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Epiphytic bacteria on the surfaces of submerged macrophytes play important roles in the 
growth of the host plant, nutrient cycling, and the conversion of pollutants in aquatic 
systems. A knowledge of the epiphytic bacterial community structure could help us to 
understand these roles. In this study, the abundance, diversity, and functions of the 
epiphytic bacterial community of Myriophyllum spicatum collected from Baiyangdian Lake 
in June, August, and October 2019 were studied using quantitative PCR (qPCR), high-
throughput sequencing, and the prediction of functions. An analysis using qPCR showed 
that the epiphytic bacteria were the most abundant in October and the least abundant in 
August. High-throughput sequencing revealed that Proteobacteria, Gammaproteobacteria, 
and Aeromonas were the dominant phylum, class, and genus in all the samples. The 
common analyses of operational taxonomic units (OTUs), NMDS, and LDA showed that 
the epiphytic bacterial communities were clustered together based on the seasons. The 
results of a canonical correlation analysis (CCA) showed that the key water quality index 
that affected the changes of epiphytic bacterial community of M. spicatum was the total 
phosphorus (TP). The changes in abundance of Gammaproteobacteria negatively 
correlated with the TP. Predictive results from FAPROTAX showed that the predominant 
biogeochemical cycle functions of the epiphytic bacterial community were 
chemoheterotrophy, nitrate reduction, and fermentation. These results suggest that the 
epiphytic bacterial community of M. spicatum from Baiyangdian Lake varies substantially 
with the seasons and environmental conditions.
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INTRODUCTION

Submerged macrophytes play important roles in the stability of structure and function of 
shallow lakes (Engel, 1998; Jeppesen et  al., 1998; Han et  al., 2018; Ersoy et  al., 2020). The 
vast surfaces of leaves of submerged macrophytes provide extremely diverse habitats for the 
microorganisms in lakes. In an aquatic ecosystem, a large number of epiphytic bacteria can 
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live on the surface of submerged macrophytes (He et al., 2014). 
The abundant epiphytic bacteria have an important influence 
on the physiological states and ecological processes of submerged 
macrophytes (Eriksson and Weisner, 1996).

The epiphytic bacteria of submerged macrophytes have 
abundant biodiversity and functional diversity. Actinobacteria, 
Cyanobacteria, Bacteroidetes, Proteobacteria, Verrucomicrobia, 
Acidobacteria, Planctomycetes, and Firmicutes have been found 
to be the abundant epiphytic bacteria on submerged macrophytes 
(Crump and Koch, 2008; He et  al., 2012, 2014). The epiphytic 
bacteria play important roles in nutrient cycles, including the 
carbon cycle, denitrification, absorption and release of phosphorus, 
degradation of organic matter, and adsorption of heavy metals 
among other things in lake ecosystems (Eriksson and Weisner, 
1996; Kousuke et  al., 2017; González et  al., 2018). Different 
methods have been utilized to conduct research on the epiphytic 
bacterial communities of submerged macrophytes. Chand et  al. 
(1992) used a culture dependent analysis to study species of 
Acinetobacter, Cytophaga, Flavobacterium, Moraxella, Pseudomonas 
and/or Alcaligenes, and Vibrio/Aeromonas in the epiphytic bacterial 
communities of Eurasian watermilfoil (Myriophyllum spicatum L.). 
He et al. (2012) confirmed that the epiphytic bacterial communities 
of Vallisneria natans and Hydrilla verticillata appeared to 
be diverse and host-specific using terminal restriction fragment 
length polymorphism and analyses of clone library. The structures 
of epiphytic bacterial communities on M. spicatum and 
Potamogeton perfoliatus were compared using denaturing gradient 
gel electrophoresis and fluorescence in situ hybridization. The 
results indicated that the Cytophaga-Flavobacter-Bacteroidetes 
group, Alphaproteobacteria, and Betaproteobacteria were abundant 
(Hempel et al., 2009). Currently, 16S rRNA gene high-throughput 
sequencing is the routine method used to study the epiphytic 
bacterial communities of submerged macrophytes, such as 
Myriophyllum verticillatum, H. verticillata, V. natans, M. spicatum, 
P. malaianus, P. lucens, among others (Han et  al., 2019; Liu 
et  al., 2019, 2020; Yan et  al., 2019; He et  al., 2020). Previous 
studies suggested that several factors, such as the plant species, 
water environment, sampling sites and growing season, affected 
the composition of the epiphytic bacterial community on 
submerged macrophytes (Hempel et  al., 2009; Cai et  al., 2013; 
He et al., 2020). Myriophyllum spicatum is a common submerged 
macrophyte that is widely distributed, has a high rate of survival, 
and strong resistance to pollution. Hempel et  al. (2009) and 
Liu et  al. (2019) reported the diversity and structure of the 
epiphytic bacterial community on M. spicatum. However, very 
few studies have compared the community composition of the 
epiphytic bacteria during the growing seasons of M. spicatum.

