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THE BIGGER PICTURE The analysis of microcirculation images has the potential to reveal early signs of life-
threatening diseases. Quantifying the capillary distribution in microcirculation images can be used as a bio-
logical marker to assist patients. The quantification of these biological markers is labor-intensive, time-
consuming, and subject to interobserver variability. Moreover, manual analysis has been reported to hinder
the application of microvascular microscopy in a clinical environment. Several computer vision techniques
with varying performances can be used to automate the analysis of thesemicrocirculation images. Computer
vision algorithms are faster than convolutional neural networks for capillary detection but have poorer accu-
racy. Convolutional neural networks are more accurate but slower and require many training data. Therefore,
by creating a hybrid model combining both computer vision algorithms and convolutional neural networks,
one can strike a balance between accuracy and speed.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY

The analysis of microcirculation images has the potential to reveal early signs of life-threatening diseases
such as sepsis. Quantifying the capillary density and the capillary distribution in microcirculation images
can be used as a biological marker to assist critically ill patients. The quantification of these biological
markers is labor intensive, time consuming, and subject to interobserver variability. Several computer vision
techniques with varying performance can be used to automate the analysis of these microcirculation images
in light of the stated challenges. In this paper, we present a survey of over 50 research papers and present the
most relevant and promising computer vision algorithms to automate the analysis ofmicrocirculation images.
Furthermore, we present a survey of the methods currently used by other researchers to automate the anal-
ysis of microcirculation images. This survey is of high clinical relevance because it acts as a guidebook of
techniques for other researchers to develop their microcirculation analysis systems and algorithms.
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INTRODUCTION

Arterioles, venules, and capillaries comprise most of the micro-

vessels known as the microcirculation system.1 These micro-

vessels measure less than 20 mm.1 The cardiovascular sys-

tem’s main component, microcirculation, is in charge of

delivering nutrients, hormones, and oxygen to the tissues.2,3

The microcirculation system is essential for the body’s ability

to control blood pressure and sustain tissue function.4,5 In

addition, it aids in clearing out waste from the cell tissues.6 Ar-

terioles carry oxygenated blood to the capillaries, while venules

carry away deoxygenated blood.1 According to research con-

ducted on microcirculation, a low number of healthy capillaries

might indicate some underlying medical conditions.7–19 In addi-

tion, the thin cell walls of the capillaries make it viable for car-
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bon dioxide and oxygen to cross the capillary walls. The de-

livery of oxygen helps the tissue cells’ functional activity by

providing the energy they need.21 The parenchymal cells

depend on the efficient functioning of the microcirculation to

keep the cells alive and sustain their function.21 Thus, it might

be argued that the microcirculation system is an essential

component of the cardiovascular system. The functional capil-

lary density of the microcirculation system can be used to mea-

sure the oxygen transport factor to the cells, which is critical for

cell survival;22 thus, methods to measure the capillary density

will be the main topic of this paper. Other vital microcirculation

tasks include but are not limited to the management of solute

exchange in the parenchymal space,1 delivery of white blood

cells to their target tissue,23 delivery of all blood-borne hor-

mones, and modulating hemostasis.1
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One of the functions of capillaries is to deliver oxygen to the

cells of all organs.24 In the past decades, research has been con-

ducted to elucidate whether monitoring microcirculation can be

used to diagnose or assess the severity of various diseases.25,26

One of the first study directions was to record blood movement

in the nail fold capillaries to assess the severity of rheumatic dis-

eases, such as systemic sclerosis, Raynaud’s syndrome, and

dermatomyositis.27 These studies revealed that patients with

rheumatic diseases had altered microcirculation, showing

dilated and distorted capillary loops and areas with low capillary

density compared with controls.27 More recently, studies on the

effect of nonrheumatic diseases on microcirculation have been

conducted. Microcirculation has been monitored either on the

skin surface28 or sublingually2 using video recordings of seg-

ments of blood flow within the capillaries. The impact of various

diseases on microcirculation has been assessed, including

sepsis29,30 and, more recently, COVID.31,32 These studies have

reported various correlations between diseases and the density

of capillaries, the velocity of blood flow, and the heterogeneity of

perfusion.2,27,28,31,32

Recently, the microvascular community has been focused on

standardizing the analysis of microcirculation images33 by using

automated methods34–36 (see state-of-the-art microcirculation

image analysis techniques). This is of exceptionally high impor-

tance as, currently, the gold standard for microvascular analysis

is manual analysis by a trained researcher.34 This process is

time-consuming (approximately 2 min per microcirculation im-

age) and prone to subjective bias. Moreover, the length of

analysis and requirements for trained researchers preventmicro-

vascular monitoring from being used in routine clinical applica-

tions.37 In this article, we present the relevant methods in deep

neural networks and traditional computer vision algorithms that

can be used to achieve the automation of microcirculation image

analysis.

