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Drugs can treat different diseases but also bring side effects. Undetected and unaccepted side effects for approved drugs can greatly
harm the human body and bring huge risks for pharmaceutical companies. Traditional experimental methods used to determine
the side effects have several drawbacks, such as low efficiency and high cost. One alternative to achieve this purpose is to design
computational methods. Previous studies modeled a binary classification problem by pairing drugs and side effects; however, their
classifiers can only extract one feature from each type of drug association. The present work proposed a novel multiple-feature
sampling scheme that can extract several features from one type of drug association. Thirteen classification algorithms were
employed to construct classifiers with features yielded by such scheme. Their performance was greatly improved compared
with that of the classifiers that use the features yielded by the original scheme. Best performance was observed for the classifier
based on random forest with MCC of 0.8661, AUROC of 0.969, and AUPR of 0.977. Finally, one key parameter in the

multiple-feature sampling scheme was analyzed.

1. Introduction

Drugs are important in treating various diseases; however,
their therapeutic effects are accompanied by negative effects
called side effects. In the pharmaceutical field, drug side
effect is classified as an adverse drug reaction (ADR), the
harmful or accidental reactions of qualified drugs that are
irrelevant to the purpose of their use under normal usage
and dosage. Some market-approved drugs may generate
unaccepted side effects that can be harmful to the human
body and bring high risks to pharmaceutical companies.
For example, fluconazole and atorvastatin have potential
hepatotoxicity and nephrotoxicity that can increase trans-
aminase when used in specific patients such as those with
liver disease. Side effects are one of the major obstacles in
launching new drugs and delaying their development. Thus,
determining all the side effects for a given drug is an impor-
tant topic in drug development. Despite their efficiency in
identifying side effects, solid clinical trials are time consum-
ing and expensive and thus cannot meet the demand of

large-scale tests. Thus, rapid and cheap methods for the
identification of drug side effects must be developed.

Many advanced computational algorithms have been
proposed [1-5] to provide strong technique support to deal
with various medical problems. Several computational
methods have been developed for the identification of drug
side effects. Most of them are machine learning-based tech-
niques that deeply investigate current information on drug
side effects and develop proper patterns that can be used to
predict side effects for a given new drug. Some early methods
consisted of an individual binary classifier for each side effect
[6-10]; hence, they always contain several binary classifiers
that must be simultaneously executed to determine all side
effects for a given drug. In view of this situation, some other
techniques were directly built with multilabel classifiers
[11-16] that identify side effects as labels and drugs as sam-
ples. Recommender systems were also proposed to predict
drug side effects [17-19]. Recent works paired drugs and
side effects as samples to convert the original problem as
binary classification [20-22]. A key step in developing such
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binary classifiers is to extract essential properties from each
drug-side effect pair. Some researchers used a similarity-
based scheme to extract features [21, 22]; for convenience,
they extracted only one feature from one type of drug asso-
ciation, a process called single-feature sampling scheme.
However, some essential information may be omitted. For
research continuation, a novel feature extraction scheme
that can hold essential information for each drug-side effect
pair must be developed.

In this study, an efficient binary classifier was proposed
for the identification of drug side effects. Drugs and side
effects were also paired as samples [20-22]. The single-
feature sampling scheme [21, 22] was generalized to extract
essential features from each pair. Named as multiple-
feature sampling scheme, this newly proposed strategy can
generate multiple features from each type of drug associa-
tion. Classic machine learning algorithm, random forest
(RF) [23], was adopted as the prediction engine. According
to the 10-fold cross-validation results, the performance of
such classifier was better than that of the previous classifier
that uses original single sampling scheme for feature extrac-
tion. Further tests suggested that classifiers with other classi-
fication algorithms and features yielded by the multiple
sampling scheme were all superior to those with the same
classification algorithm and features generated by the origi-
nal scheme. This finding indicated the power of the features
generated by the proposed feature extraction scheme.