As the largest shallow lake dominated by aquatic macrophytes 
in north China, Baiyangdian Lake has ecological functions, 
such as sustaining agriculture, regulating climate, and maintaining 
the ecological balance. This lake played an important role in 
the construction of an ecological city in the Xiongan New 
District. Myriophyllum spicatum is a native submerged macrophyte 
in Baiyangdian Lake (Yang et  al., 2020). The goal of this study 
was to evaluate the composition and function of the epiphytic 
bacterial community of M. spicatum in Baiyangdian Lake along 
with the relationships with growing seasons of M. spicatum 

and environmental factors using quantitative PCR (qPCR), 16S 
rRNA gene high-throughput sequencing and functional predictive 
analyses. Revealing the community structure and functions 
would not only enrich the knowledge of their biological diversity 
but also provide a better understanding of the role of submerged 
macrophytes in the ecological restoration of lakes.

MATERIALS AND METHODS

Sample Collection
The leaves and stems of M. spicatum were collected from seven 
sampling sites that were 15–30 cm below the surface of water, 
including H1–H3  in Shihoudian Lake (38°50'19''N-38°50'53''N, 
115°59'9''E-115°59'33''E) and S1-S4  in Damaidian Lake 
(38°50'39''N-38°51'4''N, 116°0'32''E-116°3'54''E) in Baiyangdian 
Lake, China, in June, August, and October 2019 (Figure  1). 
Myriophyllum spicatum was collected only in June at the sampling 
site H1. However, this species was collected in June and August 
at the sampling site H2. The macrophytes were collected at 
different growing seasons, including the early (June), middle 
(August), and late (October) stages of life. Three individuals of 
M. spicatum were collected at one sampling site, and all the 
samples were kept in iceboxes and transported to the laboratory 
within 1 h after collection. Water samples from the same sampling 
sites of M. spicatum were collected using polyethylene bottles. 
Temperature (T), pH, and dissolved oxygen (DO) were measured 
in situ using a portable water quality analyzer YSI Proplus (YSI 
Inc., United  States), whereas the total nitrogen (TN), ammonia 
nitrogen (NH4

+-N), and total phosphorous (TP) were measured 
in the lab using the molybdenum blue spectrophotometric method, 
as described in the Chinese standards HJ636-2012, HJ535-2009, 
and GB 11893-89, respectively.1

1 http://www.mee.gov.cn/

FIGURE 1 | Map of the sampling sites in Baiyangdian Lake.
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DNA Extraction, PCR, and Sequencing
The epiphytic bacteria on the leaves of M. spicatum were 
detached using an ultrasonic bath method. The leaves on three 
individuals in one sampling site were mixed with the samples 
of equal quality and then rinsed once with sterile phosphate-
buffered saline (PBS), and the water was soaked with sterile 
filter papers to remove free bacteria. Three gram of processed 
leaves were immediately incubated in 60 ml of sterile PBS (pH 
7.4, 0.01 M) in a sterile 100 ml polyethylene bottle and 
subsequently subjected to ultrasonic treatment for 4 min, vortexed 
for 30 s, and subjected to ultrasonic treatment again for 4 min. 
The suspension was then filtered through 0.22-μm membrane 
filters (Millipore Ireland Ltd., Ireland) to collect epiphytic 
bacteria. The total genomic DNA of the epiphytic bacteria 
was extracted using a DNeasy® PowerSoil® Kit (MOBIO, 
United  States) according to the manufacturer’s instructions. 
The quality and quantity of the DNA were evaluated in 0.8% 
agarose gels and a NanoDrop 2000 UV–Vis spectrophotometer 
(Thermo Scientific, United  States).

