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Abstract 

Background: Four-dimensional (4D) wide coverage computed tomography (CT) is an effective imaging 

modality for measuring the mechanical function of the myocardium.  However, repeated CT measurement 

across a number of heartbeats is still a concern. 

Purpose: A projection-domain noise emulation method is presented to generate accurate low-dose (mA 

modulated) 4D cardiac CT scans from high-dose scans, enabling protocol optimization to deliver sufficient 

image quality for functional cardiac analysis while using a dose level that is as low as reasonably achievable 

(ALARA). 

Methods: Given a targeted low-dose mA modulation curve, the proposed noise emulation method injects 

both quantum and electronic noise of proper magnitude and correlation to the high-dose data in projection 

domain. A spatially varying (i.e., channel-dependent) detector gain term as well as its calibration method 

were proposed to further improve the noise emulation accuracy. To determine the ALARA dose threshold, 

a straightforward projection domain image quality (IQ) metric was proposed that is based on the number 

of projection rays that do not fall under the non-linear region of the detector response. Experiments were 

performed to validate the noise emulation method with both phantom and clinical data in terms of visual 

similarity, contrast-to-noise ratio (CNR), and noise-power spectrum (NPS). 

Results: For both phantom and clinical data, the low-dose emulated images exhibited similar noise 

magnitude (CNR difference within 2%), artifacts, and texture to that of the real low-dose images. The 

proposed channel-dependent detector gain term resulted in additional increase in emulation accuracy. Using 

the proposed IQ metric, recommended kVp and mA settings were calculated for low dose 4D Cardiac CT 

acquisitions for patients of different sizes.  

Conclusions: A detailed method to estimate system-dependent parameters for a raw-data based low dose 

emulation framework was described. The method produced realistic noise levels, artifacts, and texture with 

phantom and clinical studies. The proposed low-dose emulation method can be used to prospectively select 

patient-specific minimal-dose protocols for functional cardiac CT.  

Keywords: Noise Injection, Low-Dose Emulation, Functional Cardiac CT, Image Quality 

I. Introduction 

Wide coverage computed tomography (CT) is an effective imaging modality for measuring the mechanical 

function of the myocardium. The coverage of 16 cm eliminates the needs of multiple table positions and 

provides high fidelity 4D images of a beating heart from a single heartbeat acquisition. Characterizing 

dyssynchronous LV wall motion available from the 4D CT images has recently been shown to predict 
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response to Cardiac Resynchronization Therapy (CRT),1 a medical procedure aimed at correcting 

mechanical dyssynchrony.2–5 Also, myocardial perfusion measurements require multiple images across a 

number of heartbeats. Hence, the X-ray dose from these 4D acquisitions is still a concern.6 There is a clear 

compromise between radiation dose and the resulting image quality for downstream 4D CT analysis. The 

purpose of this work is to optimize acquisition parameters, such as X-ray tube current (mA) and tube voltage 

(kVp), to deliver sufficient image quality for functional cardiac analysis techniques while using a dose that 

is as low as reasonably achievable (ALARA).  

Ideally, to investigate the implications of low dose on cardiac function analysis, multiple acquisitions would 

be obtained in the same subject during precisely the same motions; however, this is not possible for patient 

studies. Alternatively, inserting synthetic noise to existing clinical data sets has been explored.7–21 Synthetic 

noise insertion is referred to as low dose emulation (LDE) in this work. Common LDE approaches can be 

classified into two broad categories: image-based and raw data-based. Image based methods add noise into 

reconstructed CT images without accessing projection domain raw data.17–21 These approaches are useful 

when the raw data are not available. However, non-local noise properties make it quite difficult to accurately 

insert noise in the image domain.8 The raw data-based approach simulates lower-dose scans by adding 

additional noise in the projection domain.7–16 Raw data-based approaches are often more realistic especially 

at extremely low dose levels because: (i) the negative log and associated pre-processing steps create 

nonlinearity at low flux levels which is not easily reproduced with image domain approaches;22,23 (ii) the 

noise is more accurately modeled in the projection domain (for example, as a combination of Poisson-

distributed quantum noise and Gaussian-distributed electronic noise).  

Considering these advantages, a new raw data-based / projection domain LDE approach is proposed in this 

work. Prior approaches in the literature typically assume that the noise distribution of the quantum and 

electronic noise at each channel is the same, given the same mean signal value and signal spectrum. While 

this assumption is reasonable, it is not perfectly accurate considering that the conversion factor / gain from 

photons to electrons is in fact channel dependent. Therefore, the previously proposed LDE methods can be 

improved by modeling and calibrating channel-specific properties of the detector as done in this work. In 

addition, our LDE approach includes modeling of the bowtie filters, beam hardening (BH) effects from the 

patients, nonlinearity in detector response at extremely low flux conditions, and the temporal correlation of 

electronic noise. 

Our goal is to provide a critical tube current for a given patient at a given voltage, below which an 

acquisition will fail to meet a desired image quality (IQ) requirement. In this work, instead of using an 

image-based IQ metric, we propose a new raw data-based IQ metric to determine the minimum flux an 

acquisition can tolerate while still generating usable information for a given application. This IQ metric is 
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useful for complex applications such as measuring myocardial function where a universal image quality 

requirement is difficult to formulate. Additionally, a projection domain IQ metric is much more 

straightforward to calculate without the need for actual reconstructions. This is especially useful for 4D CT 

applications where many reconstructions (e.g., multiple phases in 4D cardiac CT) are required for each tube 

current and voltage level.  