Moreover, cardiogenic shock can deteriorate microcirculatory

functions and cause disturbances. Therefore, speeding up the

process of microcirculation analysis via accurate automation

processes can assist in evaluating the efficiency of techniques

used to treat a patient suffering from a cardiogenic shock. Other

broader relevant diseases that affect microcirculation include

but are not limited to shock reperfusion,38 iatrogenic injury,38,39

and pancreatitis.40

Traditional computer vision techniques require the user to find

the optimal set of values to segment the capillaries in an image,

while deep neural networks can automatically attempt to find

those values based on the dataset provided.41 Although deep

neural networks can automate themanual segmentation process,

traditional computer vision algorithms require less computational

power and are faster than deep neural network methods.42 Thus,

we present both techniques in this review paper. That being said,

we believe that a combination of both of thesemethodswill be the

future of microcirculation analysis in the clinical setting.36

This paper is intended to serve as a guidebook to inform re-

searchers on what deep learning and computer vision tech-

niques exist that can be used for the automated quantification

of capillaries. The goal of the methods represented in this paper

is to reduce the labor-intensive, time-consuming analysis from

several minutes to seconds. Furthermore, these methods aim

to reduce the subjectivity of the interobserver variability using a
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standardized method. The capillary dataset section presents

and discusses the capillary dataset. The machine learningsec-

tion introduces machine learning and its four types. The deep

learning section goes into the details of convolutional neural net-

works. The deep learning object detection techniques section in-

troduces the two object detection techniques: regional pro-

posal-based framework and unified-based framework. The

traditional computer vision object detection techniques section

introduces traditional computer vision object detection tech-

niques. The state-of-the-art microcirculation image analysis

techniques section presents the current methods and tech-

niques published and used by researchers for capillary quantifi-

cation. We then conclude our paper.

CAPILLARY DATASET

Capillaroscopy is amethod that noninvasively checks the dermal

papillary capillaries using a microscopy system.43 The image(s)

obtained can then be evaluated for capillary density, dimension,

andmorphology.43 Figure 1was obtained fromRuaro et al.44 and

best illustrates this. Ruaro et al.44 describe systemic sclerosis as

a disease that alters the microvascular structure, which can be

seen using capillaroscopy. Figure 1A shows the typical pattern

with no disease; Figures 1B–1D show how the capillaries react

to different disease stages.44

Microcirculation data can prominently come from sublingual

microcirculation,45 the eyes,46 or the dorsum region of the

hand47 or nail bed.48

Several microscopes are currently available that can

achieve such images: Dino-Lite CapillaryScope,49 Optilia Digital

Capillaroscope,50 Inspectis Digital Capillaroscope,51 and Smart

G-Scope.52 Other equipment that can capture capillaries

include dermatoscope, ophthalmoscope, and stereomicro-

scope; however, none was designed for capillary capture.

Therefore, images from this equipment are of relatively lower

quality53 than images captured by microscopes. That said,

contemporary microscopes designed for capillaroscopy still

do not produce adequate image quality compared with those

in a standard object recognition dataset. Some examples of

standard object recognition datasets used to develop object

recognition algorithms are ImageNet (14 million+ images and

21,841 categories)54, Common Objects in Context (COCO)

(328,000+ images and 91 categories),54 Places (10 million+ im-

ages and 434 categories),55 and Open Images (9 million+ im-

ages and 6,000+ categories).56 These datasets have several

thousand images per category, and the objects to be identified

are relatively not as pixelated as the capillary data. Thus, one of

the main challenge is the dataset’s quality. Since the capillaries

are relatively smaller in size, measuring less than 20 mm in

diameter,24 the shape of the capillary tends to be pixelated.

Furthermore, in the literature, there is no clear definition of

capillary shapes, which exponentially increases the challenge

of not enough data being present for each shape/type of capil-

lary, as shown in Figure 2.

MACHINE LEARNING

Machine learning (ML) is a sub-branch of AI that combines tech-

niques from computer science and statistics.57 ML aims to find



Figure 1. Systemic sclerosis disease affects the microvascular
structure
In (A), we see a normal pattern, while in (B, C, and D), we notice changes in the
capillary structure as the disease advances. This image is from Ruaro et al.44
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patterns from data to make predictions about new data.58 This

process of finding a pattern from a set of data is known as

training.59 The product of this process is a model that is used

to predict new data.59 An ML framework can consist of seven

processes,60–62 which are data collection, data preparation, se-

lecting and training the model, testing the selected model, eval-

uating themodel using F1-score, and finally deploying the model

to production.

ML techniques can be further divided into supervised learning,

unsupervised learning, reinforcement learning, and transfer

learning.63

Supervised learning is an ML technique where the algorithm

learns from data labeled by a human expert.64 In terms of micro-

circulation data, themodel will attempt to highlight the capillaries

with a bounding box based on the sample of labeled data pro-

vided to it. Supervised learning can be further divided into

regression and classification. Regression predicts a value, while

classification predicts a class. In the case of microcirculation

analysis, we predict whether a region has capillaries or not, so

using the classification algorithms from the supervised learning

techniques is the most suitable method for capillary detection.

Unsupervised learning, as opposed to supervised learning, is

giving a set of data with no labels to the algorithm.65 The algo-

rithm then attempts to find patterns between the data.66 There

are two types of unsupervised learning: clustering and associa-

tion.67 Clustering attempts to find subgroups in the data based

on color, density, or other features. In contrast, association tries

to discover relationships between patterns. For example, a sys-

tem that tries to recommend to the user what to purchase next

based on what other users have bought, that is, association.