The DNA of each sample was divided into three parts on 
average as replicates, and sequenced by Beijing Novogene Co., 
Ltd. (China). The V4 hypervariable regions of the bacteria 16S 
rRNA gene were amplified using the primers 515F (5'-GTG 
CCAGCMGCCGCGG-3') and 806R (5'-GGACTACHVGGG 
TWTC TAAT-3'; Caporaso et  al., 2011) with a barcode. The 
PCR reactions were performed with 15 μl of Phusion® High-
Fidelity PCR Master Mix (New England Biolabs, United  States), 
0.2 μM of forward and reverse primers, and approximately 10 ng 
of template DNA. Thermal cycling consisted of initial denaturation 
at 98°C for 1 min, followed by 30 cycles of denaturation at 98°C 
for 10 s, annealing at 50°C for 30 s, and elongation at 72°C for 
30 s. Finally, the reactions were incubated at 72°C for 5 min. 
Triplicate amplifications from each sample were mixed to prepare 
the sequencing library. The libraries were generated using a TruSeq® 
DNA PCR-Free Sample Preparation Kit (Illumina, United  States) 
following the manufacturer’s instructions and sequenced on an 
Illumina NovaSeq6000 platform (Beijing Novogene Co., Ltd., China).

Quantitative PCR
The abundance of total epiphytic bacteria of M. spicatum in 
each sample was measured by qPCR using the primer set 
338F (ACTCCTACGGGAGGCAG)/518R (ATTACCGCGGCT 
GCTGG). Triplicate amplifications were conducted for each 
sample in a 10 μl reaction system that contained 5 μl of Super 
Eva Green Master Mix (2×), 0.5 μl of each primer (10 μM), 
and 1 μl of template DNA. The amplification steps consisted 
of an initial denaturation step at 95°C for 5 min, 45 cycles of 
95°C for 15 s, 54°C for 30 s, and 72°C for 20 s. Standard curves 
were obtained through the use of 10-fold serially diluted linear 
plasmids that contained a single copy of the 16S rRNA gene 
fragments of the epiphytic bacteria of M. spicatum. The 
amplification efficiency was 0.95.

Data Processing and Statistical Analyses
Statistical differences between environmental factors were 
evaluated using SPSS 17.0 for Windows (SPSS Inc., Chicago, 

IL, United States). Paired-end reads were merged using FLASH 
(V1.2.7; Magoč and Salzberg, 2011),2 and the spliced sequences 
were then demultiplexed and quality-filtered using QIIMEE 
(V1.9.1; Caporaso et al., 2010). The sequences were compared 
with the reference database (Silva database V.138)3 using a 
UCHIME algorithm (Edgar et  al., 2011; Quast et  al., 2013) 
to detect chimeric sequences, and the chimeric sequences 
were removed (Haas et  al., 2011). Operational taxonomic 
units (OTUs) were clustered with a 97% sequence similarity 
cutoff using UPARSE (Edgar, 2013). The taxonomy of the 
OTUs was assigned against the SILVA database based on 
the Mothur algorithm to annotate taxonomic information. 
The rarefied sequences were calculated for Good’s coverage 
and alpha diversity indices in QIIME and displayed with R 
software (Version 2.15.3). For beta diversity, a nonmetric 
multidimensional scaling analysis (NMDS) and the ANOSIM 
test were performed based on Bray-Curtis dissimilarities using 
the “vegan” package in R. A linear discriminant analysis 
(LDA) effect size (LEfSe) was generated from Python (version 
2.7) to estimate which microbiome attributes differed 
significantly between the two types of communities. The 
differences were evaluated via Kruskal-Wallis and Wilcoxon 
rank-sum testing with an alpha value of 0.05 for the factorial 
Kruskal-Wallis test among classes and a pairwise Wilcoxon 
rank-sum test between subclasses. The threshold score was 
4.0 for the logarithmic linear discriminant analysis for 
discriminate features. Environmental factors that were 
significant in explaining community variations in the canonical 
correlation analysis (CCA) were analyzed in more detail using 
the “vegan” package in R. To analyze the biogeochemical 
cycle functions of epiphytic bacteria of M. spicatum in more 
detail, FAPROTAX database version 1.14 was used to analyze 
the rarefied data at the OTU level. FAPROTAX is a manually 
constructed database that maps prokaryotic clades to established 
metabolic or other ecologically relevant functions using the 
current literature on cultured strains (Louca et  al., 2016).

