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Abstract
Humans exploit a range of visual depth cues to estimate three-dimensional (3D) structure. For
example, the slant of a nearby tabletop can be judged by combining information from binocular
disparity, texture and perspective. Behavioral tests show humans combine cues near-optimally, a
feat that could depend on: (i) discriminating the outputs from cue-specific mechanisms, or (ii)
fusing signals into a common representation. While fusion is computationally attractive, it poses a
significant challenge, requiring the integration of quantitatively different signals. We used
functional magnetic resonance imaging (fMRI) to provide evidence that dorsal visual area V3B/
KO meets this challenge. Specifically, we found that fMRI responses are more discriminable when
two cues (binocular disparity and relative motion) concurrently signal depth, and that information
provided by one cue is diagnostic of depth indicated by the other. This suggests a cortical node
important when perceiving depth, and highlights computations based on fusion in the dorsal
stream.

Introduction
To achieve robust estimates of depth, the brain combines information from different visual
cues1-3. Computational work proposes this produces more reliable estimates4 and behavioral
tests show it improves discriminability5,6. However, our understanding of the neural basis of
integration is underdeveloped. Electrophysiological recordings suggest locations where
depth signals converge7-9. Nevertheless, comparing the responses evoked by individual cues
(e.g. disparity, perspective or motion- defined depth) presented ‘alone’ does not imply
fusion—response characteristics might be dominated by one cue, or show opposite tuning
rather than integration10,11.

Here we used human fMRI to test for cortical areas that integrate cues, rather than
containing convergent information (i.e. co-located, independent signals). To this end, we
exploited two cues to which the brain is remarkably sensitive: horizontal binocular disparity
and depth from relative motion12. Psychophysical evidence for interactions between
them13-16 suggests common stages of processing; thus these cues provide a useful pairing to
test fusion.
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To frame the problem of cue integration, consider a solid object (e.g. ballerina) whose depth
is defined by both disparity and motion (Fig. 1a). An estimate of depth could be derived
from each cue (quasi-) independently, defining a bivariate likelihood estimate in motion-
disparity space. Thereafter, a fusion mechanism would produce a univariate ‘depth’ estimate
with lower variance3,4. To probe this process, it is customary to measure discrimination
performance; for instance, asking observers to judge which of two shapes has greater depth
(e.g. Fig. 1b ‘Margot’ vs. ‘Darcy’). There are two computationally distinct ways of solving
this task: independence vs. fusion. Under independence, an ideal observer would
discriminate the two bivariate distributions (Fig. 1b green and purple blobs) orthogonal to
the optimal decision boundary. By so doing, the observer is more sensitive to differences
between the shapes than if they judged only one cue. This improvement corresponds to the
quadratic sum of the marginal discriminabilities (Fig. 1b: Motion, Disparity bars), and has
an intuitive geometrical interpretation: by Pythagoras’ theorem, the separation between
shapes is greater along the diagonal than along the component dimensions.

The alternative possibility is an optimal fusion mechanism that combines the component
dimensions into a single (‘depth’) dimension. This reduces variance, thereby improving
discriminability (Fig. 1b: Fusion bar). Disparity and motion typically signal the same
structure, making the predictions of independence and fusion equivalent (Fig. 1b). However,
the alternatives are dissociated by manipulating the viewed shapes experimentally (Fig.
1c,d), to effect different predictions for independence (Fig. 1e) and fusion (Fig. 1f).

Here we tested for cue integration at the levels of behavior and fMRI responses. We
presented a central plane that was nearer or farther than its surround (Fig. 2a). When
viewing this stimulus, some neurons will respond to ‘near’ positions and others ‘far’17,
producing a dissociable pattern of activity. fMRI measures this activity at the scale of
neuronal populations; nevertheless multivoxel pattern analysis (MVPA) provides a sensitive
tool to reveal depth selectivity in human cortex18. Here we decoded fMRI responses evoked
when viewing ‘near’ or ‘far’ depths defined by binocular disparity, relative motion, and
these signals in combination.