We first describe our new projection-domain LDE approach in section II.A-II.C. The protocol optimization 

method utilizing the proposed projection domain IQ metric is described in section II.D. Section III presents 

the validation of the LDE approach, and the results of critical mA-based protocol optimization method with 

phantom and clinical studies. Finally, some concluding remarks are drawn in section IV. The novel 

contributions of this work are as follows: (i) while applicable to other CT applications, the proposed method 

is heavily focused on 4D functional cardiac CT applications such as ejection fraction or myocardial strain, 

which typically can be performed with low mA and mA modulation, (ii) a new LDE and calibration 

approach is proposed which characterizes spatially-varying response functions for each detector channel; 

(iii) a new projection domain IQ metric is proposed for efficient scan protocol optimization; (iv) 

recommended kVp and mA settings were reported for low dose 4D Cardiac CT acquisitions for patients of 

different sizes. 

II. Methods 

Figure 1 illustrates our LDE strategy and the general workflow for selecting the minimum-dose protocol 

for CT scans for cardiac patients. Given a non-mA-modulated full dose (FD) scan covering a full cardiac 

cycle [example mAs curve shown in Fig. 1(a)], the proposed LDE method can be used to generate emulated 

low dose (LD) projections given a targeted mAs modulation curve [example mAs shown in Fig. 1(b), where 

high mAs / dose is only prescribed for the mid-diastole phase].   

The protocol selection step (blue boxes in Fig. 1) is patient-specific and can be done in either projection or 

image domain, or both. As mentioned above, projection domain IQ metrics are much easier to calculate as 

they do not require (multi-phase) reconstructions for each targeted mAs modulation curve. Image domain 

metrics on the other hand could account for the effects of reconstruction algorithms, including prescribed 

artifact corrections and postprocessing methods. Image domain metrics typically involve standard IQ 

metrics [e.g., contrast-to-noise ratio (CNR) and noise power spectrum (NPS)], observer perceived image 

quality metrics (e.g., Likert score), and task-specific metrics (e.g., Dice coefficient in downstream 

segmentation tasks). We focus on projection domain metrics in this work (as described in Sec. II.D) and 

leave image domain metrics to a different study24.  
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Figure 1. Workflow of the proposed low dose emulation (LDE) method and its targeted applications. The full dose 

(FD) data [mAs vs. time curve shown in (a)] is acquired as part of the current clinical workflow and provides the basis 

projection data for creating low-dose (LD) emulations. The noise injection process creates accurate emulated LD 

projections for any prescribed low dose mAs curves (b). By analyzing these emulated LD datasets in projection (focus 

of this work) and/or image domains (described in Ref 24), minimum dose CT protocols can then be determined.   

II.A. Raw Data-Based Noise Emulation 

For each view (view index denoted as 𝑖) within the complete cardiac scan window, the proposed LDE 

approach modifies the original FD CT projection data in a manner that simulates low mAs X-ray tube 

output. When the X-ray output is reduced by a factor of 𝑟𝑖 (𝑟𝑖 < 1 for every view), the mean signal is reduced 

by a factor of 𝑟𝑖, and additional noise needs to be added to emulate the corresponding signal-to-noise ratio 

(SNR) reduction. Following the previous work from our group,12 we use a projection domain noise 

emulation framework where additional noise is modeled as two separate components: (1) Poisson 

distributed X-ray (i.e., quantum) noise in the photon domain (𝑛𝑖,𝑞), and (ii) Gaussian distributed electronic 

noise in the electron domain (𝑛𝑖,𝑒). These two components are uncorrelated as they are added in different 

domains. The overall LDE process is expressed as: 

𝑦𝑖,𝐿𝐷𝐸 = 𝑇 (𝑟𝑖

𝑦𝑖,F𝐷

𝑇
+ 𝑛𝑖,𝑞) + 𝑛𝑖,𝑒 (1) 

where 𝑦𝑖,𝐹𝐷 is the original full RR dose projection in electron domain at view 𝑖, 𝑦𝑖,𝐿𝐷𝐸 is the low-dose 

emulated projection in electron domain, 𝑇 is the conversion factor from X-ray photon domain to electron 

domain, 𝑟𝑖 is again the X-ray output reduction factor for view 𝑖, which can be calculated by dividing the 

targeted LD mAs curve with the original FD mAs curve at each view [example mAs curves shown in Fig. 

1(a) and (b)]. The injected quantum noise 𝑛𝑖,𝑞 and electronic noise 𝑛𝑖,𝑒 are assumed to be independent of 

𝑦𝑖,𝐹𝐷. Since 𝑦𝑖,𝐹𝐷 is in the electron domain, it was first converted to the photon domain by dividing by 𝑇, 
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scaled for the desired mAs level, contaminated with quantum noise in the photon domain, and then 

converted back to the electron domain. Finally, additional electronic noise was added in the electron domain.  

Variance of the injected noise can be calculated as12: 

𝜎𝑖,𝑞
2 = (𝑟𝑖 − 𝑟𝑖

2)𝜎𝑖,𝑞,𝐹𝐷
2 = (𝑟𝑖 − 𝑟𝑖

2)
𝑦𝑖,𝐹𝐷

𝑇
(2) 

𝜎𝑖,𝑒
2 = (1 − 𝑟𝑖

2)𝜎𝑒,𝑠𝑦𝑠
2 (3) 

where 𝜎𝑖,𝑞
2  is the variance of the injected quantum noise in photon domain (i.e., variance of 𝑛𝑖,𝑞), 𝜎𝑖,𝑞,𝐹𝐷

2  is 

the variance of the quantum noise of 𝑦𝑖,𝐹𝐷 in photon domain. Considering that X-ray photon detection is a 

Poisson process, 𝜎𝑖,𝑞,𝐹𝐷
2  is equal to the mean photon count 

𝑦𝑖,𝐹𝐷

𝑇

̅̅ ̅̅ ̅
, which can be approximated with 

𝑦𝑖,𝐹𝐷

𝑇
. 

