
RESEARCH ARTICLE

Cigarette smoke downregulates Nur77 to

exacerbate inflammation in chronic

obstructive pulmonary disease (COPD)

Aravind T. ReddyID
1,2, Sowmya P. Lakshmi1,2, Asoka Banno1, Shantanu

Krishna Jadhav1,2, Ishaque Pulikkal Kadamberi1,2, Seong C. Kim1,2, Raju C. ReddyID
1,2*

1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh

School of Medicine, Pittsburgh, Pennsylvania, United States of America, 2 Veterans Affairs Pittsburgh

Healthcare System, Pittsburgh, Pennsylvania, United States of America

* reddyrc@upmc.edu

Abstract

Cigarette smoke (CS) contains multiple gaseous and particulate materials that can cause

lung inflammation, and smoking is the major cause of chronic obstructive pulmonary dis-

ease (COPD). We sought to determine the mechanisms of how CS triggers lung inflamma-

tion. Nur77, a nuclear hormone receptor belonging to the immediate-early response gene

family, controls inflammatory responses, mainly by suppressing the NF-κB signaling path-

way. Because it is unknown if Nur77’s anti-inflammatory role modulates COPD, we

assessed if and how Nur77 expression and activity are altered in CS-induced airway inflam-

mation. In lung tissues and bronchial epithelial cells from COPD patients, we found Nur77

was downregulated. In a murine model of CS-induced airway inflammation, CS promoted

lung inflammation and also reduced Nur77 activity in wild type (WT) mice, whereas lungs of

Nur77-deficient mice showed exaggerated CS-induced inflammatory responses. Our find-

ings in in vitro studies of human airway epithelial cells complemented those in vivo data in

mice, together showing that CS induced threonine-phosphorylation of Nur77, which is

known to interfere with its anti-inflammatory functions. In summary, our findings point to

Nur77 as an important regulator of CS-induced inflammatory responses and support the

potential benefits of Nur77 activation for COPD treatment.

Introduction

Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease characterized

by persistent airflow limitation and impaired gas exchange [1]. It involves millions of people

and is a major socioeconomic burden [2]. Because therapeutic strategies currently available to

patients fail to prevent its progression and exacerbations effectively [3], COPD-associated

morbidity and mortality are anticipated to increase in the coming years [2]. Cigarette smoking

is the primary cause of COPD, and many gaseous and particulate materials contained within

first- and second-hand cigarette smoke (CS) can cause lung inflammation [4–8]. Nevertheless,

current understanding of how CS drives lung inflammation, such as that associated with

COPD, remains incomplete [9].
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To discover mechanistic insights into the molecular pathophysiology of CS-induced lung

inflammation and COPD, in this study, we tested the potential mediating roles and actions of

Nur77 [10, 11] (also known as NR4A1), a specific member of the immediate-early response

gene family. Together with Nur-related factor 1 (Nurr1 [12]; also known as NR4A2) and neu-

ron-derived orphan receptor 1 (NOR-1 [13]; also known as NR4A3), it forms the NR4A sub-

family of nuclear hormone receptors [14, 15]. One unique feature of these transcription factors

is the atypical ligand-binding domain; crystallographic studies have demonstrated bulky

hydrophobic ligand-binding pockets in the Nurr1 ligand-binding domain [16] and the rat

Nur77 ligand-binding domain [17]. These earlier findings combined with the failure to locate

endogenous ligands had classified NR4A members as orphan nuclear receptors [16, 17]. More

recent studies, however, have revealed that small synthetic molecules [18, 19] and some unsat-

urated fatty acids [20, 21] can bind to and modulate Nur77.

Nur77 plays a role in a number of biological and pathophysiological processes [15, 22].

Accumulating evidence indicates that it regulates multiple inflammation-related conditions

[23], primarily mediated via its effects on the NF-κB signaling pathway [19, 24–28]. In the

respiratory system, Nur77 dampened OVA-induced airway inflammation in the murine

model of allergic airway disease [26]. Nur77 also controlled inflammatory responses and pre-

vented the resulting tissue damage in a rat model of acute respiratory distress syndrome [27].

Furthermore, microarray studies coupled with gene set enrichment analyses and Ingenuity

pathway analyses revealed an association of Nur77 with COPD and allergic airway inflamma-

tory disease, respectively [29]. Nonetheless, evidence defining specific anti-inflammatory func-

tions of Nur77 in COPD is scarce.