Another example is anomaly detection, where the system finds

data that exhibits patterns outside the normal range of the

data. We did not find any suitable unsupervised algorithms for

capillary detection. Moreover, we have not yet found papers

on capillary detection that use unsupervised algorithms for capil-

lary detection.
Reinforcement learning finds patterns based on a reward sys-

tem.68 When the system predicts the right output, the weights of

those nodes in the neural network are increased, while an incor-

rect prediction diminishes the weights of other nodes.69 Rein-

forcement learning is common in game development for games

such as chess andGo.70,71We did not find any suitable unsuper-

vised algorithms for capillary detection.

Transfer learning uses a model trained on previous data and

tweaks the weights of the last n (defined by a machine learning

expert) number of layers to train it on new data.72 An alternative

way is to add new layers in addition to the existing layers of the

network. It is assumed that the earlier layers of a transfer learning

model detects the generic features of the image such as the

width, height, and edges and that the latest layers learn

the fine details of the classification.73 Therefore by freezing the

earlier layers while training the later layers on a new set of

data, one can adapt anymodel to different datasets without hav-

ing to retrain the algorithm from scratch.74

For microcirculation capillary quantification, our review work

reveals that themost relevantML techniques for microcirculation

analysis are supervised classification learning and transfer

learning.

DEEP LEARNING

Deep learning is a sub-branch of ML that has vastly advanced

the state of the art in speech recognition and visual object detec-

tion.75 In its simplest form, a deep neural network is composed of

multiple layers of neurons.75 This typically consists of the input

layer, hidden layer(s), and the output layer.75 Deep learning out-

shines the other ML techniques because it can construct a

feature extractor without the need for domain expertise.76

Rather, the neural network increases prediction accuracy by ad-

justing the neuron weights to optimize an appropriate cost func-

tion using back-propagation techniques.77 Deep learning archi-

tectures combine multiple non-linear modules to transform

input data into a higher abstract level. That suppresses irrelevant

information while intensifying the useful parts to increase predic-

tion accuracy.78 In this section, we describe several deep

learning architectures and then delve into the details of convolu-

tional neural network (CNN) architectures.

Types of deep neural networks
There are many types of deep neural networks. In this section,

we focus on the threemost relevant for microcirculation analysis:

recurrent neural networks (RNNs),79 generative adversarial net-

works (GANs),80 and CNNs.81

RNNs are a type of neural network that has a hidden state to

find patterns in sequential data and uses the output of previous

layers as an input for the current layer.79 The nodes of an RNN

are connected by directed cycles, allowing it to keep the state

of the previous nodes. While a traditional neural network takes

in the input and gives an output, an RNN assumes a relationship

exists among the sequences of input data.82 Thus, RNN ismainly

used in speech recognition, translation, and sequential data

analysis.82

Long short-term memory networks (LSTM)83 and gated recur-

rent units (GRU)84 are RNN architectures that deal with gradient

vanishing challenges.85 The vanishing/exploding gradient
Patterns 4, January 13, 2023 3



Figure 2. Example of capillary dataset captured using a relatively
high-end microscope
We see that the shapes of capillaries are not the same and can be faded. We
also see instances with black spots and other cases with white spots, which is
a reflection due to the oil. These are considered artifacts and are undesirable.
Such issues make it challenging to develop a highly accurate algorithm that
can generalize in detecting capillaries.
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problem is when the size of the gradients of each layer does not

equal 1. This will prevent the neural weights from converging.

The modifications introduced by LSTM and GRU deal with this

challenge by reducing the amount of irrelevant information prop-

agating through the architecture by adding appropriate gates

into the vanilla RNN.

GAN creates new instances of the data.86 They aremade up of

a generator (G) and a discriminator (D), whose tasks are opposite

to each other. The generator obtains a random noise input z, and

its output is a fake datum sample G(z). The discriminator D ob-

tains as input both G(z) and a real sample x, and its output is

the probability of whether G(z) is real. G can reliably produce

new instances that mimic those in the real dataset. One of its

main uses is in data augmentation to create more artificial data

resembling the real data as much as possible. Furthermore,

they can be used to enhance the image by scaling up the image

and increasing its resolution.87

CNNs are the most prominent architecture used for medical

image analysis, specifically for microcirculation analysis.77,88–90

They were originally developed in 1998 to recognize zip codes91

and digits. Gradually, they have become the most relevant archi-

tecture in image classification.
CNNs
In this subsection, we dive into the details of a CNN.

