average log2 fold change values in the last two columns in both transcriptome profiling and the nCounter gene expression assay 
(NanoString gene expression assay). The average log2 fold change values are colored according to gene expression changes (red indicates up-
regulation while green indicates downregulation). The 6 candidate genes highlighted in bold are the matched candidate DEGs that show a 
statistically significant change in expression.  
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Fig. 7. Data Validation through Immunohistochemistry and transcript turnover study a) Representation of the in-situ protein expression levels of the three candidate MK2- 
regulated genes (IGFBP2, MUC4, PRKAR2B) in HNSCC xenografted mice tumor sections by immunohistochemical analysis. Different color bars represent the expression values in 
terms of mean score, the blue bar represents the expression level in CAL27-MK2WT tissue sections (Dataset E), and the red bar signifies In-situ protein expression in CAL27-MK2KD 

tissue sections (Dataset F). Parametric Welch t-test was used to evaluate the statistical significance using GraphPad Prism 7.0 software, * * denotes p  <  0.01; n = 5 field views for 
IHC analysis. b) Western blot depicting MK2 expression in CAL27-MK2KD cells generated post MK2 knockdown using shRNA for transcript stability experiment, here, SC- 
Scrambled control; shMix- A combination of an equal quantity of MK2 targeting shRNA complexes 1, 2, 3, and 4; the shMix group was used for transcript stability experiments, 
and SC was used as a control. c) Gene expression patterns of the 3 candidate genes in CAL27-MK2KD cells at different time points post-Act-D treatment to assess the role of MK2 in 
regulating transcript stability. Data points represent the fold change in the shMix group at a particular time interval as compared to the control group (n = 3). Linear regression 
analysis was performed using GraphPad Prism 7.0 software. d) Pictorial representation of the MAPK pathway analyzed in this study, the illustration depicts the activation of MK2 
and the plausible mode of action in HNSCC pathogenesis. Figure elucidates the final MK2-regulated putative candidate genes in the pathway that were obtained in this study 
which could be further explored as possible targets for HNSCC management. 
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3.8. Immunohistochemical and RT-qPCR analyses indicated the putative 
role of MK2-regulated candidate genes in HNSCC pathogenesis 

IHC and RT-qPCR were performed to probe the role of the 6 
candidate genes in HNSCC pathogenesis and further accentuate the 
consonance among the transcriptomic and nCounter data analyses. 
Sections from the xenograft tumor tissues were analyzed using IHC 
to evaluate the protein expression pattern of the 6 candidate genes 
(BMP7, CREB3L1, IGFBP2, MUC4, PRKAR2B, and ZNF662) (Fig. 7a). 
The results revealed that xenograft tumor sections with an un-
regulated expression of these genes have cellular pleomorphism, 
mitotic figures, and formation of nests of tumor cells, thus, clearly 
indicating the aggressiveness of HNSCC neoplasms. The results ob-
tained from the IHC analysis largely strengthened the findings of the 
transcriptomic and nCounter analyses. Out of the 6 candidate genes, 
in situ protein expression levels of MK2-regulated candidate genes 
IGFBP2, MUC4, and PRKAR2B were found to be upregulated in the 
tumor xenografts created using CAL27-MK2KD cells as compared to 
CAL27-MK2WT cells and corroborated with the transcriptome and 
nCounter analyses (Fig. 7a). There was no substantial change in the 
protein expression levels of the 3 other analyzed genes BMP7, 
CREB3L1, and ZNF662. 