Therefore, using multiple approaches, we tested the hypothesis that Nur77 contributes to

CS-induced airway inflammation associated with COPD. We found that lung tissues from

COPD patients displayed reduced Nur77 expression. Similarly, both Nur77 expression and its

transcriptional activity were reduced in human bronchial epithelial (HBE) cells from COPD

patients (COPD HBE cells), suggesting a link between Nur77 downregulation and COPD

pathogenesis. Furthermore, we found that CS downregulated Nur77 expression and activity

and also exacerbated inflammatory responses, both in mice in vivo and in human airway epi-

thelial cells in vitro. Our finding that CS-induced Nur77 suppression aggravates airway epithe-

lial inflammation suggests the possibility that treatment with Nur77 agonists may be a useful

therapeutic tool to counteract pro-inflammatory effects of cigarette smoking in COPD.

Materials and methods

Cells, tissue samples, and treatments

HBE cells (normal HBE [NHBE] and diseased HBE [DHBE; also described as COPD HBE])

obtained from Lonza (Walkersville, MD) were grown and maintained in bronchial epithelial

cell medium (Lonza) supplemented with growth factors and hormones, according to the man-

ufacturer’s instructions. H292 cells were obtained from ATCC (Rockville, MD) and main-

tained in RPMI medium supplemented with FBS, penicillin, and streptomycin (ThermoFisher

Scientific; Waltham, MA). Cells were cultured at 37˚C in a humidified atmosphere of 5% CO2.

Monolayer cultures at 90% confluence were deprived of growth factors before treatment.

Human lung tissue sampling was done as reported previously [30]. COPD lung tissues were

obtained from explanted lungs of subjects with advanced COPD, and control lungs were

donated lungs not suitable for transplantation, obtained from the Center for Organ Recovery

and Education. Lung tissues were stored at −80˚C until future usage.

Cytosporone B (Csn-B [C2997; Sigma-Aldrich, St. Louis, MO]), SB203580 (5633; Cell Sig-

naling Technology, Beverly, MA) and PD98059 (9900; Cell Signaling Technology) were
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dissolved in DMSO to prepare stock solutions (100 mM). Working concentrations were pre-

pared by further dilution with DMSO. Cells deprived of growth factors were treated with the

indicated concentrations as previously described [30–32].

Animals

C57BL/6 (000664; wild type [WT]) and Nr4a1 (Nur77) knockout (KO) mice (006187) [33]

were obtained from the Jackson Laboratories (Bar Harbor, ME). Mice were housed in microi-

solator cages under specific pathogen-free conditions and fed autoclaved food (Teklad global

18% protein rodent diet; Envigo [Hackensack, NJ]). Male mice aged 6–8 weeks (20–25 g) were

used in all experiments. Mice were euthanized by exposure to CO2 in a flow-controlled CO2

chamber followed by cervical dislocation or post-mortem sample collection. All studies were

performed according to a protocol reviewed and approved by the VA Pittsburgh Healthcare

System Institutional Animal Care and Use Committee (protocol #03028).

CSE preparation and exposure

Cigarette smoke extract (CSE) medium was prepared as described previously [30]. Briefly, air or

smoke from research-grade cigarettes (3R4F; Kentucky Tobacco Research and Development Cen-

ter, University of Kentucky, Lexington, KY) was slowly bubbled into 10 ml of cell culture medium

according to the Federal Trade Commission protocol, with one puff for 2 seconds. The medium

was then sterilized using a 0.22-μm filter (EMD Millipore, Billerica, MA). A portion of the CSE

medium was used to measure its optical density at 320 nm. The extract, defined as 100% CSE, was

diluted to the indicated concentrations and used within 10 minutes of preparation.

CS exposure

Mice were exposed to CS or to filtered air for two months as described previously [34]. Briefly,

CS was generated by burning five 3RF4 research cigarettes according to the Federal Trade

Commission protocol, each puff being of 2 second duration at a flow rate of 1.05 l/min and 35

ml volume, in an automated TE-10 smoking machine (Teague Enterprises, Davis, CA). The

machine was adjusted to produce 89% sidestream and 11% mainstream smoke. The chamber

atmosphere was monitored to maintain TPM at 250 mg/m3. Twenty-four hours following the

last exposure, mice were euthanized, and the lungs were collected for further analysis.