Equation (3) shows the variance of the injected electronic noise in electron domain 𝜎𝑖,𝑒
2  (i.e., variance of 

𝑛𝑖,𝑒 ), where 𝜎𝑒,𝑠𝑦𝑠
2  is the variance of the electronic noise of the CT system, which is assumed to be 

independent of the signal magnitude. We modeled 𝜎𝑒,𝑠𝑦𝑠
2  as detector channel-dependent in this work.  

To add the correct amount of X-ray noise in the photon domain, we need to model the energy integrating   

detection process which can provide a correct mapping between the photon domain and the electron domain 

for a given CT scanner. In this work, we approximate this mapping as: 

𝑦 =  𝐷𝐺 ∑ 𝐸𝑘𝑁𝑘

𝑘

(4) 

where 𝑦 is the measurement in the electron domain for each channel, 𝐷𝐺 is a detector gain factor denoting 

per keV of photon energy used to covert to electrons, 𝐸𝑘 is the mean energy of photons in the kth energy 

bin, and 𝑁𝑘  is number of detected photons at energy 𝐸𝑘 . We can further simplify this transform by 

introducing 𝐸𝑒𝑓𝑓, an effective energy satisfying  ∑ 𝐸𝑘𝑁𝑘𝑘 = 𝐸𝑒𝑓𝑓𝑁, where 𝑁 is total number of detected 

photons (i.e., measurement in photon domain). Then we have: 

𝑦 = 𝐷𝐺𝐸𝑒𝑓𝑓𝑁 = 𝑇𝑁 (5) 

where the effective energy 𝐸𝑒𝑓𝑓 can be approximated using the known X-ray spectrum, bowtie filtration, 

and beam-hardening corrected post-log measurement.15 

In the LDE process, two system parameters need to be measured and calibrated: (1) 𝜎𝑒,𝑠𝑦𝑠, the standard 

deviation of electronic noise; and (2) 𝐷𝐺, the gain factor per keV of photon energy. These two parameters 

are dependent on detector material variations and detector spectral dependency, the analog circuits (ASIC) 

used for detector readout, and many other properties of each detector channel, which make them vendor-
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dependent, scanner-dependent, and channel-dependent within the same scanner. We propose two 

experiment-based approaches to estimate the channel-dependent system parameters 𝐷𝐺 and 𝜎𝑒,𝑠𝑦𝑠. Note 

that both 𝐷𝐺 and 𝜎𝑒,𝑠𝑦𝑠 are not view-dependent (i.e., they are independent of 𝑖).  

While the gain factor 𝐷𝐺 is channel-dependent, it is not assumed to be energy dependent. The separation of 

𝐷𝐺 and the effective energy 𝐸𝑒𝑓𝑓 is the key benefit of the approximation in Eq. (4). While 𝐸𝑒𝑓𝑓 can be 

calculated analytically, 𝐷𝐺 requires experimental calibration as mentioned above. Because 𝐷𝐺 is energy-

independent, this calibration is only required at one energy level. While this energy-independent assumption 

of 𝐷𝐺 is not perfect (due to physical effects such as depth-dependent light collection efficiency of the 

scintillator25), we find that it is accurate enough for our purposes as shown in Sec. II.C.  

II.B. Electronic Noise Modelling 

The source of the electronic noise is the detection system built with analogue integrated circuits (ASIC) 

behind the detector scintillator; it produces background noise while the X-ray tube is turned on or off. The 

electronic noise is often modelled as a zero-mean Gaussian distribution assuming that the average dark 

current was subtracted. The variance of electronic noise [𝜎𝑒,𝑠𝑦𝑠 in Eq. (3)] can be estimated from a dark 

scan, i.e., an acquisition without X-ray exposure. We used a non-clinical scan mode of the GE HealthCare 

RevolutionTM (Waukesha, WI) to acquire ~4000 views with full collimation (16cm) without X-rays. 

Our empirical analysis of dark scan data indicated that the variance of the electronic noise is channel 

dependent due to channel dependent properties of the underlying ASIC (electronic noise level standard 

deviation: 𝜎 = 1.93 ADU). Due to temporal correlation between consecutive views (i.e., memory effect of 

the ASIC), an independent Gaussian distribution is not the best model of the electronic noise. Therefore, 

instead of using a simple zero-mean Gaussian distribution with the same variance for all channels, we 

propose an empirical electronic noise realization approach utilizing the experimentally acquired dark scans.   

The first step in our electronic noise generation is to randomly sample a series of views from a large 

database of measured dark-scan views as described above. While this ensures an extremely realistic 

channel-specific signal distribution, the random sampling unfortunately removes the native temporal 

correlation discussed above. As a result, we next restore the original temporal correlation by applying a 

symmetric 3-tap temporal (view-axis) filter. The coefficients of the filter are channel-specific and chosen 

to minimize the difference between the temporal autocorrelation of the original data for a given channel 

and that of the corresponding sampled-then-filtered data. There is only one controlling parameter 𝑘 for the 

3-tap filter for each pixel (the three temporal coefficients for the filter are: −𝑘, 1 + 2𝑘, 𝑘 respectively). 