Additionally, to examine the role of MK2 in governing the tran-
script stability of these genes, RT-qPCR analysis was performed in 
MK2-knockdown cells. CAL27 cells were treated with the shRNA 
complex to generate CAL27-MK2KD cells as previously described [5] 
and shown in Fig. 7b. Post-knockdown, CAL27-MK2KD, and CAL27- 
MK2WT (scrambled control transfected cells) were treated with Act- 
D (1 µM) to halt de novo transcription. RT-qPCR was carried out post- 
Act-D treatments at 6 different time points (0, 0.5, 1, 2, 4, and 8 h) to 
determine the transcript expression levels and stability. Transcript 
levels were compared for each time point between the WT and KD 
group. The results revealed that the transcript expression of IGFBP2, 
MUC4, and PRKAR2B exhibited time-dependent transcriptional 
decay in CAL27-MK2KD cells as compared to CAL27-MK2WT cells 
(Fig. 7c). The IGFBP2 transcript level was 0.99-fold in CAL27-MK2KD 

cells which was equivalent to that in CAL27-MK2WT cells (t = 0), 
while the PRKAR2B transcript level was 1.2-fold higher in CAL27- 
MK2KD cells as compared to CAL27-MK2WT cells (t = 0). The expres-
sion levels of these genes were stabilized for 1 h for IGFBP2 and 2 h 
for PRKAR2B post-Act-D treatment but gradually showed a sub-
stantial reduction to less than half the levels (t = 4 and t = 8) in 
CAL27-MK2KD cells compared to CAL27-MK2WT cells (Fig. 7c). This 
timeframe of stability may provide sufficient opportunity for the 
transcript to be expressed and upregulated at the protein level, 
which was observed in the IHC analysis of the tumor sections 
(Fig. 7c). This suggested that the regulation could be at the transcript 
level and not at the protein level. However, the MUC4 transcript level 
was 16-fold lower in CAL27-MK2KD cells as compared to CAL27- 
MK2WT cells (t = 0) but remained stable until 1 h (t = 1) post-Act-D 
treatment and decreased substantially (> 50%) afterward (t = 4) 
(Fig. 7c). Taken together, the transcripts of all the 3 genes were de-
graded in MK2-knockdown cells after maintaining stable transcript 
levels for a few hours. This finding indicates a strong association of 
these genes with the expression profile of MK2 in the cells. Con-
clusively, the results suggested that the expression levels of IGFBP2, 
MUC4, and PRKAR2B are strongly affected by MK2 expression in 
HNSCC cells and tumors. 

4. Discussion 

To improve the understanding of convoluted biology and 
leverage the outcomes to optimize the management of HNSCC, there 
have been many efforts to characterize its pathology at the transcript 
level. Methodological breakthroughs in the recent past have re-
volutionized the area of transcriptome profiling by providing a link 

between molecular mechanisms and cellular phenotypes [23,50]. 
However, cellular models that can comprehensively characterize 
HNSCC in the backdrop of any gene are still lacking, hence, trans-
lationally relevant gene-centric transcriptome profiling underlying 
the basis of HNSCC pathogenesis will prove to be a powerful tool for 
future preclinical research endeavors [51,52]. Many established 
methods help in the detection of DEGs for both microarray-based 
approaches and RNA-seq [53,54]. A typical transcriptome profiling 
result is generally a never-ending list comprising thousands of DEGs, 
hence, it has always been very difficult to interpret this data without 
additional filtering via functional annotations. A large variety of 
methods are available for the analysis of DEGs and for obtaining a 
critical understanding of the pathways, gene regulatory, and co-ex-
pression networks involved [55,56]. In the present study, we un-
dertook the challenge of thoroughly dissecting the huge complexity 
and large heterogeneity in HNSCC to discern novel biomarkers and 
potential therapeutic targets. 

