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Background: Colon cancer is a common malignant tumor with poor prognosis. The aim
of this study is to explore the immune-related prognostic signatures and the tumor immune
microenvironment of colon cancer.

Methods: The mRNA expression data of TCGA-COAD from the UCSC Xena platform and
the list of immune-related genes (IRGs) from the ImmPort database were used to identify
immune-related differentially expressed genes (DEGs). Then, we constructed an immune-
related risk score prognostic model and validated its predictive performance in the test
dataset, the whole dataset, and two independent GEO datasets. In addition, we explored
the differences in tumor-infiltrating immune cell types, tumor mutation burden (TMB),
microsatellite status, and expression levels of immune checkpoints and their ligands
between the high-risk and low-risk score groups. Moreover, the potential value of the
identified immune-related signature with respect to immunotherapy was investigated
based on an immunotherapeutic cohort (Imvigor210) treated with an anti-PD-L1 agent.

Results: Seven immune-related DEGs were identified as prognostic signatures. The areas
under the curves (AUCs) of the constructed risk score model for overall survival (OS) were
calculated (training dataset: 0.780 at 3 years, 0.801 at 4 years, and 0.766 at 5 years; test
dataset: 0.642 at 3 years, 0.647 at 4 years, and 0.629 at 5 years; and the whole dataset:
0.642 at 3 years, 0.647 at 4 years, and 0.629 at 5 years). In the high-risk score group of the
whole dataset, patients had worse OS, higher TMN stages, advanced pathological stages,
and a higher TP53mutation rate (p < 0.05). In addition, a high level of resting NK cells or M0
macrophages, and high TMB were significantly related to poor OS (p < 0.05). Also, we
observed that high-risk score patients had a high expression level of PD-L1, PD-1, and
CTLA-4 (p < 0.05). The patients with high-risk scores demonstrated worse prognosis than
those with low-risk scores in multiple datasets (GSE39582: p = 0.0023; GSE17536: p =
0.0008; immunotherapeutic cohort without platinum treatment: p = 0.0014;
immunotherapeutic cohort with platinum treatment: p = 0.0027).

Conclusion:We developed a robust immune-related prognostic signature that performed
great in multiple cohorts and explored the characteristics of the tumor immune
microenvironment of colon cancer patients, which may give suggestions for the
prognosis and immunotherapy in the future.
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INTRODUCTION

Colon cancer is known as one of the most malignant tumors with
a high mortality rate worldwide (Siegel et al., 2018). Despite the
recent progress in diagnosis and therapy, the overall prognosis for
colon cancer patients remains poor because effective biomarkers
for prognosis prediction are lacking (Keum and Giovannucci,
2019). Therefore, it is urgent and essential to explore valuable
prognostic signatures and therapeutic targets for colon cancer.

Immunotherapy takes advantage of the body’s own immune
system to attack cancer, which has become a powerful and
promising clinical strategy for treating various tumors (Riley et al.,
2019), including colon cancer(Chalabi et al., 2020; Lichtenstern et al.,
2020; Ghonim et al., 2021). Immune checkpoint inhibitors (ICIs), a
typical type of immunotherapy, function through inhibiting negative
regulatory receptors, such as programmed cell death 1 (PD-1) and
cytotoxic T lymphocyte antigen 4 (CTLA4), and thereby activates
antitumor immunity (Tolba, 2020). However, only a fraction of
patients were benefited from immunotherapy due to the
heterogeneity and complexity of the tumor immune
microenvironment (Dienstmann et al., 2017; Wang et al., 2019).
Although it has been proved that IRGs were associated with the
development of colon cancer (Cereda et al., 2016; Yu et al., 2019),
these insights have not been applied to clinical practice. Recently,
using bioinformatics andmachine learningmethods, various types of
immune-related biomarkers have been found to be associated with
the prognosis of colon cancer, such as long non-coding RNAs (Yilin
Lin et al., 2020), cell infiltration (Zhou et al., 2019), and IRGs (Chen
et al., 2020). However, the molecular characteristics describing the
tumor immune microenvironment need to be further investigated
due to their potential of prognosis and immunotherapy of colon
cancer.