Accession Number
The raw sequencing data were deposited into the NCBI Sequence 
Read Archive (SRA) database under the Accession Numbers 
SAMN18435608–SAMN18435661.

RESULTS

Water Parameters of the Sampling Site
Six water parameters of sampling sites were measured 
(Supplementary Table  S1). The TN, TP, NH4+-N, and DO at 
two sampling sites exhibited significant seasonal differences 
(p < 0.01). The values of the TN, TP, and NH4+-N were the 
highest in October. In contrast, the amount of DO was the 
smallest in October. The water temperature in August was the 
highest and differed significantly with the temperatures in June 

2 http://ccb.jhu.edu/software/FLASH/
3 https://www.arb-silva.de/
4 http://www.loucalab.com/archive/FAPROTAX/
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and October (p < 0.01). A comparison of the parameters of 
water quality of two sampling sites at the same sampling time 
revealed that the concentrations of TN, TP, and NH4+-N were 
lower in Damaidian Lake than in Shihoudian Lake. The results 
suggested that the water quality in Damaidian Lake was better 
than that in Shihoudian Lake, and the water quality was the 
worst in October.

Epiphytic Bacterial Abundances and Alpha 
Diversity
The qPCR results showed that the copy numbers of the epiphytic 
bacterial 16S rRNA gene varied from 2.00 × 105 to 6.14 × 107 
per gram of leaf across all the samples. The abundance of 
total epiphytic bacteria of M. spicatum from Damaidian Lake 
was higher than that from Shihoudian Lake at the same sampling 
time, but the difference was not significant. The growth season 
of M. spicatum had an important influence on the copy number 
of the 16S rRNA gene. The highest abundance at the same 
sampling site was in the samples from October, whereas the 
lowest in the samples in August and the middle in the samples 
in June. The abundances differed significantly in different 
sampling times (p = 0.01).

An average of 66,596 high-quality sequences from each 
sample was obtained after quality control and rarefication, and 
these were clustered into 4,739 OTUs at a level of 97% similarity. 
The Good’s coverage varied between 98.7 and 99.7% across 
all the samples, which was consistent with the species 
accumulation curve that approached an asymptote, suggesting 
that the sequencing depth was sufficient to study the microbiota. 
A comparison of the two factors of sampling time and site 
indicated that the sampling time had a significant effect on 
the Shannon index of the epiphytic bacterial communities. 
The Shannon index ranged from 3.546 to 5.506 and was 
significantly higher in the samples from October than those 
in June and August at the same sampling site (p < 0.01). The 
Shannon index in Damaidian Lake was higher than that in 
Shihoudian Lake during the same sampling time. The OTU 
richness Chao1 index and the phylogenetic diversity of Damaidian 
Lake were lower than those of Shihoudian Lake in June, whereas 
they were higher than those of Shihoudian Lake in August 
and October. However, there was no significant difference 
(p > 0.05; Figure  2).

Epiphytic Bacterial Community 
Composition
The results of a phylogenetic classification showed a total of 
50 microbial phyla in all the samples, including 124 classes, 
296 orders, 422 families, and 593 genera. The relative abundances 
of the top 10 phyla of the total epiphytic bacterial communities 
in M. spicatum at the two locations over different seasons are 
summarized in Figure  3. Proteobacteria (88.4–92.7%), 
Bacteroidota (4.2–6.8%), Verrucomicrobiota (0.2–1.2%), and 
Cyanobacteria (0.2–1.1%) were the predominant bacterial phyla. 
The proportion of Cyanobacteria was the highest in the samples 
obtained in October, whereas the lowest proportion was observed 
in August. Gammaproteobacteria (85.1–91.3%) was the most 

abundant class. The Gammaproteobacteria were the most 
abundant in August, and the least abundant in October. The 
predominant genera (>5%) were Aeromonas (34.9–56.1%), 
Rheinheimera (5.2–15.6%), Pseudomonas (3.5–15.4%), and 
Shewanella (3.9–12.5%).

The NMDS analysis showed a clear separation of communities 
(Figure 4). All the samples were partitioned into three clusters 
by their sampling time (stress = 0.149). The samples in June 
and August clustered together. The samples in October were 
more scattered but were far away from the samples in June 
and August. There were significant differences in the community 
compositions of epiphytic bacteria among the seasons (ANOSIM, 
p = 0.001 for Bray-Curtis; Supplementary Table  S2). In 
comparison, there were no significant separations between 
the sites.