A CNN pipeline

A typical CNN image classification pipeline can consist of three

main stages, which are:
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d Dataset: where a set of images is labeled with their corre-

sponding classes

d Learning: a model that has learned from every class of

the data

d Evaluation: evaluating the performance of the model on a

set of data that it has not been previously trained on92

The data at the first step can be further split into a training set

and a validation set, so one can evaluate the model before new

data come in. In this way, a pipeline can end up with three sub-

datasets: a training set, a validation set, and a test set. A good

CNN should be invariant to the listed challenges below:93

d Variation of viewpoint: as regards the camera, a single

instance of an entity may be directed in various ways

d Variation of scale: the scale of visual groups is often

variable

d Deformation: a term used to describe the process of

changing many interesting things, which are not solid

bodies and may be deformed dramatically

d Occlusion: a term used to describe a situation where ob-

jects of interest can be obscured. Just a small portion of

an item (a few pixels) can be observable at any given

moment

d Illumination: different brightness levels on different parts of

the image can significantly affect algorithm performance

d Clutter in the background: the objects of interest can blend

in with their surroundings, making them difficult to spot

d Variation within a class: the categories of interest, such as

chair, may be very general. These artifacts come in various

shapes and sizes, each with their distinct appearance

Data preprocessing can bedone in twoways:mean subtraction

and normalization.94 The most popular form of preprocessing is

mean subtraction.94 It entails subtracting the mean from all the

data’s features, with the geometric understanding of centering

the cloud of data (pixel values) in all dimensions (1 in case of white

and black, 3 in case of RGB). Normalization is the process of

bringing the sizes of the scale closer together. This normalization

can be accomplished in two forms. The first is to zero-center the

value and divide it by its SD. The second is to normalize each

dimension such that the minimum and maximum values are be-

tween negative 1 and positive 1. In the next section, we talk about

the different parts that make up a CNN: the fully connected (FC)

layer, the convolutional layer, and the pooling layer.81

The anatomy of a FC layer

In this subsection, we describe the details of a FC layer.94–96

Weight initialization: each neural network node consists of pa-

rameters known as weights, which take numerical values and

contribute to the total of the other weighted input signals. It is rec-

ommended to initialize a neural model’s weights with a positive

random value to help it converge into the results with the epochs.

There are other ways to initiate the weights in a neural network us-

ing Xavier weight initialization and Heweight initialization. At every

iteration, the algorithm tries to find the most appropriate set of

weights for each node. For example, in stochastic descent, the

neural network weight is gradually adjusted by a cost function.

A cost function is used in supervised learning to measure the

difference between the predicted result and the expected value.

There are two types of loss functions: one is used for
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classification when the classes are of a fixed size and set, while

regression is used to predict a quantified value.

Regularization: there are four ways to regularize a neural

network: L2 regularization, L1 regularization, max norm con-

straints, and dropout. The most popular form of regularization

is L2 regularization. It can be applied by penalizing all parame-

ters’ squared magnitudes. The intuitive understanding of the

L2 regularization is that it strongly penalizes high weight vectors

while favoring diffuse weight vectors. In L1 regularization, the

values become almost invariant to noisy values since they use

the most critical inputs and almost all of their irrelevant informa-

tion is eliminated. In general, if a CNN architecture would be used

for feature selection, then L1 regularization handles it best over

other regularization methods.

Maxout constraints on the maximum average, which is

another method to regularize the values by imposing an absolute

upper limit on the magnitude of each neuron’s weight vector, is

enforced using projected gradient descent. In fact, this entails

updating the parameters as usual and then clamping the weight

vector to enforce the constraint. Dropout is an easy, efficient tool

for removing a random percentage of neurons that the developer

of the neuron can specify.

Activation function: this part in a CNN takes in a number and

performs a mathematical operation on it. Many activation func-

tions can be performed in a CNN; however, the common ones

are sigmoid, tanh, ReLU, leaky ReLU, and maxout.

Hyper-parameter optimization is finding the right set of values

for all of the above properties in a neural network. Mainly, finding

the initial learning rate, the decay constant of the learning rate,

and the regularization values can strengthen or weaken the neu-

ral network. During the forward pass, the score is calculated by

applying the operations of all the blocks on the input value. On

the backward pass, we compute an updated value of theweights

that minimizes the loss function, which increases the overall ac-

curacy of prediction.

The convolutional layer and the pooling layer

In this section, we describe the details of the convolutional and

pooling layer.93,94,97

Similar to the anatomy of a node in a FC layer explained in the

previous section, a convolutional block is initialized with weights

and has a cost function, activation function, and regularization.

The difference is that convolutional net architectures presume

that inputs are pictures, taking the spatial variance between

the inputs into consideration. These processes and parameters

decrease the network’s overhead, reducing the number of pa-

rameters the program will execute as well as increasing the

speed. If we were to pass a full HD image to a neural network

(1920 3 1080 3 3), there would be approximately 6.2 million

weights to initialize—one weight for each pixel. Instead, we

pass that image to a series of convolutional blocks first to reduce

the number of weights from 6.2 million to possibly several hun-

dred thousand weights, without compromising accuracy. This

reduction of pixels is achieved by transforming the image into

a more representative form using a CNN architecture.

A simple CNN architecture consists of four parts:

d input, where data is loaded as a matrix in its raw form

(for example, a full HD image will be a matrix of

1920 3 1080 3 3)
d a convolutional layer, which takes in a value and applies

the dot product operation followed by some kind of non-

linearity (activation function)

d the pooling layer, which applies downsampling to the

matrix

d the FC layer, which computes a prediction associated with

each class. With each iteration, the values for the convolu-

tional and FC layers change as their weights are adjusted,

while the activation function and pooling layer values stay

constant throughout the whole process. The details of

each part are described below

A convolutional layer consists of a set of filters, forming a ma-

trix that is typically 5 3 5 3 3. However, these values are strictly

experimental and depend on the image used. A convolutional

layer can have any number of filters specified by the machine

learning expert. The filter values are randomly generated and

are updated in the back-propagation to reduce the loss value,

which increases the probability of correct classification. Each fil-

ter slides over the image with a stride value production of a

smaller image known as the activation map. The number of

strides dictates the number of weights to be initialized later: as

the number of strides increases, the number of weights to be

initialized at the FC decreases. For example, a stride of two

means the filter will jump two pixels in the image before applying

the dot product and skipping some pixels. There is a trade-off.