We developed three tests for integration. First, we assessed whether discrimination
performance in combined cue settings exceeds quadratic summation. Our logic was that a
fusion mechanism is compromised when ‘single’ cues are presented (Fig. 1c). For example,
a ‘single’ cue disparity stimulus contains motion information that the viewed surface is flat,
depressing performance (contrast single cues in Fig. 1e vs. f). Thus, if ‘single’ cue data are
used to derive a prediction for the concurrent stimulus, measured performance will exceed
quadratic summation. We used this test to establish a minimum bound for fusion, as
considerations of fMRI signal generation and measurement (e.g. scanner noise) entail that
this test cannot rule out independence (see Discussion). Second, we determined whether
improved performance is specific to congruent cues (Fig. 1e vs. f). An independence
mechanism should be unaffected by incongruency (Fig. 1d) as quadratic summation ignores
the sign of differences. However, a fusion mechanism would be affected: a strict fusion
mechanism would be insensitive, while a robust mechanism would revert to a single
component. Third, motivated by psychophysical reports of cross-adaptation between
cues13-15, we determined whether depth from one cue (e.g. disparity) is diagnostic of depth
from the other (e.g. motion).

To foreshadow our findings, we found that decoding fMRI responses from area V3B/KO
surpasses the minimum bound, was specific for consistent depth cues, and supported a
transfer between cues. This suggests a region involved in representing depth from integrated
cues, whose activity may underlie improved behavioral performance in multi-cue settings.
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Results
Psychophysics

We presented participants with random dot patterns (Fig. 2b) depicting depth from: (1)
binocular disparity, (2) relative motion and (3) the combination of disparity and motion. To
test for integration psychophysically, we presented two stimuli sequentially with a slight
depth difference between them and participants decided which had the greater depth (i.e.
which was nearer or farther depending on whether near or far stimuli were shown). Using a
staircase procedure, we assessed observers’ sensitivity under four conditions by measuring
just noticeable difference (j.n.d.) thresholds (Fig. 2c). We found that observers were most
sensitive when disparity and motion concurrently signaled depth differences, and least
sensitive for motion-defined differences. Using performance in the ‘single’ cue (disparity;
motion) conditions, we generated a quadratic summation prediction for the combined cue
(disparity and motion) case. In line with the expectations of fusion, performance for
congruent cues exceeded quadratic summation (F1,6=8.16; p=0.015). Moreover, when
disparity and motion were incongruent, sensitivity was lower (F1,6=11.07; p=0.016) and
comparable to performance in the ‘single cue’ disparity condition (F1,6<1; p=0.809). To
quantify this effect, we calculated a psychophysical integration index (ψ):

(1)

where SD+M is the observer’s sensitivity (1/j.n.d.) in the combined condition, and SD and SM
correspond to sensitivity in the ‘single cue’ conditions (cf. 19). A value of zero indicates the
minimum bound for fusion (i.e. quadratic sum). Bootstrapping the index revealed that
observers’ sensitivity exceeded the minimum bound for consistent-(p<0.001) but not
inconsistent (p=0.865) cue conditions. Additional tests (Supplementary Fig 1 online)
provided further psychophysical evidence of cue integration.

fMRI quadratic summation
To examine the neural basis of disparity and motion integration, we measured fMRI
responses in independently localized regions of interest (ROIs) (Fig. 3). We then used
multivariate pattern analysis (MVPA) to determine which areas contained fMRI signals that
enabled a support vector machine (SVM) to discriminate reliably between targets presented
closer or farther than the fixation plane.

Both disparity- and motion-defined depth were decoded reliably, and there was a clear
interaction between conditions and areas (Fig. 4a; F7.1,135.1=6.50; p<0.001). However, our
principle interest was not in ‘single’ cue processing, or in contrasting overall prediction
accuracies between areas (these are influenced by a range of non-neuronal factors). Rather,
we were interested in relative performance under conditions in which disparity and motion
concurrently signaled depth. Prediction accuracies for the concurrent stimulus were
statistically higher than the component cue accuracies in areas V3A (F2,38=7.07; p=0.002)
and V3B/KO (F1.5,28.9=14.35; p<0.001). To assess integration, we calculated the minimum
bound prediction (red lines in Fig. 4a) based on quadratic summation. We found that fMRI
responses in V3B/KO supported decoding performance that exceeded the minimum bound
(F1,19=4.99, p=.019), but not elsewhere. We quantified this effect across areas using an

fMRI integration index ( ):
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(2)

where  is the classifier’s performance in the congruent condition, and  and  are

performance for ‘single’ cue conditions. The values of  differed between areas (Fig. 3b;
F4.5,86.6=3.14, p=0.014), with a value significantly above zero only in V3B/KO (Table 1).
This suggests an area in which improved decoding performance may result from the fusion
of disparity and motion (although this test cannot rule out independence).