BAL fluid collection and cell count

Bronchoalveolar lavage (BAL) fluid was collected by flushing 1 ml of PBS containing 0.1 mM EDTA

into the lung via a tracheal cannula three times. After the pooled BAL fluid was centrifuged, cells

were pelleted and then resuspended in 1 ml of PBS. The number of total cells was counted using a

hemocytometer. Cytospin preparations were stained with Diff-Quik (Siemens, Newark, DE).

Western blotting

Protein concentrations were determined using the BCA Protein Assay kit (ThermoFisher Sci-

entific). Western blotting was then performed as described previously [32]. Primary antibodies

against pThr (5267) and β-Actin (1616) were purchased from Santa Cruz Biotechnology

(Santa Cruz, CA). Anti-Nur77 antibody was from Abcam (109180; Cambridge, MA). The sec-

ondary antibodies, donkey anti-goat IRDye 680RD (926–68074) and goat anti-rabbit IRDye

800CW (925–32211), were obtained from LI-COR Biosciences (Lincoln, NE). The infrared sig-

nal was detected with an Odyssey Infrared Imager (LI-COR Biosciences). The densitometric

analysis was performed using Image Studio software (LI-COR Biosciences).
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Immunostaining for Nur77

Immunostaining was performed on lung tissue sections to detect Nur77 expression as

described previously [35]. Lung sections were obtained from GeneTex (#24349 and 21848, at

5 μm thickness mounted on positively charged glass slides; Irvine, CA). Briefly, the lung sec-

tions were deparaffinized in xylene and then rehydrated in a series of graded alcohols. Sections

were then permeabilized with target retrieval solution. Endogenous peroxidase was blocked

with 3% hydrogen peroxide for 10 min. Staining was performed with anti-Nur77 antibody

(109180; Abcam). VECTASTAIN Elite ABC HRP Kit (PK-6101) and DAB Peroxidase (HRP)

Substrate Kit (SK-4100) from Vector Laboratories (Burlingame, CA) were used for secondary

antibody binding and for color development, respectively. Control sections were incubated

with an isotype-matched rabbit IgG (2729; Cell Signaling). Slides were counterstained with

hematoxylin and imaged.

Electrophoretic mobility shift assay

Nuclear extracts from NHBE cells were incubated with 50 nM of the indicated double-

stranded oligonucleotides (S1 Table) 50end-labeled with infrared dye IRDye 700 in binding

buffer (100 mM Tris, 500 mM KCL, 10 mM DTT [pH 7.5]), poly (deoxyinosinic-deoxycy-

tidylic) (1 μg/μl in 10 mM Tris, 1 mM EDTA), 25 mM DTT, and 2.5% Tween 20. Samples

were then separated on 5% non-denaturing polyacrylamide gels in 1× Tris-Borate EDTA

buffer (130 mM Tris [pH 8.3], 45 mM boric acid, 2.5 mM EDTA). In the supershift assay, the

reaction mixture was incubated with anti-Nur77 antibody (365113; Santa Cruz Biotechnol-

ogy). The infrared signal was detected using an Odyssey Infrared Imager.

Measurement of cytokine, chemokine and transcription factor activity

ELISA-based cytokine and chemokine measurements (DTA00D [human tumor necrosis fac-

tor-α, TNFα], D8000C [human interleukin 8, IL-8], MTA00B [mouse TNFα], M6000B

[mouse interleukin 6, IL-6], MJE00B [mouse monocyte chemoattractant protein-1, MCP-1],

and MKC00B [mouse KC]; R&D Systems, Minneapolis, MN) and ELISA-based transcription

factor-DNA binding assay (40096 [NF-κB p65]; Active Motif, Carlsbad, CA) were done

according to the manufacturer’s instructions and as described previously [30, 31].

Nur77-NurRE binding assay

Biotinylated Nur-response element (NurRE) or nonspecific oligonucleotides (S1 Table) were

coated onto streptavidin-coated 96 well plates (Pierce) and incubated at room temperature for

1 h. After incubation, the wells were emptied and washed with 200 μl PBST (PBS supple-

mented with 0.05% Tween-20) three times to remove the unbound oligos. Protein samples

were added to the wells and incubated at room temperature for 1 h. Unbound proteins were

then removed by washing with 200 μl PBST three times. Nur77 binding was detected using

anti-Nur77 antibody, and the infrared signal was read with an Odyssey Infrared Imager.