In this study, we constructed and validated a robust immune-
related prognostic model based on TCGA-COAD cohorts and
two independent GEO datasets. Additionally, we explored the
relationship between the constructed prognostic model and colon
cancer patients’ clinical and pathological features. In addition, we
analyzed the characteristics of the tumor immune
microenvironment, including tumor-infiltrating cell
composition, TMB, TP53 mutation rates, and the mRNA
expression levels of PD-1/PD-L1/CLTA4. Furthermore, the
immune-related signature was also significantly associated with
OS in patients with anti-PD-L1 treatment, and colon cancer
patients with low-risk scores may be more sensitive to ICI
therapy. These findings may provide new insights toward
novel therapeutic targets for colon cancer.

MATERIALS AND METHODS

Data Acquiring
TCGA Cohorts and the List of Immune-Related Genes
The mRNA sequencing data, mutation profiling data, and clinical
information were downloaded from the UCSC Xena platform
(https://xenabrowser.net/datapages/). Subsequently, the samples
(n = 471) were divided into normal (n = 39) and tumor groups
(n = 432), and the detailed information is shown in

Supplementary Table S1. The list of immune-related genes
was acquired from the ImmPort database (https://immport.
niaid.nih.gov/), with a total of 1509 genes.

GEO Cohort for External Validation
Two independent datasets (GSE39582 and GSE17536) were
downloaded from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/). The GSE39582 included 556 colon cancer
samples, and GSE17536 included 177 colon cancer samples,
with clinical and survival information. The detailed
information is shown in Supplementary Tables S2, S3,
respectively.

Immunotherapeutic Cohort
An immunotherapeutic cohort (IMvigor210) was obtained from
a published study (Mariathasan et al., 2018), which investigated
the clinical activity of the PD-L1 blockade with atezolizumab
(anti-PD-L1 McAb) in urothelial cancer. The detailed clinical
information and gene expression profile of the cohort were
available according to the guideline on http://research-pub.
gene.com/IMvigor210CoreBiologies using the
IMvigor210CoreBiologies R package. We divided the samples
into platinum-treated (N = 105) and non-platinum-treated
datasets (N = 237) according to whether they received
platinum-based chemotherapy or not, and the detailed
information is shown in Supplementary Table S4.

Screening Immune-Related DEGs
DEGs between normal and tumor groups were screened using the
limma R package (Ritchie et al., 2015), with the cutoff criteria set
as | log2 fold change (FC)| >0.585 and adjusted p-value < 0.05.
The immune-related DEGs were obtained by overlapping the
IRGs and DEGs. In order to investigate biological pathways
correlated with immune response, we performed gene ontoloy
(GO) functional annotations and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis on immune-related
DEGs using the clusterProfiler R package (Yu et al., 2012).

Construction and Validation of the
Immune-Related Prognostic Model for
Colon Cancer
The whole dataset (n = 432) with all tumor samples was randomly
divided into training dataset (n = 216) and test dataset (n = 216)
with a 1:1 ratio. As shown in the Supplementary Table S5, there
was no significant difference among the whole dataset, the
training dataset, and test dataset for most clinical-pathological
factors. The training dataset was used to identify the prognostic
signature and constructed a prognostic risk model. First, we
identified the candidate prognostic signature using the
univariable Cox proportional hazards regression model and
Survival R package. To avoid over-fitting, all genes with
p-value < 0.05 were involved in the subsequent least absolute
shrinkage and selection operator (LASSO) analysis using the
glmnet R package. The association between the mRNA
expression level of the filtered candidate prognostic genes and
patients’ OS was further investigated using Kaplan–Meier
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analysis. Then, the multivariate Cox regression analysis was
conducted to determine each independent prognostic
indicator. Accordingly, the coefficient of the immune-related
indicator was obtained from the multivariate Cox results. A
formula for the immune-related risk score model was
established to predict patient survival:

risk score � ΣCox coefficient of gene χi × scale expression value of gene χi.