A possible concern is that there is a gain change in the fMRI response when testing disparity
and motion concurrently relative to ‘single’ cues, and this enhances decoding accuracy (e.g.
in V3B/KO). However, fMRI signals in each ROI (Supplementary Fig. 2a online) showed
no evidence for reliable differences in responsiveness between conditions (F2,38=2.51,
p=0.094). Another possibility is that fMRI noise is reduced when cues concurrently signal
depth, supporting better decoding. To assess this possibility, we created a composite dataset
by averaging raw fMRI responses from the ‘single’ cue conditions. However, prediction
accuracies were lower for this composite dataset than for the concurrent condition in V3B/
KO, indicating that a simple noise reduction did not explain the result (Supplementary Fig.
2b online; F4.9,93.8=3.74, p=0.004).

Congruent vs. incongruent cues
To provide a stronger test for integration, we manipulated both disparity and motion, but
placed these cues in extreme conflict (i.e., an exaggerated conflict over our ‘single’ cue
conditions). For each stimulus, one cue signaled ‘near’ and the other ‘far’ (Fig. 1d). If depth
from the two cues is independent, this manipulation should have no effect. (Note that the
SVM distinguishes the stimulus classes that evoked voxel responses, thus an objectively
correct answer exists for the classifier).

Consistent with the idea that V3B/KO fuses signals, discrimination performance was
significantly lower when motion and disparity conflicted (Fig. 5a; Table 1), with accuracy
falling to the level of the ‘single’ cue components. There was a significant difference
between congruent and incongruent conditions (F1,6=7.49, p=0.034), but no significant
difference between the incongruent condition and the ‘single’ cue disparity (F1,6<1, p=0.62)
or relative motion (F1,6=1.13, p=0.33) conditions. This robust behavior in the face of
extreme conflicts matches perception: conflicts are accommodated within bounds, but
thereafter one component is ignored20. Our participants relied on disparity when perceiving
the incongruent stimulus (Fig. 2c,d). Other visual areas (notably V3v, V3d and V3A), also
supported lower prediction accuracies for the incongruent cues (Fig. 5a), although these
differences were not statistically reliable (Table 1).

Transfer test
To obtain a further test for similarities in responses to the two cues, we asked whether depth
information provided by one cue (e.g. disparity) is diagnostic of depth indicated by the other
(e.g. motion). We performed a cross-cue transfer test whereby we trained a classifier to
discriminate depth configurations using one cue, and tested the classifier’s predictions for
data obtained when depth was indicated by the other cue.

To accompany this analysis, we employed a control condition that addressed differences in
average velocity that arose from the relative motion stimuli. In particular, when we
presented motion-defined depth, the classifier might have discriminated movement speed
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rather than depth position (this likely explains high accuracies for motion in early visual
areas, Fig 4a). To control for speed differences, we presented stimuli in which the central
target region moved with a fast or slow velocity, but there was no moving background,
meaning that participants had no impression of relative depth. We reasoned that an area
showing a response specific to depth would show transfer between relative motion and
disparity, but not between the motion control and disparity.

We observed a significant interaction between accuracy in the transfer tests across regions of
interest (Fig. 5b; F9,63=3.88, p=0.001). In particular, higher responses for the depth transfer
(disparity-relative motion) than the control (disparity-control) were significant in areas V4,
V3d and V3B/KO (Table 2). To assess the relationship between transfer classification

performance ( ) and the mean performance for the component cues (i.e. ), we
calculated a bootstrapped transfer index.