Keeping in mind the critical findings from previous studies, we 
performed transcriptome profiling of both the in vitro cell line as well 
as in vivo xenograft tumor samples that resulted in ∼13000 DEGs. 
These genes were segregated based on their clustering in various bio-
logical processes (Table ST2, ST4, and ST6). In line with the primary 
goal, the processes were filtered based on relevance in cancer leading 
us to 5 overlapping DEGs in the cell line datasets (A-D), viz. DAP3, 
EHBP, IP6K2, RUNX1, and SLF2, as listed in Table ST3. EHBP is encoded 
by the EHBP1 gene, and this protein has been shown to portray a role in 
actin reorganization and endocytic trafficking [57]. Polymorphism in 
this gene at the single nucleotide level has been reported to cause 
prostate cancer [58]. SLF2 is a DNA damage response pathway gene that 
functions by regulating genomic stability by post-replication repair of 
damaged DNA [59]. DAP3 has been shown to mediate interferon (IFN)-γ 
induced cell death in addition to its role in organelle biogenesis as well 
as maintenance and mitochondrial translation [60,61]. DAP3 has been 
characterized by its pro-apoptotic function as a prognostic factor in 
gastric cancer and found to be associated with cancer progression [62]. 
The protein encoded by the IP6K2 gene has been shown to affect 
growth suppression and apoptotic action of IFN-β in the physiologic 
regulation of apoptosis in ovarian cancers with its deletion leading to 
HNSCC predisposition [63]. Lastly, the protein encoded by RUNX1 is 
involved in the activation of EMT via the Wnt/β-catenin pathway and 
the promotion of metastasis in colon cancer [64]. Further, it has been 
reported that RUNX1 depletion in human HNSCC cells causes growth 
arrest [65]. Collectively, it is quite evident that all these MK2-regulated 
genes are playing a vital role in tumor pathogenesis, hence showing 
consistency with our previous finding of their involvement in HNSCC 
pathogenesis. 

Similarly, a gene regulatory network was generated that depicted 
a detailed overview of the various inter-connections and the sig-
nificantly enriched biological processes affected by the DEGs in the 
14 cancer-specific biological processes in the transcriptome profiling 
of the in vivo heterotopic HNSCC xenograft dataset (F vs E compar-
ison). TRAF2 has been reported to have a role in the activation of the 
NF-kappa-B and JNK pathways [35]. EPB41L1 has been shown to 
have a high prognostic significance and is involved in cell adhesion 
and migration [36]. FOXO3 is a transcriptional activator known to 
regulate apoptosis and autophagy in various tumors [37]. H2AFY has 
been shown to be associated with lipid metabolism and poor 
prognosis in liver cancer [38]. YAP1 is an important candidate gene 
of the hippo signaling and has shown to be involved in EMT, immune 
suppression, and radiation resistance [39]. DIDO1 is a putative 
transcription factor and has been reported to have weak pro-apop-
totic activities [40] (Fig. 3b). In lieu of the above arguments and 
considering the role of the MK2-regulated candidate genes in the 
experimental analysis, their further exploration as candidates for the 
development of novel biomarkers and utilization as potential ther-
apeutic targets in HNSCC management is warranted. 
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Additionally, gene regulatory networks in transcriptome profiling 
provided information on the various biological processes regulated 
by these candidate genes. This study supplied a wealth of informa-
tion that can be further explored to study the pathogenesis of HNSCC 
in detail, especially in the background of MK2-knockdown and a 
varied tumor microenvironment (normoxia/hypoxia). Fig. 4a is the 
representation of a gene regulatory network depicting the role of 
MK2 in the regulation of mRNA stability in the various datasets 
analyzed and demonstrates that MK2 regulates transcript stability 
via RBP-mediated regulation with HuR (ELAVL1) and TTP (ZFP36) 
playing integral roles. Similarly, Fig. 4b portrays the regulatory 
network that represents the MAPK signaling cluster of the selected 
MK2 pathway genes (AUF1, CEBPδ, CUGBP1, HuR, MK2, MKP-1, p27, 
p38, TNF-α, TTP, and VEGF) in the transcriptome profiling data of the 
in vitro HNSCC cell line dataset (B vs A, normoxic microenvironment) 
indicated TNF-α and VEGF downregulation. Interestingly, the tran-
scriptomic profiling results are in complete consonance with our 
recently published findings and hence succeed in potentiating and 
validating the hypothesis that MK2-knockdown destabilized TNF-α 
and VEGF in normoxia via RBP-mediated interactions [5,66–72]. 