A LEfSe analysis was used to analyze the distribution of 
differences in the taxa between different samples in more detail 
from the levels of phylum to genus. Epiphytic bacterial taxa 
with differences over the two sampling sites for the three 
different months are shown in Figure  5. The graph was based 
on LDA scores >4.0 (p < 0.05). Some taxa were enriched in 
the epiphytic bacteria of M. spicatum from Shihoudian Lake 
in different months, such as Pseudomonas, Shewanella, 
Marinomonas, and Flavobacterium in the samples obtained in 
October; Aeromonas, Rheinheimera in the samples obtained in 
June, and Chryseobacterium in the samples obtained in August. 
Epiphytic taxa from M. spicatum in Damaidian Lake were 
enriched in Pseudomonas, Rheinheimera, Flavobacterium, and 
Marinomonas in the samples obtained in October, whereas 
Aeromonas, Chryseobacterium, and Vibrio were enriched in the 
samples obtained in August.

Effect of Water Environmental Factors on 
Epiphytic Bacteria
Environmental factors can affect the epiphytic bacterial 
community of macrophytes, and the CCA was used to explore 
the relationship between the epiphytic bacterial community 
and environmental factors (Figure  6). TP, T, and DO were 
the parameters of water that had the greatest influence on 
the dynamics of epiphytic bacterial communities. TP was 
the most important factor for the differences between the 
epiphytic bacterial community in all 3 months, followed by 
T and DO, whereas T and DO explained the greatest amount 
of variance between the epiphytic bacterial community in 
June and August. All the parameters on the two axes could 
explain >72% of the variation in the epiphytic bacteria. The 
results indicate that the water environment can drive the 
change in community structure of epiphytic bacteria on 
M. spicatum with the seasons.

Functional Profiles of Epiphytic Bacterial 
Communities
The predictive functions of FAPROTAX are primarily used 
to analyze the functions of biogeochemical cycles of 
microorganisms in more detail, particularly the circulatory 
functions of carbon, hydrogen, nitrogen, and sulfur. The 
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results of FAPROTAX showed that a total of 91 putative 
biogeochemical cycle functions were identified from the 
epiphytic bacterial community of M. spicatum. The main 
functions of the biogeochemical processes in the epiphytic 
bacterial communities of M. spicatum were chemoheterophy, 
nitrate reduction, fermentation, aerobic chemoheterophy, and 
the degradation of aromatic compounds, among others 
(Figure 7). The functional groups of each sample were roughly 
similar. Only the abundances of two functional groups differed 
significantly with the seasons. One was fermentation with 
relative abundances of 20.6, 22.1, and 14.3% in June, August, 
and October, respectively. The other was nitrate reduction 
with a relative abundance of 20.8, 22.4, and 14.4% in June, 
August, and October, respectively. The relative abundances 
of these two functions in June and August were very close, 

and the relative abundances in October were significantly 
lower than those in June and August.

DISCUSSION

A phylogenetic analysis showed that the composition of epiphytic 
bacterial communities was relatively stable, and the dominant 
groups at the levels of phylum, class, and genus were the same 
in different samples. The dominant group at the phylum level 
was Proteobacteria, which is the dominant phylum of the epiphytic 
bacterial communities in most submerged macrophytes (Hempel 
et  al., 2009; He et  al., 2020; Xia et  al., 2020; Ma et  al., 2021) 
and plays an important role in the ability of water bodies to 
purify themselves (Zhang et  al., 2014). The dominant class was 

A

C

B

FIGURE 2 | The epiphytic bacteria abundance and diversity in Myriophyllum spicatum from Baiyangdian Lake. Indices of alpha diversity shown as Shannon (A), 
Chao1 (B) and phylogenetic diversity (C). JH, samples in June at Shihoudian Lake; JS, samples in June at Damaidian Lake; AH, samples in August at Shihoudian 
Lake; AS, samples in August at Damaidian Lake; OH, samples in October at Shihoudian Lake; and OS, samples in October at Damaidian Lake.
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Gammaproteobacteria (80.79–92.79%) in the epiphytic bacterial 
community of M. spicatum from Baiyangdian Lake. 
Alphaproteobacteria was the most abundant class of epiphytic 
bacteria found on M. spicatum in an area of Hangzhou Bay that 
was a sea with low salinity (Liu et  al., 2019). The results suggest 
that the epiphytic bacterial community of the same submerged 
macrophyte in different environments differ. Similar results were 
obtained in a study of epiphytic bacteria attached to the macrophyte 
Ceratophyllum demersum (Fan et  al., 2016; Zhang et  al., 2020). 
In other freshwater lakes, Betaproteobacteria was the most abundant 
bacterial group on submerged macrophytes such as V. natans, 