(3)

This suggested that transfer test performance was most similar to within-cue decoding in
area V3B/KO (Fig. 5c). Specifically, transfer performance was around 80% of that obtained
when training and testing on the same stimuli. To assess the amount of transfer that arises by
chance, we conducted the transfer test on randomly permuted data (1000 tests per area). This
baseline value (dotted horizontal lines in Fig 5c) indicated that transfer between cues was
significant in areas V3d and V3B/KO (Table 2). In conjunction with our previous findings,
this suggests that responses in V3B/KO relate to a more generic representation of depth.

Decoding simulated populations
So far, we have considered two extreme scenarios: independence vs. fusion. However, there
are computational and empirical reasons to believe that responses might lie between these
poles. Computationally, it is attractive to estimate depth based on both (a) fusion and (b)
independence, to determine whether or not cues should be integrated21. Empirically, it is
unlikely we sampled voxels that respond only to fused signals as our region of interest
localizers were standardized tests that do not target fusion. Thus, it is probable that some
voxels (i.e. within V3B/KO) do not reflect integrated cues. To evaluate how a population
mixture might affect decoding results, we used simulations to vary systematically the
composition of the neuronal population. We decoded simulated voxels whose activity
reflected neural maps based on (i) fused depth, (ii) interdigitated, independent maps for
disparity and motion and (iii) a mixture of the two.

First, to characterize how different parameters affected these simulations, we tested a range
of columnar arrangements for disparity and motion, different amounts of voxel and neuronal
noise, and different relative reliabilities for the disparity and motion cues (Supplementary
Figs. 5, 6 online). We chose parameter values that matched our fMRI data as closely as
possible (e.g., signal-to-noise ratio) and corresponded to published data (e.g. spatial period
of disparity representations17). These simulations demonstrated the experimental logic,
confirming that fused cues surpass quadratic summation (Supplementary Fig. 5b online),
and independent representations are unaffected by large conflicts and do not support transfer
(Supplementary Fig. 6c online). Second, we explored the composition of the neuronal
population, comparing our simulation results to our empirical data (Fig. 6). We found a
close correspondence between the fMRI decoding data from V3B/KO and a simulated
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population in which 50-70% of the neuronal population fuses cues (50% for strict fusion,
70% for robust fusion, based on minimizing the χ2 statistic).

Control analyses
During scanning we took precautions to reduce the possibility of artifacts. First, we
introduced a demanding task at fixation to ensure equivalent attentional allocation across
conditions (Supplementary Fig. 3 online). Second, measurements of functional signal-to-
noise ratio (fSNR) for each area (Supplementary Fig. 2c online) showed that differences in
prediction accuracy related to stimulus-specific processing rather than the overall fMRI
responsiveness. That is, fSNR was highest in the early visual areas rather than higher areas
that showed fusion. Finally, eye movements are unlikely to account for our findings as we
outline below.

First, while we could not measure eye vergence objectively in the scanner, the attentional
task22 showed that participants maintained vergence well (Supplementary Fig. 3 online)
with no reliable differences between conditions. Second, our stimuli were designed to
reduce vergence changes: a low spatial frequency pattern surrounded the stimuli, and
participants used horizontal and vertical nonius lines to promote correct eye alignment.
Together with previous control data using similar disparities23, this suggests vergence
differences could not explain our results. Third, monocular eye movement recordings
suggested little systematic difference between conditions (Supplementary Fig. 4 online).
Moreover, we showed that an SVM could not discriminate near vs. far positions reliably
based on eye position, suggesting patterns of eye movement did not contain systematic
information about depth positions (Supplementary Fig. 4 online).

Discussion
Estimating 3D structure in a robust and reliable manner is a principle goal of the visual
system. A computationally attractive means of achieving this goal is to fuse information
provided from two or more signals, so that the composite is more precise than its
constituents. Despite considerable interest in this topic, comparatively little is known about
the cortical circuits involved. Here we demonstrate that visual area V3B/KO may be
important in this process, and propose that fusion is an important computation performed by
the dorsal visual stream.