To evaluate the predictive efficiency of the constructed
immune-related risk score model, we plotted a receiver
operating characteristic (ROC) curve to quantify the area
under the curve (AUC) using the survivalROC R package.
Also, we selected the turning point of the ROC curve with the
most significant difference between true positive and false
positive as the optimal cutoff risk score. Patients above the
cutoff value belong to the high-risk group, while patients
below it belong to the low-risk group. In addition,
Kaplan–Meier curves were plotted to distinguish the two
groups using the survminer R package.

Moreover, the test dataset and the whole dataset were used to
validate the prognostic capability of the immune-related
signature. Similarly, the two datasets were divided into high-
and low-risk groups based on the constructed risk score model.
Next, the ROC and Kaplan–Meier curves were plotted to validate
the predictive accuracy of the risk score model. Then, the
nomogram was constructed using the whole dataset based on
the risk score model and clinical factors, including the age,
gender, microsatellite status, and tumor stage. The constructed
nomogram was further assessed by calibration. Additionally, the
associations between the immune-related constructed risk score
model and the clinical and pathological characteristics, including
advanced pathological stages and TNM stages, were explored by
using the Wilcoxon test. Additionally, the constructed model was
further validated using GEO datasets with accession numbers
GSE39582 and GSE17536.

Estimation and Comparison of
Tumor-Infiltrating Immune Cell Type
Fractions
The whole dataset was divided into high- and low-risk groups
according to the constructed risk model, and the CIBERSORT
algorithm was conducted to access the proportions of 22 types of
tumor-infiltrating immune cells using the normalized gene
expression matrixes and running with 1000 permutations
(Newman et al., 2015). Subsequently, the comparison of
immune landscape between the high- and low-risk groups was
evaluated using the unpaired t-test. The significant differential
immune cell types (p-value < 0.001) were further assessed for
their relationship with OS using Kaplan–Meier curves.

Characteristics of Immunotherapy-Related
Predictors for Colon Cancer Patients
We first calculated the TMB value and visualized the mutation
profiles of the high- and low-risk groups of the whole dataset

using the maftools R package (Mayakonda et al., 2018). The
unpaired t-test statistically analyzed the differences of the TMB
between the high- and low-risk groups. In addition, the OS
between the high- and low-risk groups was calculated using
the Kaplan–Meier method. Moreover, the Wilcoxon test was
used to compare the mRNA levels of immune checkpoints and
their ligands between the high- and low-risk groups.

Exploring the Associations Between the
Microsatellite Status and the Constructed
Prognostic Model
The whole dataset, after removing the samples without
microsatellite status information, was used for further analysis
based on the constructed prognostic model. Subsequently, the
samples were divided into MSI-H and MSS/MSI-L groups
according to the microsatellite status information extracted
from the phenotypic data, and the Wilcoxon test was
performed to analyze the difference of the level of risk score
between the MSI-H and MSS/MSI-L groups. Moreover, the OS
between the MSI-H group and MSI-L/MSS group was calculated
using the Kaplan–Meier method.

The Role of the Immune-Related Prognostic
Signature in Immunotherapy
In order to investigate the potential value of the identified
immune-related signature with respect to immunotherapy, we
obtained the gene expression profiles and corresponding clinical
features from an immunotherapeutic cohort (Imvigor210)
treated with anti-PD-L1 agent, which was divided into
platinum-treated and non-platinum-treated datasets. We first
validated the constructed immune-related prognostic model
using the platinum-treated and non-treated datasets,
respectively. Then, the complete response (CR) or partial
response (PR) patients were categorized as responders and
compared with non-responders, who displayed stable (SD) or
progressive disease (PD), and the risk score of each patient was
calculated based on the constructed risk score model.
Subsequently, we statistically analyzed the distribution of the
risk score between the responders and non-responders.
Moreover, we further compared the tumor mutation load and
neoantigen burden between high-and low-risk groups using the
Wilcoxon test.