Transcriptome analysis techniques are commonly utilized in 
endeavors to decipher various molecular mechanisms of tumor-
igenesis and to fetch out novel prognostic and therapeutic markers  
[22,23,26]. In this study, we aimed to assess the MK2-regulated 
candidate genes playing prominent roles in HNSCC pathogenesis. 
Using the 3'-UTR-based filtering criterion detailed before, 34 genes 
in the in vitro A-D datasets and 48 genes in the xenograft dataset 
(listed in Table ST7 and ST8) were identified. Further validation using 
the nCounter gene expression assay system enabled the digital 
quantification and single-molecule imaging of multiple target RNA 
molecules using multicolor molecular barcodes (Figs. S4 and S9). 
This system provides discrete and accurate counts of RNA transcripts 
at a high level of sensitivity and precision [33]. The gene expression 
assays are independent of any enzymatic reactions or amplification 
protocols and have no reliance on the degree of fluorescence in-
tensity to determine target abundance. As a result of these char-
acteristics, and the highly automated nature of barcoded sample 
processing, these assays result in highly accurate and reproducible 
outcomes. On average, approximately 52% matching score of tran-
scriptome profiling data was obtained with nCounter gene expres-
sion assay-based validation which is considered a good percentage 
match considering the high-throughput nature of the analysis and 
the various datasets analyzed. Filtering of the DEGs in the matched 
data revealed a list of 12 genes (6 upregulated and 6 downregulated 
in the various analyzed datasets) that were common in the com-
prehensive nCounter system-based validation of transcriptomic 
profiling (Table 4). Intriguingly, these genes portray crucial roles in 
processes such as apoptosis (CLK2, MELK, MUC4), cell cycle regula-
tion (CLK2, MELK), and transcription regulation (BRD2, H2AFY, 
SAMD4B, ZNF662). 

Six candidate genes (BMP7, CREB3L1, IGFBP2, MUC4, PRKAR2B, 
and ZNF662) showed statistically significant up/downregulation in 
the xenograft dataset. Insulin-like Growth Factor Binding Protein 2 
(IGFBP2) has been shown to be a growth promoter gene in several 
tumors and is considered a central hub of the oncogenic signaling 
network governing transcriptional regulation and promoting epi-
thelial to mesenchymal transition, invasion, angiogenesis, and me-
tastasis [73] Recently, IGFBP2 has been reported to be a crucial 
modulator of metastasis in oral cancer as well [74]. Mucin 4 (MUC4) 
serves as a major constituent of mucus secreted by epithelial cells 
and is found overexpressed in a variety of cancers such as papillary 
thyroid carcinomas. It is known for promoting tumor growth, pro-
liferation, and migration [75,76]. Recent insights have been made 
into the transcriptional regulation of protein kinase cAMP-depen-
dent type II regulatory subunit beta (PRKAR2B) by miRNAs and X- 
box binding protein 1 leading to a better understanding of PRKAR2B- 

driven prostate cancer progression [77]. PRKAR2B has been reported 
to be involved in the activation of Wnt/β‐catenin along with trig-
gering epithelial to mesenchymal transition leading to metastasis in 
tumors [78]. Consistent with our findings, these genes have been 
suggested to be prognostic indicators and therapeutic targets in 
various cancers including HNSCC [78–81]. 

The protein expression pattern of the 6 candidate genes was 
further analyzed in tumor sections from xenografted animals. IHC 
analysis revealed that IGFBP2, MUC4, and PRKAR2B were upregu-
lated and prominently expressed in the cytoplasm and stroma of the 
tumors generated using CAL27-MK2KD cells (Fig. 7a). The expression 
levels of the other 3 genes were not significantly different among the 
samples. The IHC results were in consonance with the sequencing 
data, hence, confirming that these genes display differential ex-
pression patterns between CAL27-MKWT and CAL27-MK2KD sections. 

These genes are widely considered imperative to processes such as 
cell cycle progression, apoptosis, and transcriptional regulation. 
Various studies have reported their role as central hubs for cellular 
signaling during oncogenesis and modulating key cellular processes 
such as apoptosis, cell cycle progression, epithelial-mesenchymal 
transition, and metastasis [74–78]. Additionally, fewer studies have 
also reported the contrasting role of these genes in oncogenesis, 
which is influenced by various factors such as mutation and effects 
of other genes on the regulation of gene or protein expression of 
these three genes [82,83]. 