H. verticillata, and P. malaianus (He et al., 2012; Gordon-Bradley 
et al., 2014). The predomain genera Aeromonas and Pseudomonas 
are known for their biodegradation of a variety of organic 
pollutants in the environment (Johnson et  al., 2013; Liao et  al., 
2013). Pseudomonas was the dominant genus among the epiphytic 
bacteria of some submerged macrophytes such as M. verticillatum, 
P. pectinatus, P. lucens, and C. demersum (Liu et  al., 2019; Xia 
et  al., 2020; Ma et  al., 2021). To our knowledge, Aeromonas has 
not been found to be  a predominant genus in the epiphytic 
bacteria of submerged macrophytes. In contrast to the composition 
of the epiphytic bacterial community of submerged macrophytes, 
the epiphytic bacteria of M. spicatum from Baiyangdian Lake 
were relatively unique.

Growing seasons were an important factor that affected the 
community structure of epiphytic bacteria in submerged 
macrophytes. Previous studies suggest that the growing seasons 
affect the community structure of epiphytic bacteria through 
the exudation of nutrients and the production of secondary 
metabolites (Xia et  al., 2020; He et  al., 2021; Ma et  al., 2021). 
A clear seasonal pattern in the epiphytic bacterial community 
structure was observed in this study. Seasonal variations were 
identified in a number of the 16S rRNA gene copies obtained 
by qPCR and the analyses of alpha and beta diversities of 
epiphytic bacterial communities. For example, the number of 
16S rRNA gene copies and the Shannon indices of the epiphytic 
bacterial community in October were significantly higher than 
those in June and August. In addition, the LDA analysis showed 
that there were more different species in October than at the 
other sampling times, which was consistent with the results 
of their abundances. As the submerged macrophytes age, changes 
occur in the rates, amounts, and types of dissolved organic 
and inorganic compounds that can be  leached from them, 
which were reflected in the composition of the epiphytic bacterial 

FIGURE 3 | Relative abundance of epiphytic bacteria at the phylum in M. spicatum from Baiyangdian Lake.

FIGURE 4 | Nonmetric multidimensional scaling analysis using pairwise 
Bray–Curtis similarity values estimated from operational taxonomic unit (OTU) 
sequence abundance datasets.
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community (Rogers and Breen, 1981; Assunção et  al., 2018). 
We found that the proportion of the dominant class and genus, 
Gammaproteobacteria and Aeromonas, decreased in the samples 
in October. The NMDS analysis confirmed the epiphytic bacterial 
assemblages varied over seasons by revealing a clear community 
separation based on sampling time rather than by sampling 
area. He et  al. (2020) reported that the growing season drove 
the compositional changes and assembly processes of the 
epiphytic bacterial communities of two submerged macrophytes 
in Taihu Lake. We did not measure the differences of substrates 
exuded by the leaves at different growing seasons on the surface 
in M. spicatum and the manner in which the substrates affected 
the structure of the epiphytic bacterial communities in 
M. spicatum remains unclear. Therefore, further studies to 
obtain a greater understanding of the assembly mechanisms 
of the epiphytic bacterial communities are merited.

The epiphytic bacterial community structure of submerged 
macrophytes is affected by the physicochemical properties 

of the surrounding water column (Adams et  al., 2010; Ren 
et  al., 2013, 2014). The water quality parameters, such as 
TP, T, and DO, which had larger changes in different seasons 
than in the two sampling sites, had a greater impact on the 
assembly of the epiphytic bacterial community. Previous 
studies have reported that T and DO can both directly and 
indirectly affect the dynamics of epiphytic bacteria in aquatic 
systems (He et  al., 2020; Xia et  al., 2020). In this study, T 
and DO were the major factors that drove variations in the 
epiphytic bacterial community in June and August. Nutrient 
dynamics were the major factors for the epiphytic bacterial 
community and functional potential of the physicochemical 
properties that have been studied (Han et  al., 2019). In this 
study, the determinations of water quality showed that the 
TP differed significantly among the three sampling times. 
The water quality changed substantially, particularly in October, 
which is consistent with the changes in the richness of 
epiphytic bacteria. The TP was identified as the most important 
driving factor. A similar study showed that TP was an 
important factor that affected the epiphytic bacterial community 
structure found on P. lucens (Yan et  al., 2019). The changes 
in the abundance of Gammaproteobacteria that was the 
dominant class correlated with the change in TP, which was 
consistent with the finding that Gammaproteobacteria was 
dominant in water columns that had lower levels of TP 
(Cheng et al., 2014). The results suggest that the composition 
of the epiphytic bacterial community of M. spicatum can 
reflect the quality of water.