Nur77-NurRE binding is represented as the normalized signal and compared with experimen-

tal controls.

RNA isolation, nascent RNA capturing, and real-time PCR

RNA isolation, cDNA synthesis, and real-time PCR were performed as described previously

[7]. Briefly, total RNA was isolated using the RNeasy Plus Mini Kit (Qiagen, Valencia, CA),

and cDNA was generated from total RNA using iScript Advanced cDNA Synthesis Kit

(#1725038; Bio-Rad, Hercules, CA). Real-time PCR was then performed with specific primers
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PLOS ONE | https://doi.org/10.1371/journal.pone.0229256 February 21, 2020 4 / 14

https://doi.org/10.1371/journal.pone.0229256


for Nur77 and β-Actin (S1 Table) and Fast SYBR Green Master Mix (Applied Biosystems, Fos-

ter City, CA). Relative expression normalized to β-Actin is presented.

Statistical analysis

Data are presented as the mean ± SD. We determined the differences between experimental

groups using an unpaired t-test or one-way or two-way analysis of variance followed by a Bon-

ferroni multiple-comparison correction. For statistical analyses, we used GraphPad Prism

8.1.2 (GraphPad Software, La Jolla, CA); differences with P values< 0.05 were considered

significant.

Results

Reduced expression and altered distribution of Nur77 in lung tissues of

COPD patients

Anti-inflammatory actions of Nur77 have been described in several pathophysiological sys-

tems, but understanding of whether it contributes to development of COPD remains limited.

Therefore, we tested whether Nur77 expression is altered in lung tissues of COPD patients, by

comparing its levels with those in lungs of normal controls. Nur77 protein levels were signifi-

cantly lower in COPD lung tissues than in normal human lung tissue (Fig 1A) and were unde-

tectable in some patients (Fig 1A). Similarly, by immunostaining analysis, we detected Nur77

in nearly all cells in normal human lungs but found it was diminished in COPD lung tissues

(Fig 1B). Also, Nur77 accumulated within cell nuclei in normal lung tissues (Fig 1B, yellow
arrows), but such nuclear accumulation was reduced in COPD lung tissues (Fig 1B, blue
arrows). These results suggest that Nur77 downregulation may be associated with human

COPD pathogenesis.

Nur77 expression and activity are reduced in HBE cells of patients with

COPD

The airway epithelium is indispensable to a healthy respiratory tract, acting as the first line of

defense against the potential harm of inhaled substances. It is also directly targeted by inhaled

toxicants such as those present in CS. We thus tested whether Nur77 expression and activity

are altered in HBE cells of COPD patients (COPD HBE cells). Nur77 protein level in COPD

HBE cells was significantly lower than that in NHBE cells (Fig 2A), indicating downregulation

of airway epithelial Nur77 levels in COPD.

Because activated Nur77 regulates transcription of its target genes by binding to DNA

sequences within their promoters, such as NurRE [14, 15, 22], we tested if Nur77-mediated

transcriptional activity is downregulated in COPD by electrophoretic mobility shift assay. We

found that Nur77’s NurRE binding in COPD HBE cells was reduced compared with that seen

in NHBE cells (Fig 2B), consistent with decreased expression (Fig 2A). The Nur77-NurRE

complex was supershifted in the presence of anti-Nur77 antibody, verifying the specificity of

this interaction (Fig 2B). Similarly, DNA-binding activity of Nur77 was impaired in COPD

HBE cells, as measured by Nur77-specific reporter assay (Fig 2C). Together, these data show

that both expression and transcriptional activity of Nur77 in HBE cells are diminished in

COPD.

Nur77 knockout exacerbates CS-induced lung inflammation in vivo
Cigarette smoking is a major risk factor for COPD, and exposures to the toxicants found in CS

elicit lung inflammation [4–8]. To assess if and how Nur77 is involved in such CS-induced
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inflammation, we compared the levels of Nur77 activity and of several pro-inflammatory

mediators in the lungs of WT and Nur77 KO mice in a CS-induced lung inflammation model.