2. Materials and Methods

2.1. Benchmark Dataset. Data on 841 drugs and their side
effects (824) [20-22] were extracted from SIDER (http://
sideeffects.embl.de/) [24], a public database collecting the
information of marketed drugs and their ADRs. The original
data contained 888 drugs and 1385 side effects. The side
effects that were annotated to no more than five drugs were
excluded. Furthermore, drugs without the properties men-
tioned in Section 2.2 were discarded. From the remaining
841 drugs and 824 side effects, 57,058 drug-side effect pairs
were obtained. Each pair indicated that the specific drug in
the pair has the side effect in the same pair. Given that these
pairs indicate the relationship between one drug and one
side effect, they were termed as positive samples and com-
prised the positive dataset (PDS).

In addition to PDS, a negative dataset (NDS) was neces-
sary in building an efficient binary classifier. A total of
57,058 drug-side effect pairs were produced by randomly
pairing one drug and one side effect [20, 21]. However, no
pairs can be labeled as positive samples. Therefore, these
pairs constituted one NDS. Different NDSs may influence
the performance of the classifier. Therefore, four other NDSs
were also generated. Finally, five datasets each containing
the PDS and one NDS were produced and denoted by DS,
DS,, DS,, DS,, and DS..

2.2. Drug Association Obtained from Different Drug
Properties. Two drugs with strong associations always share
similar functions [25-29]. Side effects can be deemed as
one type of drug function. Thus, classifiers can be con-
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structed by adopting features derived from drug associa-
tions. From different aspects of drugs, several types of drug
associations can be measured and quantified. For easy com-
parisons, the drug associations adopted in a previous study
[21] were adopted, and their brief descriptions are as follows.

2.2.1. Drug Fingerprint Association. Simplified molecular
input line entry specification (SMILES) string [30] is a
widely used scheme for drug representation. Fingerprints
can be extracted from this string using existing software,
such as RDKit [31]. The associations of two drugs can be eval-
uated by comparing their fingerprints. Here, ECFP_4 finger-
prints and Tanimoto coefficient were used to measure such
association between any two drugs. For formulation, this asso-

ciation for drugs d, and d, was denoted by G/ (d,, d,).

2.2.2. Drug Structural Association. In addition to SMILES
string, another popular drug representation scheme is
graph-based method. Here, each drug is represented by a
graph with nodes depicting atoms and edges indicating
bonds. The association of two drugs can be assessed by con-
sidering the similarity of two corresponding graphs. “SIM-
COMP” (https://www.genome.jp/tools/simcomp/) reported
in the KEGG [32, 33] was set up based on such idea. This
tool can output the associations of a given drug with other
drugs as measured by scores between 0 and 1. Such associa-
tion for drugs d, and d, was denoted by G*(d,, d,).

2.2.3. Drug Anatomical Therapeutic Chemical (ATC) Code
Association. The ATC system is a widely accepted and used
in drug classification. Each drug in such system is assigned
five-level ATC codes that indicate its essential properties.
For two drugs, their association can be measured according
to their ATC codes. This study used the same method in
[21] to evaluate drug association based on their ATC codes.
For convenience, the association of drugs d, and d, was
denoted by G*(d,, d,).

2.2.4. Drug Literature Association. Given the extensive liter-
ature on drugs, the association of two drugs can be measured
from their cooccurrence in some literature and natural lan-
guage processing methods. The well-known public database,
STITCH (version 4.0, http://stitch4.embl.de/) [34], provides
such associations, which were directly employed in this
study. “Textmining” score was extracted from the down-
loaded file “chemical_chemicallinks.detailed.v4.0.tsv.” For
drugs d, and d,, their literature association was denoted by
G"™(d,, d,).