Each filter can detect a different image property; for example,

a filter can detect horizontal or vertical edges and types of colors.

The number of filters in this layer is referred to as the filter depth.

Each filter produces an activation map, and these are then

stacked on top of each other. Padding is another concept in

the convolutional layer that involves adding zeros around the

borders of the input image to preserve the sizes of the input

and output shapes. Combining the filter depth, stride, and

padding, the output volume of the convolutional layer can be

calculated. Output volume: (W – K + 2P/S) + 1, where W is the

input height/length, K is the filter size, P is the padding, and S

is the stride. For example, a single black-and-white image of

dimension 200 with a stride of 1, padding of 0, and filter size of

5, with 32 filters, will turn the image from a 200 3 200 3 1 to a

196 3 196 3 32. Each layer represents the activation map pro-

duced by the individual filter. This number is very high compared

with the input value, and thus a pooling layer is applied to take

down the number of parameters to initiate weights for. A pooling

layer is typically inserted between consecutive convolutional

layers before passing the final value into an FC layer. The pooling

layer is applied individually on the activationmap; the depth does

not change, but the activation map’s width and height are

reduced. The pooling layer scales the image and takes in two pa-

rameters: the window size and stride. The larger these values

are, the smaller the output image will be. There are several types

of pooling, but the most common are average and max pooling.

Average pooling takes the mean of a window of pixels, while

max pooling takes the maximum value within the window. So a

pooling layer with a 23 2 window and a stride of 1 halves the im-

age’s dimensions from 1963 1963 32 to 983 983 2. Applying

several of these between consecutive convolutional layers inev-

itably reduces the dimensions of the activation map to the most

relevant for prediction. The values from the last pooling layer are
Patterns 4, January 13, 2023 5
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flattened or converted from 2D to 1D and passed to the FC layer

explained earlier. In the next section, we look into how the con-

volutional layers, activation function and pooling function are

used as fundamental building blocks to predict the image classi-

fication.

Types of CNNs
LeNet,91 created in 1998, uses a five-level CNN: two convolu-

tional layers with three FC layers. The convoluted layers were

made up of a 5 3 5 filter with a stride of 2 with sigmoid function,

followed by an average pooling layer of 2 3 2 with a stride of 1.

The FC layer contained 120, 84, and 10 neurons, respectively,

using softmax as an activation. This CNN’s input data was a

grayscale 32 3 32, which is relatively small with today’s

standard.

AlexNet,98 released in 2012, outperformed LeNet. It used an

eight-layer-deep CNN: five convolutional layers, two hidden

layers, and one FC output layer. There are several significant dif-

ferences between AlexNet and LeNet. AlexNet uses ReLU for the

activation function. Moreover, AlexNet uses dropout instead of

weight decay for regularization. AlexNet uses more neurons

and different filter sizes for each convolutional net. For the FC

layer, AlexNet uses 4,096, 4,096, and 1,000 neurons, respec-

tively, compared with the 120, 84, and 10 of LeNet. AlexNet

uses 11 3 11, 5 3 5, and 3 3 3 for the convolutional layer, while

LeNet uses two 5 3 5 filters.

Visual Geometry Group (VGGNet),99 developed in 2014 at Ox-

ford University, consisted of these basic CNN building blocks: a

convolutional layer, activation function ReLU, and a maximum

pooling layer. It used 3 3 3 filters with a padding of 1 and a

23 2 pooling with a stride of 2. Moreover, the paper authors ex-

perimented with several different architectures and concluded

that deeper and narrower layers get better results than fewer

and wider convolutional layers.

The above three architectures have a common pattern of using

the convolutional layer followed by pooling with minimal tweaks.

The next three architectures came later and use a slightly

different design pattern.

GoogLeNet,100 published in 2015, outperformed the previous

three architectures, achieving close to human-level performance

with its new inception module. An inception block uses four

different blocks in the input images and then concatenates their

output. The first three blocks apply a convolutional layer of

different window sizes, while the fourth applies max-pooling

and then the convolutional layer. The number of blocks in an

inception module can be tested on different sets using hyper-

parameter tuning. GoogLeNet outperformed the others because

it aims to extract the most spatial information possible from each

layer. Instead of finding information from the previous block’s

output, inception aims to explore each image with different filter

sizes. It is like taking the same photograph with different lens

magnifications.

Residual neural network (ResNet)101 was published in 2016

and designed to address the increasing complexity of making

deeper neural networks. As the number of blocks increased,

the accuracy gain per block decreased to where making the

network even deeper started to adversely increase complexity

and computational power and reduce accuracy. This was

achieved using the residual block, which utilizes a skip connec-
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tion with heavy batch normalization. Like the VGGnet convolu-

tional layer design, a ResNet consists of two consecutive

33 3 convolutional layers with an activation function. In addition,

there is a connection between this block’s input and the output,

known as the skip connection. Like GoogLeNet, which uses four

modules within the inception block, ResNet uses four modules

within the residual block. It also uses a global average pooling

layer before the FC layer.