First we showed that fMRI signals from area V3B/KO are more discriminable when two
cues concurrently signal depth, and this improvement exceeds the minimum bound expected
for fusion. Second, we showed that improved performance is specific to congruent cues:
presenting highly inconsistent disparity and motion information did not improve
discriminability. This follows the predictions of integration, and matched perceptual
judgments, but is not expected if disparity and motion signals are co-located, but
independent. A potential issue of concern is whether the discrimination of brain signals
relates to depth per se, or less interesting low-level correlates (e.g. speed of movement). We
showed that while information about relative motion is diagnostic of depth from disparity,
these cross-cue transfer effects are not found between perceptually-flat motion and disparity-
defined depth. These results suggest a potential neural locus for interactions between
disparity and motion depth cues demonstrated in threshold13 and suprathreshold
psychophysical tasks14,15. More generally, they highlight V3B/KO as an area that may play
an important role in integrating cues to estimate depth.

While our results point clearly to area V3B/KO, our different analyses (Fig. 4: quadratic
summation; Fig. 5: congruent vs. incongruent, transfer test) suggested responses in other
areas (i.e. V3, V3A) that, although not significant, might also relate to fusion. It is possible
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that our tests were not sufficiently sensitive to reveal fusion in these (or other) areas for
which we have a null result; for instance, decoding accuracies for the motion condition were
high in some areas, so responses in the congruent condition may have been near ceiling,
limiting detection. However, an interesting alternative is that responses in these earlier areas
represent an intermediate depth representation in which links between disparity and motion
are not fully established. Previously it was suggested that the Kinetic Occipital (KO) area is
specialized for depth structure24, and is functionally distinct from V3B. Using independent
localizer scans, we do not find a reliable means of delineating V3B from KO. However, to
check we were not mischaracterizing responses, we examined the spatial distribution of
voxels chosen by the classifier. We found that chosen voxels were distributed throughout
V3B/KO and did not cluster into subregions (Supplementary Fig. 7 online).

Relation between psychophysical and fMRI results
While results in V3B/KO are consistent with behavioral evidence for fusion, there is a
difference in that sensitivity to the ‘single’ cues differs at the behavioral level (Fig. 2) but
not at the decoding level (Fig. 3). From psychophysical results13, higher sensitivity to
disparity-defined depth is expected. However, this would not necessarily translate to
decoding differences. Specifically, our behavioral task measured increment thresholds
(sensitivity to small depth differences) while fMRI stimuli were purposefully18

suprathreshold (the difference between ‘near’ and ‘far’ stimuli was very apparent). Thus,
while clear parallels can be drawn between tests for integration at the psychophysical- and
fMRI- levels, necessary differences between paradigms make it difficult to compare the
magnitude of the effects directly.

Further, multi-sensory integration effects for single unit recordings are reported to be highly
non-linear near threshold25, but more additive or subadditive with suprathreshold
stimuli11,26,27. Our use of suprathreshold stimuli makes it unsurprising that we did not
observe significant changes in overall fMRI responses (Supplementary Fig. 2 online).
Moreover, it is important to note that we have not attempted to ‘add’ and ‘subtract’ cues
(e.g., our ‘single’ cue relative motion stimulus contained disparity information that the
viewed display was flat). Our manipulation purposefully changes the degree of cue conflict
between cues, thereby establishing a minimum bound for fusion. While useful, testing
against this bound alone cannot preclude independence. Specifically, fused cues should have
reduced neuronal variability28, however, fMRI measures of this activity aggregate responses
and are subject to additional noise (e.g. participant movement and scanner noise).
Depending on the amount of noise, decoding independent representations can surpass the
minimum bound (Supplementary Fig. 5 online). The subsequent tests we develop
(incongruent cues; transfer test) are therefore important in confirming the results.