2.2.5. Drug Target Protein Association. Target protein is the
basic property of drugs. Hence, the association of two drugs
can be estimated by comparing their target proteins. In this
study, the target proteins of drugs were retrieved from Drug-
Bank (https://go.drugbank.com/) [35]. Each drug was
encoded into a binary vector by applying one-hot scheme
to its target proteins. The direction cosine of two vectors
was defined as such association of two drugs. For formula-
tion, this association between drugs d, and d, was denoted
as G'(d,, d,).
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2.3. Feature Engineering. In Section 2.2, five types of drug
associations that have been used to extract features to repre-
sent drug-side effect pairs [21, 22] were employed. These
features indicated the linkage between one drug and one side
effect in a drug-side effect pair. However, they extract only
one feature from each type of drug association and thus can-
not fully capture the essential linkage between the drug and
the side effect. This study proposed a novel feature extrac-
tion scheme called multiple-feature sampling scheme, which
can extract multiple features from one type of drug associa-
tion. For a clear description, some denotations are necessary.
For one drug-side effect pair p = <d, s >, where d and s indi-
cate one drug and one side effect, respectively, let S be a set
consisting of drugs having side effect s that have been
extracted from the training dataset. If d also has side effect
s, then, it would not be included in S. For one type of drug
association, all values between d and drugs in S are selected.
Denoted by ¥*(p) (where k € {f,s,a,tm,t} represents the
type of drug association used to construct such list), a candi-
date feature list for p is then constructed with the decreasing
order of above values. The top value in this list has been
previously chosen as exclusive feature [21, 22]. Selection of
several values in this list can contain more information to
represent the linkage of drug d and side effect s. On the basis
of the different selection models, two strategies were pro-
posed, namely, discrete and continuous strategies. Their
procedures are shown in Figure 1.

2.3.1. Discrete Strategy. In this strategy, several values from
the list ¥*(p) are selected to indicate the distribution of
values in the list. In this way, these selected values can fully
indicate the linkage between drug d and side effect s. This
process can be achieved by selecting some discrete values
in the list. For example, the value at the first place or that
at the top q% place can be selected. These values comprise
a set of features from one type of drug association.

2.3.2. Continuous Strategy. This strategy differs from the first
one. Given that the linkage of drug d and side effect s is
highly indicated by some top values in the list, these values
must be properly selected because they may fully contain
the essential information. For an integer q between 1
and 100, the top q% values in the list ¥*(p) were selected
as features.

2.4. Classification Algorithm. A proper classification algo-
rithm is important in building an efficient classifier. In this
study, RF [23] was adopted to construct the classifier. RF is
one of the most classic classification algorithms and has been
used to set up many classifiers in bioinformatics [36-41].
RF is an integrated classification algorithm containing
several decision trees, each of which is constructed by two
random selection procedures. The first procedure is to select
samples. Given a dataset with n samples, randomly select n
samples with replacement from such dataset. The second
procedure is to select features to split each node. The
selected features should be much less than overall features.
After the predefined number of decision trees has been con-
structed, RF integrates them by major voting. For a query

sample, each decision tree gives its prediction. The majority
prediction is the predicted result of RF. Although a decision
tree is a relative weak classification algorithm, RF is
extremely powerful and has always been an important can-
didate to build different classifiers.

In this study, “RandomForest” in Weka [42] was directly
used to implement the abovementioned RF. Default param-
eters were adopted, and the number of decision trees was set
to 100.

In addition to RF, the following classification algorithms
were used to build corresponding classifiers: support vector
machine (SVM) (polynomial kernel, RBF kernel) [43], Ada-
boost M1 [44], Bagging [45], Bayesian network [46], Naive
Bayes [47], K-nearest neighbor (KNN) [48], decision tree
(C4.5) [49], PART [50], logistic regression [51], multilayer
perceptron (MLP) [52], and Repeated Incremental Pruning
to Produce Error Reduction (RIPPER) [53]. The goal is to
confirm that the features yielded by the multiple sampling
scheme are more effective than those yielded by the single
sampling scheme. For convenience, corresponding tools in
Weka were used to implement the above classification
algorithms under default parameters. These classification
algorithms adopt different principles and procedures for
classification. Therefore, their usage can fully test the utility
of the proposed feature sampling scheme. If the classifier with
features yielded by the multiple sampling scheme is superior to
that with previous features for any of these classification
algorithms, then, the robustness of the novel features obtained
by the multiple sampling scheme is confirmed.

2.5. Accuracy Measurement. Ten-fold cross-validation
[54-59] was adopted to evaluate the performance of all con-
structed classifiers. Such method randomly divides the orig-
inal dataset into ten parts. Each part is singled out one by
one as the test set, and the remaining parts constitute the
training set. Samples in the test set are predicted by the clas-
sifier based on the training set. Thus, each sample is tested
exactly once.