RESULTS

Identification of Immune-Related DEGs
A flow chart of the whole analysis pipeline is shown in Figure 1. A
total of 571 DEGs (275 upregulated and 296 downregulated) were
screened by comparing between tumor and normal groups
(Figure 2A). After the intersection with 1509 IRGs,
102 immune-related DEGs were obtained (Figure 2B), of
which 83 genes were downregulated, and 19 genes were
upregulated. Detailed information is shown in Supplementary
Table S6. Subsequently, functional and pathway enrichment
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analyses were performed using the clusterProfiler R package.
KEGG analysis results indicated that the immune-related
DEGs were significantly enriched in terms associated with the
cytokine–cytokine receptor interaction, neuroactive
ligand–receptor interaction, and IL-17 signaling pathway
(Figure 2C), while GO related to humoral immune response
was mediated by circulating immunoglobulin, humoral immune
response, and immunoglobulin-mediated immune response
(Figure 2D).

Construction of the Immune-Related Risk
Score Model and the Evaluation of its
Prognostic Ability
To explore the prognostic value of the immune-related DEGs,
we performed the univariate Cox regression analysis. A total of
10 genes were significantly related to OS status, and 7 genes with
the maximum prognostic value were further identified using
LASSO regression analysis (Supplementary Figures S1A,B).
The mRNA expression level of the seven genes was significantly
associated with patients’ OS (GUCA2A: p = 0.013; CHGB: p =
0.05; SSTR2: p = 0.017;VIP: p = 0.0074;OXTR: p = 0.001; IL1A: p
= 0.0035; and GRP: p = 0.016), and the higher expression level of
IL1A and GUCA2A was associated with a better patients’ OS,
while the other five genes were opposite (Supplementary Figure
S1C–I). Then, we conducted the multivariate Cox regression
analysis and established an immune-related risk score model
based on the training dataset, and the hazard ratio of each gene
is shown in Figure 2E. The colon cancer patients were divided
into high- and low-risk groups according to the risk score
calculated using the formula described in Materials and
Methods. The scatter diagram in Figure 2F revealed that the
OS tended to become worse with the increase of risk score, and
the proportion of death in the high-risk group (the proportion
of red dot and blue dot on the right side) was higher than that in

the low-risk group. The heatmap in Figure 2F showed that the
expression of IL1A and GUCA2A was low in the low-risk group
and high in the high-risk group, while the trend of the other five
genes was opposite. The Kaplan–Meier analysis results showed
that high-risk score patients had worse OS than low score
patients (p < 0.0001, Figure 2G). The prognostic accuracy of
the risk score model was investigated as a continuous variable
(Figure 2H). The AUC of the prognostic model for OS was
0.780 at 3 years, 0.801 at 4 years, and 0.766 at 5 years, indicating
its excellent prediction performance.

Validation and Assessment of the
Immune-Related Prognostic Signatures
To determine if the constructed risk core model is consistent in
different populations, we performed an identical formula using
the test dataset and the whole dataset. Consistent with the
findings in the training dataset, patients categorized into the
high-risk score group had worse OS than the patients in the low-
risk score group (p < 0.05, Supplementary Figures S2A,C). The
areas under the curves (AUCs) of the prognostic model were
0.642 for 3-year OS, 0.647 for 4-year OS, and 0.629 for 5-year OS
using the test dataset, and 0.626 for 3-year OS, 0.663 for 4-year
OS, and 0.661 for 5-year OS using the whole dataset
(Supplementary Figures S2B,D). The Wilcoxon test showed
that the higher risk score was associated with a higher T stage
(p = 0.00009), N stages (p = 0.0018), metastasis (p = 0.0064), and
advanced pathological stage (p = 0.0034) based on the whole
dataset (Figures 3A–D).