Across the entire detector, 𝑘 has a mean value of 0.132 and a standard deviation of 0.011. Through this 

process, channel-dependent variance and temporal correlation of the electronic noise are properly modeled. 
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II.C. Channel-Dependent 𝑫𝑮 Estimation  

As mentioned in Sec. II.A, if the electronic noise is ignored, the signal measured in the electron domain 

follows a Poisson distribution with channel-dependent scalar factor, 𝐷𝐺𝐸𝑒𝑓𝑓, where the ray-dependent 𝐸𝑒𝑓𝑓 

can be computed using a known X-ray spectrum, additional filtrations, and beam hardening corrected post-

log views. However, 𝐷𝐺 is a detection system specific parameter which needs to be measured or estimated 

for each scanner and each detector channel. We propose an experiment-based approach to estimate the 

system parameter 𝐷𝐺 , which follows the following three steps: (1) we scanned various thicknesses of 

aluminum (Al) plates at different dose levels by varying the X-ray tube current (mA);  (2) we created mean 

vs. variance (M-V) curves for each detector channel from aluminum plate scans; and (3) following Eq. (1), 

we created emulated M-V curves with various 𝐷𝐺 values and found the 𝐷𝐺 that minimizes the difference 

between the emulated and the real M-V curves in step (2); Note that the system tested in this work has an 

mA lower limit. Therefore, Al plates are utilized to create M-V curves at even lower signal levels. Following 

the same procedure, a different scanner can be characterized to produce a new set of slopes of M-V curves, 

which will then be translated into the system parameter 𝐷𝐺. These calibration steps are only required for 

one energy level (as 𝐷𝐺 is not energy dependent). Details of each step follow.  

 

Figure 2. Experiment setup for stacked Al plates. The thickness of each plate is 1/8 inch. Stacked plates are 

cantilevered and raised to cover the detector channels during acquisition. The position of the X-ray tube is fixed at 12 

o’clock [i.e., image top in (b)] during acquisitions.   

In the first step, we scanned stacked Al plates of 1/8 inch thickness cantilevered to the bore of GE 

HealthCare Revolution scanner as shown in Fig. 2. We used the non-clinical scan mode to fix the location 

of the X-ray tube at the top of the gantry and acquired ~ 4000 views without rotating the gantry. The stack 
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of plates was positioned high enough to provide good detector coverage. At each acquisition, the plates are 

either removed or added to create different thickness measurement in the range of 3/8 inch through 23/8 

inch. The experiments were repeated with three tube currents (10, 25, 600 mA). To validate our assumption 

that 𝐷𝐺  can be modeled as an energy-independent parameter with minimal loss in accuracy, two tube 

voltages (80 kVp and 140 kVp) with and without bowtie filtration are used in the calibration step. In practice, 

𝐷𝐺 calibration is only required at one energy level as mentioned above.   

Next, we computed channel means and variances from the measurements of varying Al plates thickness 

and created one Mean-Variance (M-V) curve per detector channel. Since the signal measured in the electron 

domain mostly follows a Poisson distribution with channel-dependent scalar factor, 𝐷𝐺𝐸𝑒𝑓𝑓, we expect M-

V curves to be mostly linear and their slopes to reflect channel-dependent scalar factors, 𝐷𝐺𝐸𝑒𝑓𝑓. Therefore, 

slopes of M-V curves become larger for scanning at higher kVp or thicker objects where 𝐸𝑒𝑓𝑓 is higher due 

to acquisition voltage or beam-hardening as shown in Fig. 3(a). Figure 3(c) shows the same set of curves 

as Fig. 3(a) with their variance values divided by 𝐸𝑒𝑓𝑓. This way, slopes of these new curves are determined 

by 𝐷𝐺 only. The close correspondence between the curves at 80 and 140 kVp (at least in the linear portion) 

supports our assumption that 𝐷𝐺 can be modeled as an energy-independent parameter. This allows us to 

perform calibration at only one energy level and applies the results to other targeted energy levels by 

changing only the analytical 𝐸𝑒𝑓𝑓 term.  

At extreme low signal / flux level (i.e., very low channel mean), the system exhibits M-V nonlinearity as 

shown in Fig. 3(b). This type of system nonlinearity has also been observed by other researchers (e.g., Ref 

8). This is due to built-in signal-dependent processing from the CT system that is designed to avoid negatives 

when taking the log-transform during the reconstruction stage when the signal is very low. This type of 

signal dependent processing will typically reduce the variance of the signal as can be observed in Fig. 3(b). 

In our experiment, we observed that this effect will be diminished (i.e., curves become more linear) when 

the channel mean is equal or larger than around 100 detector readout counts, which can be translated into 

3.3*𝜎𝑒, or ~ 8 photons at 80kVp acquisition.  
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Figure 3. Sample mean-variance (M-V) curves from one example detector channel at the detector center. The units 

of the channel mean is in detector readout count (analog-to-digital unit, ADU). Each data point corresponds to one 

measurement. M-V curves are mostly linear unless the channel mean is very small; for example, the nonlinearity at 

extremely low flux levels is observed at 80kVp, 10mA, shown in the zoomed view (b). The same curves in (a) are 

also shown in (c) with their variance values divided by their corresponding effective energies (𝐸𝑒𝑓𝑓), confirming that 

𝐷𝐺  [slopes in (c)] is independent of energy levels.   