For a binary classification problem, four entries can be
counted by comparing the predicted and true classes of each
sample, that is, true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). The following
measurements were based on these four entries: sensitiv-
ity (SN) (also called recall), specificity (SP), prediction
accuracy (ACC), Matthews correlation coefficient (MCC)
[20, 21, 37, 60-63], precision, and F1-measure. Their def-
initions are as follows:

TP
SN = ——, 1
(recall) = 7555 M)

N

P= ——| 2
S TN + FP )

TP+ TN
ACC = , 3
cC TP+ FN +FP + TN G)
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FIGURE 1: Procedures of multiple-feature sampling scheme to extract essential features from a drug-side effect pair. For a pair of drug d and
side effect s, drugs having the side effect s are extracted from the training dataset. The association scores between d and these drugs constitute
a candidate feature list. The discrete strategy selects discrete values in such list as features, and the continuous strategy picks up some top

values in this list as features.

TP x TN-FP x EN
/(TN + EN) (TN + FP)(TP + FN)(TP + FP)’

(4)

MCC=

TP

preClSlOIl = m 5

2 x precision X recall

(6)

F1 — measure =

precision + recall

ACC, MCC, and F1-measure use all four entries and thus
are more important than the other three measurements.
Receiver operating characteristic (ROC) curve [64] and
precision-recall (PR) curve were further employed to fully
assess the performance of constructed classifiers. These curves
indicate the performance of classifiers under different thresh-
olds. ROC curve takes 1-SP as x-axis and SN as the y-axis,
and PR curve takes recall as x-axis and precision as y-axis.
Areas under these two curves (AUROC and AUPR) are
important measurements to evaluate the performance of clas-
sifiers. Among the abovementioned parameters, MCC was
selected as the main measurement.

3. Results and Discussion

A novel feature extraction method was proposed to extract
essential features from drug-side effect pairs. On the basis
of these features, efficient classifiers to predict drug side
effects were established. All procedures are illustrated in
Figure 2.

3.1. Performance of the RF Classifiers with Discrete Strategy.
The discrete strategy picks some discrete values in the candi-
date feature list. Given that the top value in such list is the
most important and has been previously selected as the
exclusive feature [21, 65], this top value is always picked
up as one feature. As mentioned in Section 2.3, the value

located at top g% place in the list was also selected. In this
study, q was set as 5, 10, 15, and 20. Values with high ranks
in the candidate feature list are more important than those
with low ranks, that is, the top value is the most important,
followed by values at 5%, 10%, 15%, and 20%. Incremental
feature selection was adopted to generate four feature
subsets as listed in column 1 of Table 1. With each feature
subsets derived from five types of drug associations, a RF
classifier was built on each of five datasets and evaluated
by 10-fold cross-validation. The average performance is
listed in Table 1. MCC followed an increasing trend when
the values at top 5%, 10%, 15%, and 20% were added. Other
five measurements also generally followed such trend. The
RF classifiers with all selected features (top values and those
at 5%, 10%, 15%, and 20%) generated the highest MCC of
0.7172. This finding indicated that the features yielded by
such multiple-feature sampling scheme were quite efficient
for the identification of drug side effects.

The ROC and PR curves of these four RF classifiers were
investigated, and the results are shown in Figure 3. All AUR-
OCs and AUPRs were higher than 0.900 and 0.910, respec-
tively, thus, further suggesting the good performance of RF
classifiers with discrete strategy.