Finally, we outlined two variants for the fusion of strongly conflicting cues: strict vs. robust
(Fig. 1d). Behaviorally, we found evidence for robust fusion: sensitivity in the incongruent
cue condition matched the disparity condition (Fig. 2c), and perceived depth relied on
disparity (Fig. 2d). This was compatible with fMRI results in V3B/KO (Fig. 5a), where
performance dropped to the level of ‘single’ cues. However, we developed a further test of
robust fusion: if responses in V3B/KO reflect robust perception, the classifier’s predictions
might reverse for incongruent stimuli. That is, if depth is decoded at the perceptual level,
training the classifier on ‘near’ motion may predict a ‘near’ perceptual interpretation of the
incongruent stimulus, even though motion signals ‘far’. We did not find a reversal of
discrimination performance (Fig. 6c), however performance was considerably reduced,
suggesting an attenuated response. While this result per se does not match robust fusion,
intriguingly it is compatible with a population mechanism for robust perception. In
particular, depth estimation can be understood as causal inference21 in which the brain
computes depth ‘both ways’ – i.e. there is a mixed population that contains both units tuned
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to (a) independent and (b) fused cues. A readout mechanism then selects one of the
competing interpretations, using the relative reliability of the fused vs. independent models.
This idea is compatible with our simulations of a mixed population in V3B/KO (Fig. 6c) and
previous work that suggests V3B/KO plays an important role in selecting among competing
depth interpretations29.

Cortical organization for depth processing
While there is comparatively little work on neural representation of depth from integrated
visual cues, individual cues have been studied quite extensively. Responses to binocular
disparity are observed through occipital, temporal and parietal cortices30,31 and there are
links between the perception of depth from disparity and fMRI responses in dorsal and
ventral areas18,32,33. Similarly, responses to motion defined depth have been observed in
ventral, dorsal and parietal areas34-36. To link depth from disparity and motion, previous
work has highlighted overlapping fMRI activations24,37-39. This suggests widespread
cortical loci in which different cues converge; however, this does not imply the shared
organizational structure that we demonstrate here.

Our tests of cue fusion reveal V3B/KO as the main cortical locus for depth cue integration.
However, tests of motion parallax processing in the macaque highlighted area MT/V58.
Given well-established disparity selectivity in MT/V517, this suggests a candidate for
integrating depth cues. We observed discriminable fMRI responses for both disparity and
relative motion in hMT+/V5 but did not obtain evidence for fusion. While it is possible this
represents a species difference40, the difference may relate to different causes of motion. In
particular, we simulated movement of a scene in front of a static observer, while previous
work8 moved the participant in a static scene. Thus, in our situation, there was no potential
for vestibular signals to contribute to the estimation of ego movement by mediotemporal
cortex10,11.

In interpreting our results it is important to consider that the multi voxel pattern analysis
approach we use is generally understood to rely on weak biases in the responses of
individual voxels that reflect a voxel’s sample of neuronal selectivities and vasculature
(41,42; although see 43,44). By definition, these signals reflect a population response, so our
results cannot be taken to reveal fusion by single neurons. For instance, it is possible that
depth is represented in parallel for (i) disparity and (ii) motion within area V3B/KO.
However, if this is the case, these representations are not independent – they must share
common organizational structure to account for our findings that (a) prediction accuracy
falls to single component levels for incongruent stimuli and (b) training the classifier on one
cue supports decoding of the other. It was suggested that MVPA of stimulus orientation
relies on univariate differences across the visual field44. Such spatial organization for
disparity preferences has not been identified in the human or macaque brain; however, this is
a matter for further investigation. Our previous study18 and on-going work has not provided
evidence of retinotopic disparity organization.

Independence vs. fusion
Previously, we tested cue combination by relating psychophysical and fMRI responses45.
This highlighted ventral cortex (LOC) in cue integration, which is not the main locus
observed here. Differences in stimuli may be responsible: we previously used slanted planes
defined by disparity and perspective cues. Thus ventral areas may be more selective for
‘pictorial’ cues and/or be more selective for slanted surfaces than flat planes. Second, here
we used a coarse task, while previously45 a fine judgment was made that may require greater
ventral involvement31. However, next we discuss the possibility that the different cortical
loci (dorsal vs. ventral) point to different types of computation.
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In the Introduction, we presented two scenarios for optimal judgments: fusion vs.
independence. Independence increases the separation between classes (e.g. ‘near’, ‘far’) but
does not reduce variance, while fusion reduces the variance of estimates, but leaves
separation unchanged. We suggest these two modes of operation may be exploited for
different types of task. If a body movement is required, the brain is best served by fusing the
available information to obtain an estimate of the scene that is unbiased and has low
variance. Such a representation would be particular to the viewing situation (i.e. highly
specific), and variant under manipulations of individual cues. In contrast, recognition tasks
are best served by maximizing the separation of objects in a high-dimensional feature space,
while ignoring uninformative dimensions. Such a mechanism would support invariant
performance by discarding irrelevant ‘nuisance’ scene parameters, and/or changes in the
reliability of individual cues, yet may be highly uncertain about the particular structure of
the scene46. To illustrate the distinction, consider a typical desktop scene. If the observers’
goal is to discriminate a telephone from a nearby book, information about the 3D orientation
on the tabletop is uninformative, so should be discounted from the judgment (i.e. the
telephone’s features should be recognized while ignoring location). In contrast, to pick up
the telephone, the brain should incorporate all the information relevant to the location from
the current view.