For microcirculation image analysis, it is not enough to use a

CNN architecture; these architectures only detect whether an

image has a capillary. They cannot pinpoint the capillaries’ loca-

tion. To do that, we need to extend the CNN architecture with an

object detection architectures.

DEEP LEARNING OBJECT DETECTION TECHNIQUES

Object detection techniques aim to estimate the location and la-

bel of an object in an image.102 The object detection part extends

the CNN architecture. Object detection techniques can generally

be split into two distinct categories. The first category, which is a

two-step method, aims to first locate the object in the image (ob-

ject localization) and then estimate the category of the object

(object classification). These architectures can be referred to

as the region proposal-based framework. The second category

is a one-step method, which aims to locate and categorize the

objects in one go. These architectures are known as the unified

framework.103 Before these methods were developed, the field

was dominated by different techniques known as the scale-

invariant feature transform (SIFT) technique (from 1999 to

2012).98,104,105 Object detection architectures are benchmarked

by measuring the mean average precision (mAP) and

efficiency (speed of detection per frame) on standardized data-

sets.54–56,106–108 In this section, seven selected architectures

from the region proposal-based framework are described along

with five selected architectures from the unified framework.

Region proposal-based framework
R-CNN (rich feature hierarchies for accurate object detection

and semantic segmentation)109: when this paper was released

in 2014, the best-performing object detection architectures

had plateaued from 2010 to 2012, with an accuracy of 35% for

the most popular datasets.105 This algorithm achieved 20%

higher accuracy than its predecessor with the VOC 2012 data-

set.109 This method was termed regions with CNN features, or

R-CNN. It is also one of the first methods to propose a two-

step approach, and many subsequent methods have been

based on this approach from 2014 to this day.93 Region pro-

posal-based frameworks are inspired by the combination of

deep CNN (DCNN)98 and region proposals.110 R-CNN takes in

an image, applies a segmentation mask to it, and extracts the

top 2,000 promising bounding boxes on that segmentation.

The bounding boxes are of different scales, increasing the prob-

ability of identifying different sizes or shapes. It then computes

the features of these boxes using a CNN and classifies each re-

gion with a linear SVM. On the other hand, this method can be

slightly adjusted if the training data is low to apply a supervised

pre-training CNN on the ImageNet followed by fine-tuning the

low training data. The R-CNN consists of two concurrent pipe-

lines: the region detector and the object detector. For the region
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detector, R-CNN takes an image and applies a non-deep

learning model called selective search to extract approximately

2,000 regions of interest (ROI). These regions present the places

in the image where an object is more likely to reside. The pro-

posed region is then warped or cropped to fit a specific dimen-

sion before being passed into the object detector. The object de-

tector applies CNN + max-pooling with an activation function to

calculate the feature map. The feature map is then passed to an

FC layer to create a 4096-dimensional vector. This vector is

passed to a classification head that tries to figure out the class,

and the regression network that tries to refine the box coordi-

nates. The classification head is optimized using cross-entropy

loss, while the regression head is refined using L2 loss. The

model is trained by optimizing the model first on the classifica-

tion loss, then the regression loss. This can take up to several

days, with large storage space, since all the features computed

from the proposed regions require many gigabytes. This paper

methodology consists of three modules.

d Generating the region proposals: selective search method

is used to suggest the regions

d Extracting the features using CNN: a 4096-dimensional

vector is extracted from each region generated by the pre-

vious step using the method applied by the DCNN.111 The

features are then computed by subtracting the mean from

a 2273 227 image through a five convolutional layer and a

two-FC layer. The output region is warped equally with p =

16; however, the paper suggests that alternative values

can be used

d Extracting the class using SVM: each region is scored us-

ing an SVM, and a greedy non-maximum suppression for

each class is applied independently in the proposed re-

gion. If the two regions have an intersection-over-union

higher than a threshold, one region will be rejected

If there is a lack of training sets, the paper suggests the addi-

tion of these two modules:

d Supervised pre-training: it starts by training the CNN on

one of the large datasets as an image classification prob-

lem using the Caffe CNN library

d Domain-specific fine-tuning: the wrapped regions created

in step two of the above method are used to fine-tune the

CNN parameters using stochastic gradient descent.

R-CNN applies the results on the PASCAL VOC 2007 dataset

and achieves a 53.7% mAP. These results are a big jump from

the previous algorithms proposed for this dataset at that time

(year 2010) where the highest achieved mAP was 35.1%.

R-CNN is a big step toward building a high-quality object detec-

tion architecture after the SIFT era and in the DCNN era. This is

noticeable in the jump in accuracy introduced by R-CNN. How-

ever, there are some drawbacks to using R-CNN. First, R-CNN

has multi-stage, multi-step modules that need to be optimized

individually to achieve good results, which increases the chan-

ces of introducing inaccuracies and makes training time notably

longer. Second, R-CNN uses a FC layer that requires a fixed

input shape. Moreover, approximately 2,000 regions are ex-

tracted, which, one can argue, is way too much in sparse images

andway too little in denser images. Such disadvantages have led
to the development of successors such as SPP-Net (spatial pyr-

amid pooling), Fast R-CNN, Faster R-CNN, region-based fully

convolutional network (R-FCN), feature pyramid network (FPN),

and Mask R-CNN which are presented in the next paragraphs.