3.2. Performance of RF Classifiers with Continuous Strategy.
Different from discrete strategy, continuous strategy selected
values from the candidate feature list in a continuous way.
As mentioned in Section 2.3, top q% values in the candidate
feature list can be chosen as features. Here, some g values
including 10, 20, 30, and 40 and four feature subsets were
tested. A RF classifier was also built on each of the five data-
sets by using the feature subsets derived from the five types
of drug associations. Each classifier was assessed by 10-fold
cross-validation, and the average performance is listed in
Table 2. When g =20 (top 20%), the RF classifier yielded
the highest MCC of 0.8661 and generated the ACC of
0.9312, Fl-measure of 0.9278, SN of 0.8852, SP of 0.9771,
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FIGURE 2: Entire procedures of the method for identification of drug side effects. Positive dataset (reported drug-side effect pairs) is retrieved
from SIDER, and five negative datasets are randomly generated. From the four public databases or tools, five drug properties are employed
and used to extract features with multiple-feature sampling scheme. Random forest is adopted to build the model and is further evaluated by

10-fold cross-validation.

TaBLE 1: Performance of the RF classifiers with discrete strategy.

Feature sampling SN SP ACC MCC Precision F1 measure
Top + 5% 0.8072 0.8694 0.8383 0.6780 0.8608 0.8331
Top + 5% + 10% 0.8209 0.8829 0.8519 0.7058 0.8751 0.8467
Top + 5% + 10% + 15% 0.8214 0.8907 0.8561 0.7145 0.8825 0.8505
Top + 5% + 10% + 15% + 20% 0.8201 0.8944 0.8573 0.7172 0.8860 0.8514

and precision of 0.9747. Compared with the RF classifiers
with discrete strategy, the best RF with continuous strategy
had higher measurements, particularly for MCC (by 15%),
ACC (by 7%), and Fl-measure (by 7%). These results
indicated that the features obtained by continuous strategy
were more powerful in identifying drug side effects than
those yielded by discrete strategy.

The ROC and PR curves of RF classifiers with continu-
ous strategy were plotted as shown in Figure 4. All ROC
curves were close to the point (0, 1), and all PR curves were
close to the point (1, 1). The AUROCs and AUPRs were all
quite high. Compared with AUROCs and AUPRs for dis-
crete strategy, those for continuous strategy were generally

higher. This finding further confirmed that the features
yielded by continuous strategy were more powerful than
those yielded by discrete strategy.

3.3. Comparison of RF Classifiers with Single- and Multiple-
Feature Sampling. A multiple-feature sampling scheme was
proposed to extract essential features from each drug-side
effect pair. Previous studies [21, 22] only picked up the top
value as the feature, and this technique was called single
sampling scheme. This section compares the RF classifiers
with these two feature sampling schemes.

The average performances of RF classifiers with single-
feature sampling scheme are listed in Table 3. The MCC
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Top (single sampling) 0.878
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—— Top+5%+10% 0.960

Top+5%+10%+15% 0.964

—— Top+5%+10%+15%+20% 0.964
(b)

FIGURE 3: Receiver operating characteristic (ROC) curve and precision-recall (PR) curve of RF classifiers with single-feature sampling
scheme and multiple-feature sampling scheme (discrete strategy). (a) ROC curves and (b) PR curves.

TaBLE 2: Performance of the RF classifiers with continuous strategy.

Feature sampling SN SP ACC MCC Precision F1 measure
Top 10% 0.8737 0.9644 0.9190 0.8416 0.9609 0.9152
Top 20% 0.8852 0.9771 0.9312 0.8661 0.9747 0.9278
Top 30% 0.8844 0.9770 0.9307 0.8652 0.9747 0.9273

Top 40% 0.8834 0.9775 0.9305 0.8648 0.9751 0.9270
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FIGURE 4: Receiver operating characteristic (ROC) curve and precision-recall (PR) curve of RF classifiers with multiple-feature sampling

scheme (continuous strategy). (a) ROC curves and (b) PR curves.

TaBLE 3: Comparison of RF classifiers with single- and multiple-feature sampling schemes.