Our previous tests of disparity processing18 suggest differences between the visual
pathways: dorsal areas appear selective for metric disparity (i.e. the precise location of a
plane) while ventral Lateral Occipital (LO) represents depth configuration (i.e. whether the
stimulus is ‘near’ or ‘far’, but not how near or how far). The current findings bolster this
suggested distinction by providing novel evidence for fusion in the dorsal pathway. We
propose this provides the best metric information about the scene that is specific to the
current view.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A. Cartoon of depth processing: depth of the ballerina figurine is estimated from disparity
and motion, producing a bivariate Gaussian (3D plot with purple blob). Fusion combines
disparity and motion using maximum likelihood estimation, producing a univariate ‘depth’
estimate.
B. Discriminating two shapes (‘Margot’ vs. ‘Darcy’) defined by bivariate Gaussians (purple
and green blobs). We envisage four types of detector: ‘disparity’ and ‘motion’ respond to
only one dimension (i.e. discrimination of the marginals); the ‘independent’ detector uses
the optimal separating plane (grey line on the negative diagonal); the ‘fusion’ detector
integrates cues.
C. ‘Single’ cue case: shapes differ in disparity but motion is the same. The optimal
separating plane is now vertical (independent detector), while the fusion mechanism is
compromised.
D. Incongruent cues: disparity and motion indicate opposite depths. Independent
performance matches Fig 1b while fusion is illustrated for two scenarios: strict (detector is
insensitive) and robust (dotted bar – performance reverts to one component).
E. Predicted measurements of independent units. Four types of stimuli are displayed:
‘disparity’ (Fig 1c), ‘motion’ (motion indicates a depth difference, disparity specifies the
same depth), ‘Disparity+motion’ (Fig 1b), and ‘incongruent’ (Fig 1d).
F. Predicted measurements of fused units. Note that performance in the Motion and
Disparity conditions is lower than in panel e.
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Figure 2.
A. Cartoon of the decoding approach. Participants view stimuli that depict ‘near’ or ‘far’
depths. These differentially excite neuronal populations within an area of cortex. fMRI
measurements reduce the resolution. We characterize the sensitivity of the decoding
algorithm in discriminating near and far stimuli.
B. Illustrations of disparity and motion defined depth stimuli. The top row provides
stereograms to be viewed through red-green anaglyphs. The bottom row provides a cartoon
of the relative motion stimuli: yellow arrow speed of target, blue arrow speed of
background.
C. Behavioural tests of integration. Data show observers’ mean sensitivity (N=7) with the
between-subjects SEM. The red horiztonal line indcates the quadratic summation prediction.
The adjacent plot shows the results as an integration index for the congruent and
incongruent conditions. A value of zero indicates the minimum bound for fusion. Data are
presented as notched distribution plots. The center of the ‘bow tie’ represents the median,
the edges depict 68% confidence values, and the upper and lower error bars 95% confidence
intervals.
D. The results of an experiment in which observers (N=4) reported whether the stimulus was
near or far in the incongruent cue stimulus. Data are expressed as the percentage of trials on
which reported depth matched depth from disparity.
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Figure 3.
Representative flatmaps showing the left and right visual regions of interest from one
participant. The maps show the location of retinotopic areas, V3B/KO, the human motion
complex (hMT+/V5) and the lateral occipital (LO) area. Regions were defined using
independent localizers. Sulci are coded in darker gray than the gyri. Superimposed on the
maps are the results of a group searchlight classifier analysis that moved itteratively
throughout the entire volume of cortex measured, discriminating between ‘near’ and ‘far’
depth positions18. The colour code represents the t-value of the classification accuracies
obtained. This analysis confirmed that we had not missed any important areas outside those
localized independently.