SPP-Net (spatial pyramid pooling in deep convolutional net-

works for visual recognition)112: this method introduces two

changes to the existing R-CNN architecture. First, it aims to

tackle the challenge of having a fixed-size window since impor-

tant information can be lost or distorted, reducing accuracy.

Second, SPP-Net computes the feature maps for the images

instead of repeatedly computing them on each ROI region as

the R-CNN. The challenge of having a fixed-size window is

tackled by adding a spatial pyramid to the top of the last convolu-

tional layer before the FC layer. Instead of cropping or warping

the image, this method aggregates the information by pooling

the features and feeding it to the FC layer. The spatial pyramid

pooling is an extension of the Bag-of-Words model released in

2006.113 The difference between the R-CNN method and the

spatial pyramid pooling methods can be illustrated as follows:

the R-CNN method takes in an image, applies crop/warp, and

passes it to the convolutional layer and then the FC layer. The

SPP-Net method takes an image, passes it directly to the convo-

lutional layer, applies the spatial pyramid pooling, and then

passes it to the FC layer. The SPP-Net takes in the feature

maps from the last layer of the convolutional layer to create

feature maps of fixed-length feature vectors regardless of the

input image size. Images with different sizes can be pooled

and aggregated into a spatial pyramid, which is then passed to

the FC layer. When this paper was released, four existing object

detection architectures were compared with their non-SPP

counterparts (ZF-5, Convnet*5, Overfeat-5, Overfeat-7), and

the CNN with SPP-Net showed state-of-the-art classification re-

sults on Pascal VOC 2007 and ranked at number 2 on the

ILSVRC 2014 competition.93 The spatial pyramid pooling

method is more efficient than its predecessor since it obtains a

significant speedup. The speedup is due to the fact that the

CNN layer generates a feature map by running one iteration on

the image. Furthermore, it is more accurate since it can learn

feature maps from any scale without losing information to crop-

ping or warping. The multi-level pooling makes the input images

more robust to deformation. The main drawbacks of SPP-Net

are that it is still a multi-stage, multi-step pipeline (feature extrac-

tion, network fine-tuning, SVM training, bounding box regressor,

feature caching), making it relatively slow. Furthermore, the au-

thors of the paper mention that the accuracy of SPP-Net layers

drops when using deeper CNN, since tuning the network will

not update the layers before the pyramid layer, leading to

reduced accuracy and a very difficult challenge in implementing

back-propagation.

Fast R-CNN114: this paper addresses the problems arising

from the SPP-Net and R-CNN architectures. Until this paper’s

2015 publication date, object detectionmethods required gener-

ating several hundred regions known as ‘‘proposals’’ to create a

feature map; then, the proposals generated estimated the local-

ization of the object. These proposals reduced speed and accu-

racy while increasing complexity. Similar to R-CNN, this method

uses selective search to find the regions and then passes the re-

gions to the object detector. The method also consists of two

SVM heads: one for classification to get the class category and
Patterns 4, January 13, 2023 7
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the second regression to calculate the bounding box coordi-

nates. The difference is that instead of running the CNN several

times on the ROI, it runs it only once by introducing ROI pooling.

Second, it streamlines the process on the object detector side,

where it jointly classifies and learns the object’s location simulta-

neously by usingmulticlass loss. This method generally achieves

a higher mAP by having a single stage for the training with a

multi-task loss. The increased accuracy is obtained by updating

all layers. The speed is achieved by not requiring the features to

be cached and because Fast R-CNN learns the softmax classi-

fier and bounding box regression together rather than in two

separate processes. These improvements have led to a major

decrease in storage space needed. Unlike the R-CNN, Fast

R-CNN creates a feature map from the entire image. Further-

more, Fast R-CNN method improves efficiency compared with

the SPP-Net: 33 in training and 103 in testing. The authors

report that ‘‘Fast R-CNN trains 93 faster than R-CNN on the

VGG-16 and 2133 faster at test-time, with a higher mAP on

the PASCAL VOC 2007, 2010 and 2012 dataset . ’’114 These

speed improvements result from a single process that updates

all layers without requiring feature caching. Moreover, to reduce

the time spent on the FC layers, Fast R-CNN uses a truncated

singular value decomposition (SVD) to accelerate the testing

procedures.115 This method has significantly increased the

speed and efficiency of object detection, firstly, by streamlining

the whole process and, secondly, by applying SVD on the testing

set. Thus, Fast R-CNN is more of a speed improvement than an

accuracy improvement. On the same dataset that took 84 h to

train, Fast R-CNN performed it in 9 h. A major drawback is that

Fast R-CNN still relies on external region proposals that make

the whole process relatively slow. It uses the selective search

method to find the ROI. Furthermore, later research has

concluded that convolutional layers are sufficient to localize ob-

jects; therefore, adding an FC layer slows down the process un-

necessarily.