In the third step, we ran noise emulation with various 𝐷𝐺 values and created emulated M-V curves for every 

detector channel. Then we computed the root mean square error (RMSE) between emulated M-V curves 

and acquired M-V curves as a function of 𝐷𝐺. By fitting a quadratic function (second order polynomial) to 

the RMSE curves, we picked 𝐷𝐺 yielding the best match between the LDE results and the LD acquisition 

per channel. This step is necessary due to the presence of non-linear effects noted above (otherwise one can 

directly calculate 𝐷𝐺 by dividing slopes of the M-V curves by 𝐸𝑒𝑓𝑓). 

II.D. Low Dose Protocol Optimization  

The goal of protocol dose optimization is to deliver just enough dose to each patient by selecting the optimal 

tube voltage and current for each patient size while achieving desired image quality for a given downstream 

task. Instead of using traditional image domain IQ metrics such as CNR and NPS, we propose a raw data-

based image quality metric indicating how many projection rays fall under an extreme low flux condition 

thus introducing undesirable effects on preprocessing and reconstruction steps. 

When X-ray flux is below 3.3*𝜎𝑒, or below 6-8 photons per channel (depending on x-ray energy), the 

measured signal no longer strictly follows a Poisson distribution. As noted in Sec. II.C, nonlinearities in M-

V curves can be observed in this extreme low flux region. Very low signal levels initiate custom designed 

signal-dependent processing which nonlinearly transforms the noise texture. When many projection rays 

are under this extreme low flux condition, the resulting images can be significantly corrupted with dark 

shading, and bright / dark ring artifacts. Motivated by this effect, we introduce two thresholds: (i) an extreme 

low flux threshold (ELF threshold), and (ii) an image quality threshold (IQ threshold, %), to define a critical 

flux level below which the image quality is not suitable for 4D Cardiac CT post processing (e.g., 

segmentation or motion correction).  

First, if a detector channel signal level is smaller than 3.3*𝜎𝑒, we define this channel to be under an extreme 

low flux condition (ELF condition). Second, the proposed IQ metric denotes the percentage of total 

projection rays that are above the ELF condition across the detector over the entire acquisition (the higher 

the better). From our empirical experience, CT preprocessing and reconstruction steps can produce 

reasonable images even with only 90% of projection rays above the ELF condition. In this case, the IQ 
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threshold is 90%. IQ threshold can vary among clinical applications; for simple LV segmentation to 

compute ejection fraction, the IQ threshold can be quite low (even ~85%).  

While the ELF threshold (e.g., 3.3*𝜎𝑒) used in this work is determined for the GE HealthCare Revolution 

system, corresponding thresholds for other systems can be determined by finding the readout count 

threshold where strong non-linear effects occur, which can be observed with the M-V curves when doing 

the 𝐷𝐺 calibration step in Sec. II.C [Fig. 3(b)].  

Finally, we defined a “critical mA” level (CR mA) as the lowest tube current which meets the IQ threshold. 

We used the proposed LDE framework with the calibrated system parameters to generate emulated 

projections at many mA levels for each kVp setting. Furthermore, the X-ray dose achieved by scanning 

with the critical mA can be computed using a size specific dose estimate (SSDE) factor26 of the scanned 

object and Monte-Carlo simulation.15 Since different kVp settings will provide different critical mA values 

for the same object, protocol optimization can be performed by choosing kVp value of the lowest SSDE 

adjusted 𝐶𝑇𝐷𝐼𝑣𝑜𝑙 and the critical mA value for that kVp setting, as will be shown in Fig. 9 below.  

II.E. Experiments 

Phantom and clinical studies were performed using a GE HealthCare RevolutionTM (Waukesha, WI) 

scanner as shown in Fig. 2. For phantom studies: we scanned the CIRS Tissue Equivalent abdomen phantom 

(lateral size of 42 cm) (CIRS, Norfolk, VA) at 80kVp with two different mA levels: 5.6 mAs (LD) and 168 

mAs (FD). We emulated the LD acquisition from the FD acquisition and compared the emulated 

acquisitions with measured LD acquisitions. Filtered backprojection (FBP) reconstructions with the 

standard kernel (built into the scanner console) were used to reconstruct all images in this work. 

The clinical study was approved by the institutional review board (IRB) with a waiver of informed consent. 

The biggest challenge in validating our LDE approach with clinical scans is that these scans typically don’t 

have matched FD and LD acquisition pairs. To address this issue, we retrospectively obtained an acquisition 

involving mA modulated cardiac scans which contained multiple rotations with low mAs (LD) except at 

systolic and/or diastolic phases, as shown in Figure 4. We used FD (red box, 168 mAs) projection to 

generate a LDE projection at 56 mAs and compared it with two measured LD acquisitions at 56 mAs, which 

are 2.5 rotations (green box) and 2 rotations away (orange box) from the FD acquisition respectively. While 

the FD and the two LD acquisitions are not exactly matched in terms of the underlying anatomy due to 

heart motion (not the same phase), their mean signal values are relatively similar at each detector channel 

considering that their ray or conjugate ray angles are matched (separated by 𝑁/2 rotations, where 𝑁 is an 

integer number). 
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Figure 4. Tube current (mA) profile of the FD (full-dose) scans used for LD (low-dose) emulation, where we have 

FD data at the diastolic phase (red box), and LD data that are 2 rotations (yellow box) and 2.5 rotations (green box) 

from the FD data. Note that FD and LD data have the same center ray angle.  