The functions of microbial communities predicted through 
software, such as FAPROTAX, are widely used in microbial 
ecology. They not only provide useful perspectives on the 
community functions but can also guide the separation of 
functional bacteria. The main biogeochemical function in the 

A

B

FIGURE 5 | Taxonomic differences among epiphytic bacteria in M. spicatum 
from Baiyangdian Lake in June, August, and October by a linear discriminant 
analysis (LDA). (A) M. spicatum obtained from Shihoudian Lake, and 
(B) M. spicatum obtained from Damaidian Lake.

FIGURE 6 | The canonical correspondence analysis (CCA) plot investigating 
correlations between environmental factors and the epiphytic bacteria at the 
OTU level. DO, dissolved oxygen; TN, total nitrogen; TP, total phosphorus; 
and NH4+, ammonia nitrogen.
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epiphytic bacterial communities of M. spicatum from Baiyangdian 
Lake was their chemoheterophy. Carbon is one of the most 
important elements in the ecosystem of a lake, and 
chemoheterophy is the primary pathway by which organic 
carbon is metabolized. Since chemoheterotrophic bacteria are 
decomposers, they are responsible for the in situ remediation 
and degradation of organic matter in all ecosystems (Wei et al., 
2018). Nitrogen, the other most important element in a lake 
ecosystem, is one of the key indicators of water quality, and 
its excessive discharge can cause global problems, such as 
eutrophication, deterioration of water sources, and even harm 
to human health (Lucchetti et  al., 2017). Nitrate reduction is 
the primary reaction in the biogeochemical cycling of nitrogen, 
including denitrification (Martínez-Espinosa et  al., 2021) and 
the dissimilatory reduction of nitrate to ammonium (Burgin 
and Hamilton, 2007). The reduction of nitrate was one of the 
main functions in the epiphytic bacterial communities of M. 
spicatum. Similar studies reported that the epiphytic bacterial 
community of submerged macrophytes, such as P. lucens, had 
important functions in denitrification (Yan et  al., 2019). The 
phylum Proteobacteria and the classes Betaproteobacteria and 
Gammaproteobacteria have previously been found to be  the 
primary bacteria that are involved in the degradation of organic 
matter in sewage treatment systems and the reduction of nitrate 
and nitrite in the sediment of wetlands (Cheng et  al., 2016). 
In the epiphytic bacterial communities of M. spicatum from 
Baiyangdian Lake, Gammaproteobacteria was the most abundant 
group, and this result was consistent with the result of functional 
prediction. Nitrogen loading stimulated the growth of denitrifying 
bacteria and increased the abundance of denitrifiers (Yan et al., 
2018; Zhang et  al., 2020). The finding of a large number of 
bacteria that are affiliated to the groups involved in denitrification 
in the epiphytic bacterial communities indicates the importance 
of submerged macrophytes owing to their potentially highly 
significant role in the N biogeochemistry of lake ecosystems.

CONCLUSION

The epiphytic bacteria of Myriophyllum spicatum from 
Baiyangdian Lake were found to be highly diverse, abundant 
and relatively unique. Proteobacteria, Gammaproteobacteria and 
Aeromonas were the dominant groups at the level of phylum, 
class and genus. We found that the plant growing seasons 
were the primary factor that affected the structure and functions 
of the epiphytic bacterial community. In addition, aquatic 
environment factors, particularly TP, had a substantial impact 
on the structure of the epiphytic bacterial community. In the 
future, it is necessary to more intensively study the effect of 
differences in the substrates on the surface of submerged 
macrophytes in different growth seasons on the epiphytic 
bacterial community. Such research can help to better understand 
the mechanisms of interaction between the epiphytic bacterial 
community and submerged macrophytes.
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