Ban et al. Page 14

Nat Neurosci. Author manuscript; available in PMC 2012 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4.
A. Prediction accuracy for near vs. far discrimination in different regions of interest. The red
lines illustrate the accuracy expected from the quadratic summation of discriminabilities for
the ‘single’ cue conditions. Error bars depict the SEM.
B. Results as an integration index. A value of zero indicates the minimum bound for fusion
(i.e. the prediction based on quadratic summation). Data are presented as notched
distribution plots. The center of the ‘bow tie’ represents the median, the grey-shaded area
depicts 68% confidence values, and the upper and lower error bars 95% confidence
intervals.
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Figure 5.
A. Prediction accuracy for near vs. far classification when cues are congruent (Fig. 1b) or
incongruent (Fig. 1d). Error bars show SEM. The dotted horizontal line at 0.5 corresponds to
chance performance for this binary classification.
B. Prediction accuracy for the cross-cue transfer analysis. Two types of transfer are
depicted: between moiton and disparity (gray bars) and between disparity and a flat motion
control stimulus (white bars). Classification accuracies are generally lower than for the
standard SVM analysis (Fig. 4a); this is not surprising given the considerable differences
between the stimuli that evoked the training and test fMRI responses. Error bars show SEM.
C. Data shown as a transfer index. A value of 100% would indicate that prediction
accuracies were equivalent for within- and between- cue testing. Distribution plots show the
median, 68% and 95% confidence intervals. Dotted horizontal lines depcit a bootstrapped
chance baseline based on the upper 95th centile for transfer obtained with randomly
permutted data.
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Figure 6.
A. fMRI decoding data from V3B/KO adjacent to the simulation results. Simulation results
show decoding performance of a simulated population of voxels where the neuronal
population contains different percentages of units tuned to individual vs. fused cues. The χ2

statistic was used to identify the closest fit between empirical and simulated data from a
range of popoulation mixtures. Error bars depecit SEM.
B. fMRI decoding data for the transfer tests adjacent to the simulation results. Error bars
depecit SEM.
C. Performance in a transfer test between data from the motion condition and the consistent
and inconsistent cue conditions. Error bars depecit SEM.
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Table 1

Probabilities associated with obtaining a value of zero for (i) the fMRI integration index, and (ii) the
prediction accuracy difference between congruent and incongruent stimulus conditions. Values are from a
bootstrapped resampling of the individual participants’ data. Bold formating indicates Bonferoni-corrected
significance.

p-value

Cortical area Integration
index above zero

Congruent vs.
incongruent

V1 0.789 0.523

V2 0.799 0.419

V3v 0.150 0.079

V4 0.880 0.486

LO 0.838 0.262

V3d 0.733 0.203

V3A 0.265 0.148

V3B/KO 0.001 0.004

V7 0.915 0.247

hMT+/V5 0.479 0.499
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Table 2

Probabilities associated with (i) obtaining zero difference between decoding performance in the disparity-to-
relative motion and disparity-to-motion control transfer tests; (ii) probability associated with zero difference
between the value of the transfer index in the disparity-to-relative motion condition compared to random
(shuffled) performance. These p-values are calculated using bootstrapped resampling with 10,000 samples.
Bold formating indicates Bonferoni-corrected significance.

p-value

Cortical area Difference between transfer
and control accuracies Transfer index from chance

V1 0.273 0.279

V2 0.068 0.168

V3v 0.024 0.061

V4 0.002 0.102

LO 0.778 0.758

V3d 0.001 0.002

V3A 0.121 0.012

V3B/KO <0.001 <0.001

V7 0.590 0.141

hMT+/V5 0.815 0.302
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