III. Results 

III.A. Spatially Varying 𝑫𝑮 

Figure 5 shows the performance of the proposed LDE method with three different detector gain (𝐷𝐺) 

settings: (i) channel-independent 𝐷𝐺 optimized on GE HealthCare DiscoveryTM CT750 HD system from 

our previous work;12 (denoted “original 𝐷𝐺”) (ii) channel-independent 𝐷𝐺 optimized on the GE HealthCare 

Revolution system used in this work (denoted “globally optimized 𝐷𝐺 ”); (iii) channel-dependent 𝐷𝐺 

optimized on the GE HealthCare Revolution system (denoted “channel-dependent 𝐷𝐺”). M-V curves from 

three detector channels at various locations are reported.  

With the original 𝐷𝐺 setting, M-V curves from the measured LD acquisitions and the emulations show 

visible discrepancies. This suggests that 𝐷𝐺 from other scanners will not work well for noise emulation at 

very low flux. With estimated 𝐷𝐺 for the targeted scanner (globally optimized 𝐷𝐺 and channel-dependent 

𝐷𝐺), we get a better match between M-V curves from the measured LD acquisitions and the emulations. As 

shown in Figure 5(b) and (c), M-V curves from different detector channels show varying slopes and 

deflection points, indicating channel-to-channel variation in 𝐷𝐺. Channel-dependent 𝐷𝐺 estimation results 

in the closest match between the measured LD acquisitions and the emulations as shown in Figure 5(c). 

This emphasizes the importance of channel-dependent 𝐷𝐺  calibration for the targeted scanner. For 

quantitative comparison, RMSE of the emulated and real (experimentally acquired) M-V curves are plotted 
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for each pixel as shown in Fig. 5(d-f). The proposed method resulted in the lowest RMSE as shown in Fig. 

5(f) due to the usage of channel-dependent 𝐷𝐺 estimations. One can see that RMSE shows a clear channel-

dependent pattern in Fig. 5(e), which was mostly removed with the proposed method, indicating more 

accurate noise emulation for all pixels.  

 

Figure 5. M-V curves from three detector channels before and after dector gain (𝐷𝐺) optimization: (a) with original 

𝐷𝐺 , (b) with globally optimized 𝐷𝐺 , (c) with channel-dependent 𝐷𝐺 . Each colored line represents an independent 

channel location (the three locations are column 416, 583, 749 respectively at the central row of the detector, i.e., from 

center gradually going to the edge). Lines with circles correspond to M-V curves from emulation and lines with crosses 

correspond to M-V curves from acquisition. M-V curves from the emulations align best with M-V curves from the 

acquisitions with channel-dependent 𝐷𝐺 . RMSE in terms of acquisition and emulation M-V curves for each pixel are 

plotted for (d) with original 𝐷𝐺 , (e) with globally optimized 𝐷𝐺 , (f) with channel-dependent 𝐷𝐺 , respectively. Edge of 

the detector were cropped out because of the bowtie filter. Display window: [0 500] ADU2. 

III.B. Phantom Studies 

We further validated the proposed LDE framework with phantom studies (detailed in Sec. II. E) using the 

channel-dependent 𝐷𝐺 setting reported above. The images from the emulation closely recreated low flux 

related artifacts, such as dark shading around objects, dark and bright rings near center of field of view, and 

channel dependent artifacts in sagittal slices as shown in Fig. 6. The residual differences between the 

emulated and measured LD acquisition are likely related to the signal nonlinearity when the flux level is 

below the ELF condition. Figure 6 also shows radially averaged axial NPS for measured and LDE images 

(RMSE=6.85 HU2/mm2), demonstrating strong agreement between the measured and emulated LD images 

in terms of the noise magnitude and noise spectrum / texture.  
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Figure 6. Reconstructed images of the 42cm CIRS abdomen phantom in axial and sagittal planes: (a) from the 

measured LD acquisition and (b) from the LDE emulated projection. The phantom was scanned at 80 kVp and 5.6 

mAs where only 27.8% of rays are above the ELF condition. Images are displayed at [1000, 1200] (center, width) HU. 

Low flux related artifacts in the LD acquisition, such as dark shading patterns, and dark and bright rings near the 

center of field of view, were recreated in the emulation. Noise power spectrum were measured in the axial plane: (c) 

NPS for measured FD acquisition. (d) NPS for measured and emulated LD acquisitions at 5.6 mAs. 

III.C. Clinical Studies 

In addition to the phantom study, we tested the proposed LDE approach with clinical cardiac studies as 

detailed in Sec. II. E. Figure 7 shows a side-by-side comparison of the two measured LD images and the 

LDE images. While the FD acquisition used for emulation came from the diastolic phase, the measured LD 

acquisitions came from other cardiac phases as explained above. Therefore, the anatomical features in 

images from the emulation and the measured acquisitions, shown in Fig. 7(c) and Fig. 7(a)(b), don’t exactly 

match. However, qualitatively, the level and texture of noise in the LDE image show a close resemblance 

to those in the measured LD images. Quantitatively, the LDE image shows realistic CNR between the left 

ventricle blood pool and myocardium. The average CNR disagreement between measured LD and LDE 

images are less than 1.1%. We note that while CNR is a commonly used metric for quantifying the noise, 

it is insufficient to fully reflect the perceived image quality difference between emulated and real LD images, 

due to nonlinear low signal correction in the reconstruction process. These corrections often involve data 

smoothing which trades spatial resolution for noise reduction. Additionally, the discrepancy of HU values 

[blue ROIs in Fig. 7(d)] and resolution (width of the edge spread function27 of the myocardium blood pool) 

between the emulated and the real LD images are less than 1.5%.  
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Figure 7. Comparison of image quality from LD acquisitions and the emulated LD images. (a) images from the LD 

(low-dose) acquisition that is 2.5 rotations apart from the FD (full-dose) acquisition, (b) images from the LD 

acquisition that is 2 rotations from the FD acquisition, (c) emulated images from the LDE projection. (a) and (b) were 

acquired at 56 mAs and (c) was emulated at 56 mAs, where the IQ metric is 95.5%. Note that the cardiac phase of the 

LDE projection is different from those of LD acquisitions. Images are displayed at [1120, 1200] (center, width) HU. 