To further validate the robustness of the prognostic signatures
and improve the accuracy of the performance of the risk score
model, we constructed a nomogram that integrated the immune-
related risk score and clinical information, including the age, sex,
microsatellite status, and tumor stage to quantitatively predict the
prognosis of colon cancer patients in the whole dataset. In the

FIGURE 1 | The whole flow chart of data analysis.
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nomogram, the score for each variable can be found on the point
scale, so that it is easy to estimate the probability of survival at 3, 4,
and 5 years by calculating the total score (Supplementary Figure
S2E). The forest plot showed that patient’s characters, including
the age (>60), tumor stage (III and IV), and risk score were
significantly associated with the OS (p-value < 0.05, Figure 3E).
The calibration curves revealed that the predictive curves were
close to the ideal curve (Figures 3F–H), indicating good
performance. Furthermore, the predictive accuracy of this
nomogram (C-index: 0.74) was higher than that of the risk
score model (C-index: 0.72).

Exploring the Tumor Immune
Microenvironment in Colon Cancer Patients
Based on the CIBERSORT algorithm, we estimated the
proportions of 22 types of immune cells in each colon cancer
patient. Then, we compared the proportions of immune cells
between the low-risk group and high-risk group, and the
significant differences were found in resting NK cells, M0
macrophages, M2 macrophages, CD4 memory-activated
T cells, plasma cells, resting mast cells, and neutrophils.
Among them, the resting NK cells and M0 macrophages were

FIGURE 2 | Analysis of immune-related DEGs and construction of the immune-related prognostic model. (A) The volcano plot on all DEGs between the
tumor and normal samples. The green dots represent downregulated genes, while the red dots represent upregulated genes. (B) The Venn diagram of the
intersection between the DEGs and IRGs. (C) The KEGG pathway enrichment analysis of immune-related DEGs. (D) GO analysis of immune-related DEGs.
(E) The forest plot showed the results of multivariate Cox analysis. (F) The distribution of the high- and low-risk score groups and their relationship with
OS, and the expression pattern of seven prognostic signatures in high- and low-risk score groups. (G) The Kaplan–Meier curve revealed that OS in the low-
risk score group was significantly higher than that in the high-risk score group. (H) Time-dependent ROC curve analysis of the immune-related risk
score model.
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FIGURE 3 | Exploring the relationship between the risk score of the colon cancer patients and clinical and pathological characteristics, including (A) T
stages, (B)M stages, (C) N stages, and (D) advanced pathological stages, based on the whole dataset. Construction and validation of a nomogram. (E) Forest
plots showed the associations between patients’ characteristics and OS. (F–H) The calibration plot of the nomogram to predict the probability of OS at 3, 4, and
5 years.
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FIGURE 4 | Analysing the immune cell types and mutation profiles in high- and low-risk groups based on the whole dataset. (A) Comparing the difference of the
proportions of immune cells between the low-risk group and high-risk group using the Wilcoxon test. The values of P were labeled above each boxplot with asterisks
(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (B, C) The Kaplan–Meier analysis of the relationship between the level of resting NK cells and M0 macrophages with
patients’OS. (D) The mutation profiles of colon cancer patients in high- and low-risk groups. (E) Comparison of the mutation rate between the high-risk group and
low-risk group.
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FIGURE 5 | Exploring the tumor immune microenvironment in colon cancer patients. (A) The association between the TP53 status and patients’ OS. (B) The
difference of TMB between the high-risk group and the low-risk group. (C) The association between TMB and patients’OS. (D) The difference in the level of the risk score
between the MSI-H and MSI-L/MSS groups. (E) The association between the microsatellite status and patients’ OS. (F–H) Comparison of the expression levels of the
immune checkpoints and their ligands between the high-risk score group and low-risk score group. (F) The expression of PD-L1, (G) the expression of PD-1, and
(H) the expression of CTLA-4.
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the most significant, with p < 0.001 (Figure 4A). The
Kaplan–Meier curve revealed that a high level of resting NK
cells or M0 macrophages was significantly related to poor OS (p <
0.05, Figures 4B,C).