Mice were exposed to filtered air or CS for two months. We found that, while CS increased the

number of total cells in BAL fluid in both WT and Nur77 KO mice, the increase in the cell

count was more prominent in the absence of Nur77 (Fig 3A and 3B). Conversely, CS abolished

Nur77’s DNA binding activity in WT mice (Fig 3C). As expected, Nur77 activity was undetect-

able in filtered air- or CS-exposed Nur77 KO mice (Fig 3C). Conversely, CS exposure caused

increased NF-κB p65 transcriptional activity, which was elevated even furthermore by absence

of Nur77 (Fig 3D). Likewise, Nur77 deficiency exaggerated CS-induced increases in the levels

of pro-inflammatory TNF-α, IL-6, MCP-1, and KC (murine chemokine equivalent of CXCL1)

(Fig 3E–3H). Thus, CS downregulated Nur77 transcriptional activity and thereby intensified

inflammatory responses in lung tissues of mice.

Fig 1. Nur77 expression is reduced in COPD. (A) Nur77 expression in normal human lung tissues and those of

COPD patients, determined by Western blotting and densitometric analysis. β-Actin served as a loading control. (B)

Nur77 expression in COPD and normal human lung tissues, determined by immunostaining. Paraffin sections were

immunostained with anti-Nur77 antibody (upper panels) or IgG negative control (lower panels). Cells/nuclei positive

for Nur77 signal are indicated by yellow arrows. Cells/nuclei in COPD lung tissue showing reduced Nur77 signal are

marked with blue arrows. Representative images at the indicated magnification (100× or 20×) are shown. COPD

patient tissue (right panels) also show characteristic loss of alveolar structure. Data are expressed as the mean ± SD with

n = 6; ���P< 0.001.

https://doi.org/10.1371/journal.pone.0229256.g001
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CSE downregulates Nur77 via Threonine (Thr)-phosphorylation and

aggravates inflammatory responses in human airway epithelial cells

To extend our in vivo findings and further define the molecular mechanisms of Nur77 down-

regulation in COPD, we tested the effects of CSE treatment on Nur77 in H292 human airway

epithelial cells. In line with our human tissue and in vivo mouse model data, CSE reduced both

Nur77 transcript and protein levels and its transcriptional activity (Fig 4A–4C). Nur77 was

reduced to undetectable levels when the cells were treated with 10% CSE for 6 hours (Fig 4B).

Csn-B prevented such CSE-induced reduction in Nur77 expression and its transcriptional

activity, restoring them to baseline levels (Fig 4D and 4E).

Nur77 function is regulated by phosphorylation. Because Thr-phosphorylation of Nur77 by

p38 mitogen-activated protein kinase (MAPK) was shown to inhibit its ability to suppress NF-

κB signaling in a murine macrophage cell line [19], we tested if CSE promotes inhibitory Thr-

phosphorylation of Nur77. CSE exposure induced Thr-phosphorylation of Nur77, which was

completely absent in control cells exposed to air-treated medium (Fig 4F). Such post-transla-

tional modification was partially and completely blocked by pretreatment with Csn-B and the

p38 MAPK inhibitor SB203580, respectively (Fig 4F). In contrast, pretreatment with the ERK

inhibitor PD98059 had no effect (Fig 4F). CSE exposure elevated the levels of proinflammatory

markers including NF-κB p65 activity and TNF-α and IL-8 production in H292 cells, as would

be predicted for effects of Nur77 activity-suppressing Thr-phosphorylation (Fig 4G). Csn-B

pretreatment inhibited this effect of CSE exposure (Fig 4G). These data suggest that CSE

Fig 2. Nur77 expression and activity are decreased in HBE cells of COPD patients. (A) Nur77 expression in DHBE

(also described as COPD HBE in the text) and NHBE cells, determined by Western blotting and densitometric

analysis. β-Actin served as a loading control. (B) Nur77 NurRE binding in NHBE and DHBE cell nuclear extracts,

determined by electrophoretic mobility shift assay. The supershift of the Nur77-NurRE complex in the presence of

anti-Nur77 antibody confirmed the specificity of this interaction. (C) DNA-binding activity of Nur77 in NHBE and

DHBE cells, determined by Nur77-specific reporter assay. Shown is infrared assay endpoint signal level (IR700). Data

are expressed as the mean ± SD with n = 4; ���P< 0.001.

https://doi.org/10.1371/journal.pone.0229256.g002
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downregulates Nur77 by triggering its Thr-phosphorylation, leading to exaggerated inflamma-

tory responses in H292 cells, whereas Csn-B enhances Nur77’s anti-inflammatory effects by

blocking Thr-phosphorylation and preventing loss or degradation of Nur77 activity.