Cyan ROIs in subfigure (d) was used to measure CNR for LD acquisitions and the emulation. 

III.D. Optimized Low Dose Protocol 

Motivated by realistic noise emulation results using the proposed LDE approach, we used the proposed 

projection domain IQ metric for protocol optimization in 4D Cardiac CT, which requires acquisitions of 

objects of different sizes at various mA and kVp settings.   

To calculate the critical mA for objects of different sizes, CIRS Tissue Equivalent phantoms with 5 sizes 

were each scanned at the maximum possible mA at five different kVp levels (70 kVp, 80 kVp, 100 kVp, 

120 kVp, and 140 kVp) while keeping the gantry rotation speed at 0.28 sec/rot. From these 25 full dose 

scans, we then emulated LD scans at mA levels shown in Fig. 8. At each mA level, we computed the 

projection domain IQ metric (i.e., percentage of rays above the ELF condition) for each phantom and for 

each kVp level, as shown in Fig. 8. As expected, low kVp acquisitions require higher mA to achieve the 

same IQ threshold. In this example, the critical mA of the 95% IQ threshold is marked with pink dashed 
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lines. At the 0.28s gantry period, the 95% IQ threshold is not achievable at 70 and 80 kVp for the very 

largest phantom [see Figure 8(c)].  

 

Figure 8. Critical mA plots at different kVp settings for objects of different sizes: (a) CIRS 27 cm chest phantom, (b) 

CIRS 36 cm chest phantom and (c) CIRS 42 cm abdomen phantom. Each colored line represents different kVp 

acquisitions. Their y axes denote the IQ metric. For a given phantom size and kVp, as mA increases, the IQ metric 

increases. The pink dashed lines mark the 95% IQ threshold.  

We computed the SSDE adjusted 𝐶𝑇𝐷𝐼𝑣𝑜𝑙 for the five kVp levels for each CIRS chest phantom using the 

critical mA values. The dose computation was performed using the CatSim toolkit.15 Note that throughout 

this section, the SSDE adjusted 𝐶𝑇𝐷𝐼𝑣𝑜𝑙 is reported for a full heartbeat 4D scan (assuming 60 bpm). We 

plotted 4D SSDE adjusted 𝐶𝑇𝐷𝐼𝑣𝑜𝑙 against effective diameter at different kVp levels. The scanner has a 

manufacture-specified minimum 50 mA threshold in cardiac mode to ensure adequate image quality, which 

explains the rise of SSDE adjusted 𝐶𝑇𝐷𝐼𝑣𝑜𝑙 measurement on the left side of the plots. Two IQ threshold 

levels (defined in Sec. II.D), 85% and 90%, were considered as shown in Fig. 9.  

With an IQ metric threshold of 85%, 70 kVp provides the lowest dose for DE below 28 cm and 140 kVp 

provides the lowest dose for DE above 43 cm as shown in Figure 9(b). By selecting the optimal kVp for a 

given size and using corresponding critical mA, the 4D SSDE adjusted 𝐶𝑇𝐷𝐼𝑣𝑜𝑙 of the optimized protocol 

stays below 2.1 mGy for DE below 35 cm and 3.6 mGy for all clinically relevant DE. Utilizing this approach, 

we can find the optimized protocol for any effective diameter at any given IQ threshold. The recommended 

protocol for 4D functional cardiac imaging is shown in Table 1. 
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Figure 9. Dose vs. Patient size (chest region) curves: (a) for IQ threshold of 90%, and (b) for IQ thresholds of 85%.  

For a given acquisition kVp, SSDE adjusted CTDIvol at the critical mA for IQ threshold of 90% and 85% were 

computed for a wide range of effective diameters. Note that the dose reported here is for a full heartbeat 4D scan 

(assuming 60 bpm). Minimum system allowable mA was set to 50mA.  DE = effective diameter 

 

Table 1. Recommended kVp and mA settings for low dose 4D Cardiac CT acquisitions (covering the full cardiac 

cycle, assuming 60 bpm) targeting different IQ thresholds (the higher the better).  

IV. Discussion and Conclusions 

In this work, a new projection domain low dose emulation approach was developed to emulate realistic low 

dose 4D cardiac scans from existing full dose cardiac scans. One possible application of the proposed 

method is for functional cardiac CT protocol optimization (kV and mA, as shown in Table 1), i.e., 

determining the lowest possible patient dose required to produce images with sufficient quality for the 

targeted downstream clinical tasks such as measuring ejection fraction, myocardial strain, etc.  
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We proposed channel-dependent system parameter estimation to fine-tune noise emulation performance at 

very low x-ray flux. The variations in electronic noise statistics and gain factor 𝐷𝐺 among detector channels 

likely originate from variations in the detector scintillator and in underlying readout circuits of each channel. 