Scheme SN SP ACC MCC Precision F1 measure
Single sampling 0.7948 0.8049 0.7999 0.5997 0.8030 0.7988
. . Discrete strategy 0.8201 0.8944 0.8573 0.7172 0.8860 0.8514
Multiple sampling )
Continuous strategy 0.8852 0.9771 0.9312 0.8661 0.9747 0.9278

was 0.5997, ACC was 0.7999, and F1-measure was 0.7988.
Other three measurements (SN, SP, and precision) were
0.7948, 0.8049, and 0.8030, respectively. The best perform-
ing (highest MCC) RF classifiers with discrete and continu-

ous strategies were selected for comparison and are also
listed in Table 3. The MCCs for two strategies were 0.7172
and 0.8661, which were higher than that for the RF classifier
with single-feature sampling scheme. Same conclusions can
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Classification algorithm Feature extraction scheme ACC MCC F1-measure

Single sampling 0.6487 0.2997 0.6252

SVM (polynomial kernel) . . Discrete strategy 0.6989 0.4240 0.6357
Multiple sampling Conti

ontinuous strategy 0.9152 0.8356 0.9101

Single sampling 0.6608 0.3276 0.6251

SVM (RBF kernel) . . Discrete strategy 0.6987 0.4188 0.6415
Multiple sampling Conti

ontinuous strategy 0.9191 0.8428 0.9147

Single sampling 0.6693 0.3435 0.6392

Adaboost M1 . . Discrete strategy 0.6574 0.3186 0.6287
Multiple sampling Conti

ontinuous strategy 0.9024 0.8102 0.8963

Single sampling 0.7909 0.5828 0.7848

Bagging ) i Discrete strategy 0.8386 0.6799 0.8317
Multiple sampling Conti

ontinuous strategy 0.9273 0.8580 0.9240

Single sampling 0.7007 0.4076 0.6722

Bayesian network i ) Discrete strategy 0.6950 0.3980 0.6614
Multiple sampling Cont

ontinuous strategy 0.8473 0.7236 0.8225

Single sampling 0.6368 0.2822 0.5859

Naive Bayes Discrete strate; 0.6272 0.2616 0.5782

¥ Multiple sampling . &Y

Continuous strategy 0.8528 0.7329 0.8296

Single sampling 0.7652 0.5321 0.7740

KNN ) . Discrete strategy 0.7918 0.5838 0.7931
Multiple sampling .

Continuous strategy 0.9071 0.8148 0.9054

Single sampling 0.7635 0.5315 0.7471

Decision tree . . Discrete strategy 0.8154 0.6333 0.8080
Multiple sampling .

Continuous strategy 0.9170 0.8359 0.9142

Single sampling 0.6986 0.4015 0.6753

PART . . Discrete strategy 0.8022 0.6105 0.7874
Multiple sampling .

Continuous strategy 0.9192 0.8402 0.9166

Single sampling 0.6501 0.3008 0.6383

Logistic regression ) . Discrete strategy 0.7690 0.5442 0.7515
Multiple sampling .

Continuous strategy 0.9157 0.8353 0.9115

Single sampling 0.6680 0.3438 0.6352

Multilayer perceptron ) . Discrete strategy 0.8139 0.6305 0.8052
Multiple sampling .

Continuous strategy 0.8616 0.7299 0.8688

Single sampling 0.7037 0.4090 0.6904

RIPPER . . Discrete strategy 0.7546 0.5156 0.7382
Multiple sampling .

Continuous strategy 0.9215 0.8460 0.9181

be obtained for other five measurements. The ROC and PR
curves of RF classifier with single-feature sampling scheme
were also plotted (Figure 3) and were found to be always
under those of RF classifiers with discrete strategy. The
AUROC and AUPR of the RF classifier with single-feature
sampling scheme were 0.870 and 0.878, respectively, which
were also lower than those of the RF classifier with discrete
strategy. For the RF classifier with continuous strategy, its
AUROCs and AUPRs (Figure 4) were even better than those
of the RF classifier with discrete strategy and were also

higher than those of the RF classifier with single-feature
sampling scheme. All these results implied that the features
yielded by the multiple sampling scheme contained more
essential information of drug-side effect pairs than those
obtained by the single sampling scheme. These features pro-
vide RF with improved performance.