Discussion

The precise mechanisms by which CS causes COPD are unknown, but voluminous evidence

points to inflammation as a key mediating process. Because Nur77 has been found to exert

anti-inflammatory actions in other disease models [23], here we tested the ideas that cigarette

smoking affects Nur77 and that such action may contribute to COPD pathophysiology. We

Fig 3. Nur77 knockout increases the levels of CS-induced lung inflammation markers. Inflammatory responses in lung tissue

of WT and Nur77 KO mice exposed to filtered air or CS for two months. Total cell counts (A) and photomicrographs (20×
objective lens) (B) of Diff-Quik-stained cells in BAL fluid from the indicated treatment groups. The following markers were

measured in lung tissue homogenates by ELISA: activities of transcription factors (Nur77 [C] and NF-κB p65 [D]) and the levels

of cytokines (TNFα [E] and IL-6 [F]) and chemokines (MCP-1 [G] and KC [H]). (C) Infrared assay endpoint signal (IR700)

represents Nur77 transcriptional activity. (D) Spectrophotometric reading value (A450) represents NF-κB p65 activity. (E-H)

The levels of cytokines and chemokines are shown as protein concentrations (pg) in ml of lung tissue homogenates. Data are

expressed as the mean ± SD with n = 5 mice/group; ���P< 0.001, n.s. = non-significant.

https://doi.org/10.1371/journal.pone.0229256.g003
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found that Nur77 is downregulated in human COPD lung tissues, CS-exposed mice, and CSE-

treated airway epithelial cells, suggesting that such downregulation is a pathophysiological

attribute that may contribute to COPD pathophysiology. Supporting this idea, we found, by

assessing agonist-induced Nur77 activation in airway cells, that Nur77 restrains CS-induced

inflammatory responses such as those observed in COPD, both in vitro and in vivo.

Fig 4. CSE downregulates Nur77 by inducing Thr-phosphorylation and aggravates inflammatory responses in

human airway epithelial cells. (A-C) Nur77 mRNA (A), protein (B) expression, and Nur77 transcriptional activity (C)

in H292 cells exposed to filtered air-treated medium (control medium; Air) or CSE for indicated dose and time,

determined by real-time PCR (A), Western blotting (β-Actin served as a loading control) (B), and NurRE binding

assay (C). For the dose study, cells were exposed to the control medium or CSE for 6 hours (upper panel). For the time-

course study, cells were treated with the control medium or 10% CSE (lower panel). (D and E) Nur77 protein

expression (D) and transcriptional activity (E) in control medium-treated or CSE-exposed H292 cells pretreated with

Csn-B (10 μM) or Veh, determined by Western blotting (β-Actin served as loading control) (D) and NurRE binding

assay (E). (F) The level of Thr-phosphorylated Nur77 in control medium-treated or CSE-exposed H292 cells, by

Western blotting. Cells were pretreated with 10 μM of indicated compounds. SB; the p38 MAPK inhibitor SB203580.

PD; the ERK inhibitor PD98059. β-Actin served as an input control. (G) Levels of inflammatory response markers

(NF-κB p65 activity and TNFα and IL-8 production, by ELISA) in control medium-treated or CSE-exposed H292 cells,

pretreated with either Csn-B (10 μM) or Veh. (left panel) Spectrophotometric reading value (A450) represents NF-κB

p65 activity. (middle and right panels) The levels of cytokine and chemokine are shown as protein concentrations (pg)

in ml of cell culture medium. Data are expressed as the mean ± SD with n = 3; ���P< 0.001, n.s. = non-significant.

https://doi.org/10.1371/journal.pone.0229256.g004
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Our findings that Nur77 is important in CS-induced, COPD-related airway inflammation

are unique but consistent with prior findings related to other diseases. Nur77 deficiency exac-

erbated OVA-induced allergic airway inflammation in mice [26]. Also, Nur77 expression lim-

ited LPS-induced inflammation and tissue damage in a rat model of acute respiratory distress

syndrome [27]. Nur77 was identified as a potential modulator of pulmonary arterial hyperten-

sion, as its expression was downregulated in lungs of patients with pulmonary arterial hyper-

tension and also in cultured pulmonary microvascular endothelial cells [36]. The evidence

thus points to a likely pathogenic role of Nur77 downregulation in multiple inflammatory dis-

eases and to a potential therapeutic benefit of targeting Nur77 pharmacologically to elicit its

anti-inflammatory actions.