If we are targeting noise emulation where detector readout counts of projection rays are larger than 3.3*𝜎𝑒, 

the improvement provided by channel-dependent electronic noise modeling starts to diminish because 

electronic noise variation between channels is overwhelmed by X-ray noise statistics. Also, the variation in 

detector gain (𝐷𝐺) between different scanner generations was observed to be larger than the variations 

among detector channels in the same scanner. The standard deviation of 𝐷𝐺  across different detector 

channels of the Revolution system is ~6.5% while the difference between 𝐷𝐺  in the Revolution and 

Discovery systems is ~28%. Therefore, the proposed empirical characterization of system parameters 

significantly improves the quality of noise emulation when different models of scanners are used. Channel-

dependent 𝐷𝐺  will provide additional improvement only when noise emulation targets very low flux 

acquisition as shown in Fig. 5.  

Physics effects, such as channel-specific characterization of quantum and electronic noise, beam hardening 

effects, nonlinearity in detector response at low flux conditions, and temporal correlation in electronic noise, 

were included in the LDE approach. However, there are still some theoretical limitations: (i) The compound 

Poisson X-ray attenuation noise model was replaced with the Poisson only model. However, our experience 

with this simulation tool suggests that this approximation is negligible; (ii) Spatial correlation of the 

quantum noise (e.g., from detector x-ray fluorescence crosstalk) was not modelled; (iii) The gain 𝐷𝐺 was 

assumed to be energy-independent [i.e., separated from 𝐸𝑒𝑓𝑓  as shown in Eq. (5)]. While this greatly 

simplifies the calibration process (no need for repeated calibration for each kVp), it could potentially reduce 

emulation accuracy due to depth-dependent light collection efficiency of the scintillator. This 

approximation was demonstrated to provide reasonable emulation results as shown in Fig. 5(c). 

While this work focuses on mA modulation as a function of cardiac phase, the proposed LDE approach can 

also be used to emulate mA modulation as a function of gantry angle. This is typically used as part of the 

automatic exposure control (AEC) module, where higher mA was prescribed when X-rays were passing 

through the long axis of the elliptical objects or denser parts of the patients. 

Utilizing the aforementioned LDE approach, a global projection domain IQ metric (percentage of rays 

above the extreme low flux (ELF) condition) was proposed to efficiently perform protocol optimization. 

Note that this IQ metric was not used to evaluate the accuracy of noise injection, but to perform simple 

procotol recommendations. Recommended protocols in terms of kVp and mA were then calculated based 

on an effective diameter (DE) of patients, which can be computed by measuring post-anterior (PA) length 
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and lateral (LAT) length from previously reconstructed images or scout scans with PA and LAT views. 

This metric lets us calculate the minimal cost of 4D functional cardiac CT in terms of added dose relative 

to the standard 3D cardiac CT. An mA-modulated 4DCT scan (i.e., same mA as the standard 3D CT scan 

at the targeted phase, low-dose at any other phases) could provide temporal visualization of cardiac 

anatomy/functional changes over the full heart cycle. Taking an average patient size (DE) of 30 cm and an 

average heart rate (HR) of 60 bpm, such mA-modulated 4DCT scan targeting a 90% IQ threshold has only 

63% higher dose than the minimum mA modulation width 3D CT scan (with an institutional average mA 

of 500).  At the same time, the 4DCT x-ray exposure time is ~400% that of the standard 3D CT scan, 

allowing reconstruction of every phase in the cardiac cycle rather than a single phase. Note that these 

recommended protocols are only for cardiac CT (chest region) and need to be recomputed for other targeted 

anatomy due to difference in tissue material. 

The proposed projection domain IQ metric is a straightforward metric that only focuses on the percentage 

of projection rays above the ELF condition. While this metric directly correlates with various low-dose 

related artifacts (these artifacts are typically related with rays below the ELF condition), it does not take 

into accounts factors like patients of different nominal sizes (e.g., pediatric vs. adult patients) or organs of 

interest. Images with the same IQ metric can look very different (e.g., rays below the ELF condition from 

heavy metal will likely create more artifacts than that from dense tissue). More advanced projection domain 

metric can certainly be envisioned in future work, for example: (i) metrics masked to the targeted organ; or 

(ii) metrics normalized to specific patient groups. Nevertheless, the proposed metric directly captures the 

number of X-rays that are causing artifacts (rays below the ELF condition) and is effective to a large extent. 

Additionally, while a projection domain IQ metric is the focus of this work due to its simplicity, task-

specific image domain IQ metrics are also the subject of our other work.24 The optimized protocol can be 

quite different based on downstream functional analysis tasks in cardiac CT. For example, global functional 

metrics such as global longitudinal shortening (GLS) or ejection fraction are much more robust to noise 

compared to local metrics such as directional myocardium wall thickening. Task-specific image domain IQ 

metrics are likely necessary to provide more accurate protocol optimization results in these scenarios. 

In summary, detailed steps to estimate system-dependent parameters for the raw-data based LDE 

framework were described, which was demonstrated to reliably produce realistic noise levels and texture 

with phantom and clinical studies. One potential application of the LDE approach is explored in this work, 

i.e., for protocol optimization to deliver the lowest dose while providing proper image quality for 4D cardiac 

CT acquisitions. Another potential application is to generate matched pairs of LD and FD data for training 

accurate deep learning-based denoising approaches,28–30 which will likely benefit from the increased noise 

emulation accuracy of the proposed method. In addition, we are currently exploring the possibility of 
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performing 4D Cardiac CT dyssynchrony analysis with dramatically lower radiation dose, which involves 

the proposed LDE approach and task-specific protocol optimization in image domain.  
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