The mutation profiles of each colon cancer patient were plotted
using the whole dataset. As shown in Figure 4D, the top 20
significantly mutated genes were APC, TP53, TTN, KRAS, SYNE1,
MUC16, PIK3CA, FAT4, RYR2, OBSCN, ZFHX4, DNAH5, PCLO,
CSMD3, ABCA13, DNAH11, LRP1B, FAT3, USH2A, and CSMD1.
Among them, the mutation rate of TP53 was significantly different
between the high-risk score group and low-risk group (p = 0.037,
Figure 4E). However, the TP53 status was not significantly related to
patients’ OS (Figure 5A). Besides, we calculated the TMB of each
sample and found that there was no significant difference between the
high-risk group and the low-risk group (p = 0.85, Figure 5B).
However, we observed that high TMB was significantly related to
poor patients’ OS (Figure 5C). Additionally, the Wilcoxon test
statistically analyzed the difference in the level of risk scores
between the MSI-H and MSI-L/MSS groups, and the result
showed the difference was not significant (p = 0.06, Figure 5D).
As shown in Figure 5E, the microsatellite status cannot be used as an
independent prognostic factor (p = 0.83).

Moreover, the Wilcoxon test was used to compare the
expression levels of the immune checkpoints and their ligands
between the high-risk score group and low-risk score group. The
high-risk score group had a high expression level of PD-L1 (p =
0.001), PD-1(p = 0.00022), and CTLA-4 (p = 0.00021,
Figures 5F–H).

Validation of the Prognostic Signature
Using GEO Datasets
In order to investigate the applicability in multiple cohorts based on
different platforms, we further verified the constructed risk score
model using two independent external GEO datasets. We found that
patients with high-risk scores demonstrated worse prognosis than
those with low-risk scores (GSE39582: p = 0.0023, Supplementary
Figure S3; GSE17536: p = 0.0008, Supplementary Figure S4). The
AUCs of the prognostic model were 0.577 for 3-year OS, 0.569 for 4-
year OS, and 0.568 for 5-year OS using the GSE39582 dataset
(Supplementary Figure S3A), and 0.578 for 3-year OS, 0.699 for
4-year OS, and 0.657 for 5-year OS using GSE17536 (Supplementary
Figure S4A). The Wilcoxon test showed that a higher risk score was
associated with a higher T stage (p = 0.0041), metastasis (p = 0.04), N
stages (p = 0.037), and advanced pathological stages (p = 0.033) using
GSE39582 (Supplementary Figures S3C–F). It was also found that a
higher risk score was associated with a higher advanced pathological
stage (p= 0.029) in GSE17536 (Supplementary Figure S4C), without
obtaining the TMN stage data.

The Prognostic Signature in the Role of ICI
Treatment
In the immunotherapeutic cohort, patients with a low-risk score
exhibited a significantly prolonged survival rate (non-platinum-
treated dataset: p = 0.0014, Supplementary Figure S5A;
platinum-treated dataset: p = 0.033, Supplementary Figure

S6A). Patients without platinum treatment indicated marked
clinical benefits from immunotherapy in the low-risk score
group compared to those with a high-risk score (p = 0.0027,
Supplementary Figure S5B), but not significantly in patients
with platinum treatment (p = 0.44, Supplementary Figure S6B).
Further analysis revealed that a higher tumor mutation load in
patients with platinum treatment was significantly associated
with a low-risk score (p = 0.039, Supplementary Figure S6C),
but not in patients without platinum treatment (p = 0.21,
Supplementary Figure S5C). Interestingly, higher neoantigen
burden in patients without platinum treatment was significantly
associated with a low-risk score (p = 0.025, Supplementary
Figure S5D), but not in patients with platinum treatment (p =
0.5, Supplementary Figure S6D).

DISCUSSION

The immune cells within the tumor microenvironment (TME)
function play a key role in tumorigenesis (Lei et al., 2020).
Growing evidence has revealed the therapeutic potential of ICIs in
colon cancer (Kimura et al., 2020; Wang et al., 2020). However, the
limited knowledge on the characteristics of the TME, to some extent,
hindered the development of the application of immunotherapy. In
recent years, many efforts have been made to identify immune-
related biomarkers for the diagnosis and prognosis of colon cancer
(Zhou et al., 2019; Laghi et al., 2020; Li et al., 2020). However, more
reliable biomarkers still need to be explored to maximize the
application of immunotherapy.