3.4. Performance of Other Classifiers with Multiple-Feature
Sampling Scheme. The RF classifiers with features yielded
by multiple sampling (discrete strategy) were superior to
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RIPPER SVM (polynomial kernel)

Multilayer perceptron SVM (RBF kernel)

Logistic regression Adaboost M1

PART Bagging

Decision tree Bayesian network

KNN Naive bayes

Multilayer perceptron

Logistic regression

PART

Decision tree Bayesian network

KNN Naive bayes
(b)

FiGure 5: Continued.
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Naive bayes

—— Multiple sampling (continuous strategy)

FiGURrk 5: Radar graphs to show performance of classifiers with single- and multiple-feature sampling schemes. (a) MCGC; (b) ACC; (¢) F1
-measure. Classifiers with multiple-feature sampling scheme (continuous strategy) provide best performance.
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FIGURE 6: Performance of classifiers with continuous strategy under different parameters.

those with features yielded by single sampling, and the RF
classifiers with continuous strategy were better than those
with discrete strategy. However, the relevance of this result
to the selection of classification algorithms must be explored.
In this section, 12 classification algorithms mentioned in
Section 2.4 were tested. The classifiers with different algo-
rithms and all feature subsets used for RF were constructed
and evaluated by 10-fold cross-validation. The predicted
results are listed in Tables S1-524.

The performances of classifiers with single sampling and
the best performance of classifiers with multiple sampling
are listed in Table 4. The classifiers with multiple sampling
(discrete strategy) were generally better than those with

single sampling, and those with continuous strategy were
superior to those with discrete strategy and single sampling.
For a visualized confirmation, a radar graph was plotted for
each value of ACC, MCC, and F1l-measure as illustrated in
Figure 5. For each measurement, the area in the closed curve
of classifiers with multiple sampling (continuous strategy)
was the largest, followed by the closed curve of classifiers
with multiple sampling (discrete strategy); the area in the
closed curve of classifiers with single sampling was the
smallest. On the basis of these results, multiple sampling
scheme is more efficient to capture the essential properties
of drug-side effect pairs than single sampling scheme, and
continuous strategy is better than discrete strategy.
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3.5. Analysis of the Parameter of Continuous Strategy. For
the continuous strategy, the parameter q is a key factor that
determines the number of selected features from the candi-
date feature list. Here, its influence on the performance of
classifiers was investigated.

For RF classifiers, the highest MCC of 0.8661 was
achieved when g=20 (Table 2). For other classifiers with
different classification algorithms, g =20 always yields the
best performance as shown in Figure 6. Among the 13 clas-
sifiers with different classification algorithms, 10 provided
the best performance when ¢=20, occupying 76.92%.
Meanwhile, two yielded the best performance when g = 30.
This phenomenon was reasonable. When g is extremely
small, some essential information of drug-side effect pairs
cannot be included. When g is large, several noises may be
employed. Current investigation revealed that the values of
q can be taken in an interval [20, 30].

4. Conclusions

This study prevents a novel investigation on drug side effects.
The contributions contained two aspects. One was the
multiple-feature sampling scheme that can extract essential
features from drug-side effect pairs, and other one was novel
computational methods for the identification of drug side
effects based on the features yielded by the multiple sampling
scheme. Classifiers were built on the basis of different classifi-
cation algorithms. By comparison, the classifiers using features
yielded by the multiple sampling scheme performed better
than those using features yielded by the single sampling
scheme. The proposed classifiers can be useful tools to identify
drug side effects, and the novel feature extraction scheme can
be applied to other similar biological or medical problems.
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uous strategy. Table S11: performance of Naive Bayes classi-
fier with discrete strategy. Table S12: performance of Naive
Bayes classifier with continuous strategy. Table S13: perfor-
mance of KNN classifier with discrete strategy. Table S14:
performance of KNN classifier with continuous strategy.
Table S15: performance of decision tree classifier with dis-
crete strategy. Table S16: performance of decision tree classi-
fier with continuous strategy. Table S17: performance of
PART classifier with discrete strategy. Table S18: performance
of PART classifier with continuous strategy. Table S19: perfor-
mance of logistic regression classifier with discrete strategy.
Table S20: performance of logistic regression classifier with
continuous strategy. Table S2: performance of multilayer per-
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crete strategy. Table S24: performance of RIPPER classifier
with continuous strategy. (Supplementary Materials)
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