Contrasting with our findings, Qin et al. reported that CS and CSE increased, rather than

suppressed, Nur77 in lungs of mice or HBE cells and enhanced Nur77 nuclear export with a

concurrent increase in autophagy of the cells [37]. Resolving this discrepancy will require fur-

ther study, but we speculate that it is attributable to time-dependent differences in CS-induced

alteration of Nur77 expression. We assessed short-term CS exposure and found that CS sup-

pressed Nur77 to exaggerate inflammatory responses, whereas Qin et al. tested prolonged CS

exposure which may preferentially elevate mitochondrial or cytoplasmic Nur77 expression

that induces apoptosis/autophagy. Prolonged CS exposure caused Nur77 to bind to Bcl2,

which regulates the mitochondrial apoptotic pathway. Because neither our study nor Qin’s

compared the compartmentalization of Nur77 under short-term vs. prolonged CS exposure, a

future time-course analysis may be useful to elucidate the molecular mechanism of Nur77’s

anti-inflammatory vs. pro-apoptotic functional switch.

Our data that CSE induces Thr-phosphorylation of Nur77 in human airway epithelial cells

provide a new mechanism via which CS/CSE triggers Nur77 downregulation. This is an

important finding because discovery of a new pathological process offers a novel target for

therapeutic interventions. Furthermore, we found that the p38 MAPK inhibitor SB203580

selectively suppressed CS/CSE-induced Thr-phosphorylation of Nur77, suggesting that p38

MAPK is likely the kinase responsible for this post-translational modification. CS activates the

MAPK pathway that regulates activities of several transcription factors in multiple cell types

[38–41]. Nur77 contains PEST (proline, glutamic acid, serine, and Thr) sequences [42], phos-

phorylation of which leads to rapid degradation of PEST-containing proteins [43]. Thus, p38

MAPK-mediated phosphorylation may induce proteolytic degradation of Nur77 that contrib-

utes to the reduced Nur77 expression we observed. Csn-B also reduced CS/CSE-induced phos-

phorylation of Nur77 by ~50%, possibly by disrupting the interaction between p38 and Nur77.

A synthetic Nur77-specific agonist, n-pentyl 2-[3,5-dihydroxy-2-(1-nonanoyl)-phenyl]acetate

(PDNPA), similarly disrupted LPS-induced p38 MAPK-mediated interaction and phosphory-

lation of Nur77, which restored Nur77’s ability to inhibit NF-κB signaling and pro-inflamma-

tory cytokine production [19]. Additional study is necessary to further define the role of p38

MAPK in CS/CSE-induced Nur77 downregulation and the mechanism by which Csn-B

restores Nur77 expression.

Subcellular localization represents a key mechanism of Nur77 functional control [23, 44].

Specifically, cytoplasmic/mitochondrial localization is associated with the non-genomic, pro-

apoptotic function of Nur77 [44–46], whereas nuclear Nur77 is pro-mitogenic [47, 48]. Exten-

sive inflammation often features tissue damage/cell death due to uncontrolled growth/survival

and activities of certain proinflammatory cells. Thus, Nur77’s translocation to mitochondria,

which activated p38 MAPK was found to induce [49], precipitates apoptosis of airway epithe-

lial cells and contributes to COPD-associated epithelial loss or injury. It will therefore be

important in future work to determine if and how CS/CSE affects translocation, and thus func-

tions, of Nur77. Discovering pharmacological means to rectify any aberrant subcellular
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localization and functions of Nur77, in a time- or cell type-specific manner, may thus prove

translationally relevant for potential COPD therapies.

COPD progression is a key driver of its morbidity and mortality. Because no current ther-

apy effectively prevents disease progression, novel therapies are urgently needed. Therefore, it

will be important to further extend our findings of short-term CS exposure effects upon airway

inflammation, that often triggers COPD pathogenesis. Future studies using disease models

with prolonged (6 to 12-month) CS exposure may provide further valuable insights about

Nur77’s role in COPD progression.

Conclusions

In conclusion, by showing that CS reduces Nur77 expression and activity and that a Nur77--

specific agonist can reverse such Nur77 downregulation and counter exaggerated inflamma-

tory responses in the lungs of mice and human airway epithelial cells, our study demonstrates

potential therapeutic benefits of Nur77 activation for the treatment of COPD.
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