In this study, we developed a prognostic risk score model
based on seven IRGs, named GUCA2A, CHGB, SSTR2, VIP,
OXTR, IL1A, and GRP, which has been verified in multiple
cohorts across different platforms. Among them, GUCA2A,
VIP, and OXTR have been demonstrated to be significantly
associated with the prognosis of colon cancer (Zhang et al.,
2019; Houxi Xu et al., 2020; Kang Lin et al., 2020; Zhang
et al., 2020). A previous study reported that guanylyl cyclase C
(GUCY2C) could act as a tumor suppressor and play an
important role in orchestrating intestinal homeostatic
mechanisms, which could be used as a therapeutic target for
colon cancer patients (such as the FDA-approved oral GUCY2C
ligand linaclotide, Linzess™) (Pattison et al., 2016). GUCA2A
may be considered as a potential marker for the prognosis and
therapeutic target in colon cancer by binding and activating
GUCY2C. As a precursor of regulatory peptide, the
relationship between CHGB and tumor is not clear. However,
CHGB was suggested to be an immune-related signature for low-
grade glioma (Liu et al., 2021) and head and neck squamous cell
carcinoma (Zhang et al., 2021). Previous studies also
experimentally demonstrated that an abnormal expression of
CHGB was associated with aggressive VHL-associated
pancreatic neuroendocrine tumors (validated by
immunohistochemistry) (Weisbrod et al., 2013), pancreatic
cancer (validated by qPCR) (Jia-Sheng Xu et al., 2020), and
small cell lung cancer (validated by immunoblotting and
qPCR) (Moss et al., 2009). SSTR2, as a G protein-coupled cell
surface receptor, can be activated by extracellular ligands, which
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leads to the inhibition of cell proliferation (Lechner et al., 2021).
Precious studies demonstrated that SSTR2 might serve as a
molecular target in the diagnosis and treatment of thyroid
cancer (Thakur et al., 2021), small intestinal neuroendocrine
tumor (Elf et al., 2021), and neuroendocrine tumors (Si et al.,
2021). VIP can provide protection from apoptosis in
tumorigenesis (Sastry et al., 2017). OXTR and its ligand oxytocin
(OXT) are present in the gastrointestinal system and involved in
tumorigenesis (Ma et al., 2019). IL1A was involved in various
immune responses, inflammatory processes, and hematopoiesis,
which might be associated with colon tumorigenesis (Yoshikawa
et al., 2017). To our knowledge, the relationship between GRP and
tumorigenesis has not been reported.

Furthermore, we systematically explored the characteristics of
the tumor immune microenvironment. The results revealed that
the tumor-infiltrating resting NK cells or M0 Macrophages, TP53
mutation rates, and TMB could be independent prognostic
signatures for colon cancer. Additionally, we observed that the
expression levels of checkpoint genes (PD-L1, PD-1, and CTLA-4)
were higher in high-risk score patients, which may suggest that
our immune-related risk score model was capable of providing
support for immunotherapy. More importantly, the immune-
related signature was also significantly associated with OS in
patients with anti-PD-L1 treatment. We speculated that patients
with a low-risk score might be more sensitive to ICI therapy based
on the result of Supplementary Figures S5, S6.

In addition, we compared the performance of our constructed
immune-related prognostic model with the published prognostic
model of colon cancer based on the cohorts TCGA-COAD,
GSE39582, and GSE17536, which is summarized in
Supplementary Table S7. Our constructed prognostic model
was relatively and effectively validated in more internal and
external cohorts, including an immunotherapeutic cohort.

CONCLUSION

In summary, a robust immune-related prognostic model was
constructed, and the characteristics of the tumor immune

microenvironment were explored, which may be helpful for
the prognosis and immunotherapy of colon cancer patients.
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