Furthermore, RT-qPCR analysis was performed to quantify of 
transcript expression and behavior of these genes in vitro under 
MKWT and MK2KD conditions. CAL27-MK2KD cells were treated with 
Act-D for different time points and mRNA transcript levels of IGFBP2, 
MUC4, and PRKAR2B were evaluated using transcript expression and 
stability analysis through RT-qPCR. It was observed that the stability 
of IGFBP2, PRKAR2B, and MUC4 transcripts decreased temporally in 
CAL27-MK2KD cells as compared to the CAL27-MK2WT cells. At t = 0, 
the transcript level of IGFBP2 was at the basal level, MUC4 was 
downregulated while PRKAR2B was upregulated in CAL27-MK2KD 

cells post-Act-D treatment. Furthermore, this decay increased sig-
nificantly at t = 1 for IGFBP2 and MUC4 and at t = 2 for PRKAR2B 
(Fig. 7c). The initial stability of transcripts could account for the 
upregulated protein expression observed in tumor sections of 
CAL27-MK2KD xenografted mice as assessed by IHC (Fig. 7a). This 
finding also indicates a strong dependence of IGFBP2, MUC4, and 
PRKAR2B on MK2-mediated regulation via the RBP-activation/de-
activation mechanism. Since these genes have previously been re-
ported to be differentially expressed in tumor conditions, the 
present study substantiated the hypothesis suggesting the central 
role of MK2 in this molecular crosstalk of these genes. Additionally, 
these genes are involved in a multitude of cellular processes such as 
the cell cycle, apoptosis, transcription, invasion, and metastasis. The 
contrasting gene and protein expression levels can be attributed to 
their regulation either at the transcriptional level or via post-trans-
lational modifications. This specific scientific question strongly 
warrants attention and future studies to delve deeper into the role of 
MK2-mediated activation and deactivation of RBPs that are involved 
in the transcript stability of these genes. Overall, the results obtained 
from IHC, and transcript stability analysis indicated the crucial role 
of MK2 in the modulation of the expression pattern of these genes in 
HNSCC tumors and cells. Finally, these findings clearly potentiate the 
importance of these MK2-regulated candidate genes in HNSCC pa-
thogenesis. 

Conclusively, the results suggested an observed dependence of 
these candidate genes on MK2 for their transcription in HNSCC cells 
and xenograft tumors. It is worth mentioning that all these genes are 
MK2-regulated and potentially play specific roles in HNSCC patho-
genesis and progression. This suggests that they could potentially be 
used as putative candidates for further investigations regarding the 
design of molecular markers and therapeutics for HNSCC 
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management. Hence, transcriptomic analysis followed by nCounter 
assay-based primary validation, followed by IHC and transcript sta-
bility-based secondary validation has provided valuable findings 
that can aid in extending these observations in future HNSCC-tar-
geted clinical and therapeutic exploratory research. 

5. Conclusions 

In conclusion, the present study substantiates the involvement of 
MK2 as a critically important factor in regulating HNSCC by mod-
ulating the transcript stability of downstream genes involved in 
pathogenesis. The probable mechanism of action is via RBP-medi-
ated regulation and these results are in perfect consonance and 
augmentation with recent findings [5]. Comprehensively, few crucial 
MK2-regulated candidate genes were identified in this study, and 
their plausible involvement in HNSCC pathogenesis was elucidated, 
which could have further exploratory value as putative targets in 
HNSCC treatment and management (Fig. 7). This study has made it 
possible to filter down from ∼13000 DEGs to a few potential can-
didate genes using comprehensive transcriptomic and in vitro vali-
dation approaches. To delve deeper into the clinical insights of these 
findings highlighting the role of MK2-mediated changes in HNSCC 
pathogenesis, the role of these 3 potential therapeutic targets war-
rants further detailed investigations for diagnostic and therapeutic 
interventions of HNSCC. 
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