Faster R-CNN: toward real-time object detection with region

proposal networks116: optimizations introduced by SPP-Net

and Fast R-CNN have exposed the fact that using external region

proposal methods slows down the process. Previous networks

mainly relied on selective search110 and Edge box117 to create

region proposals. This paper introduces a region proposal

network (RPN), which aims to replace the selective search and

Edge box. The RPN introduces an almost cost-free proposal

computation. For RPN to compete with methods such as selec-

tive search, it has to predict the ROI of multiple scales and ratios

from an image much faster. Thus, RPN introduces a novel

concept of creating anchors on the feature maps. The RPN layer

takes in the feature map and generates rectangular object

bounds using CNN, which are the new ROI. Faster R-CNN can

be trained end-to-end like Fast R-CNN. The RPN output tells

the Fast R-CNN where to look. The Faster R-CNN architecture

is complex because it has several interconnected parts. The

RPN first initializes anchors of different ratios and scales on the

feature maps created by the convolutional layer. The paper’s

author uses nine types of anchors when the ROI is decided on.

The anchors are off three scales and three ratios. These anchors

are mapped and fed into the two FC layers, where one layer is

responsible for the category classification and the other for the

box regression. RPN shares the convolutional feature with the
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Fast R-CNN, enabling the same efficient computation as

mentioned in the methodology of the previous paper. On the

VGG-16model,61 the Faster R-CNN efficiently performs all steps

on 5 fps with an accuracy exceeding all recorded results on the

VOC 2007 dataset with 73.2% mAP, and on VOC 2012 with

70.4% mAP. Although this method is several times faster than

Fast R-CNN, it still relies on applying several hundred ROI per im-

age to detect the region of interest. This leads to computations

not being shared after the ROI layer, reducing this method’s

overall efficiency.

R-FCN: object detection via region-based fully convolutional

networks.118 In Faster R-CNN, each region proposal had to be

cropped and resized to be fed into the Fast R-CNN network.

The R-FCN attempts to speed up the network by converting

this process into fully convolutional. It aims to swap the costly

per-region subnetworks with a fully convolutional one, thus al-

lowing the computation to be shared across the whole image.

Furthermore, the R-FCN differs from the Faster R-CNN in the

ROI pooling layer. The R-FCN proposes a method to use convo-

lutional layers to create an ROI subnetwork. It uses the RPN

introduced in the previous method to extract features and pass

them on to the R-FCN. The R-FCN then aggregates the output

of the last convolutional layer and generates the scores for

each ROI. Instead of cropping the regions from the feature

map, the R-FCN inputs the feature map into the regression and

classification heads, creating an ROI map on the feature map.

R-FCN uses ResNet-101 as the backbone of its architecture.101

ResNet-101 has 100 convolutional layers with a 1,000-FC layer.

The average pooling layer and the convolutional layers are

removed, and the convolutional layer is used to compute the

feature maps. A layer applied to the last convolutional block gen-

erates the score maps. A sibling convolutional layer is also

applied to calculate the bounding box regression. On the

PASCAL VOC 2007, it achieves an 83.6% mAP with the

101-layer ResNet. It suggests the same accuracy as the Faster

R-CNN but achieves 20 times the speed of its Faster R-CNN

counterpart. Thus, R-FCN introduces two advantages over its

predecessors: first, CNN is faster than FC layers. Second, the

network becomes scale invariant since there is no FC to restrict

the input image size.

FPN (feature pyramid networks for object detection)119: this

method was designed to address an issue with Faster R-CNN.

Faster R-CNN was generally made to address the scale-invari-

ance problem introduced by Fast R-CNN. Faster R-CNN takes

an input image and resizes it accordingly, meaning that the

network has to run on the image several times with different

box sizes, making it slow. The FPN deals with these different

scales while maintaining the speed. The FPN is an extension of

Faster R-CNN in the same manner that R-FCN is an extension

of Faster R-CNN. Having a robust scale invariance is important

for object detection since the network should be able to recog-

nize an object at any distance from the camera. Faster R-CNN

aimed to tackle this issue by creating anchor boxes. This proved

time-consuming since the anchor boxes had to be applied to

each ROI. The FPN, however, creates multiple feature maps

that aim to represent the image at different scales. Hence, the

feature map in RPN is replaced by the FPN, removing the neces-

sity of havingmulti-scale anchor boxes. The regression and clas-

sification are applied across these multiple feature maps. The
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FPN takes in an input image and outputs multiple feature maps

representing smaller height and width but deeper channels

known as the bottom-up pathway. The feature maps generated

by the FPN goes through a 13 1 convolutional layer with a depth

of 256. The lateral connection is then applied, which adds the

feature elements to the upsampled version of the feature map.

Faster R-CNN runs on each scale, and predictions for each scale

are generated. FPN comprises two paths: the bottom-up that

uses ResNet and the top-down. In the bottom-up approach,

CNN is applied to extract features. On the top-down pathway,

the FPN constructs a higher resolution layer, but the object loca-

tions are no longer accurate because of the down- and upsam-

pling. Therefore, FPN adds a lateral connection between the

constructed layers to increase the probability of predicting loca-

tions. Thismethod runs at 5 fps, as benchmarked by the previous

methodology with a state-of-the-art result on the COCO 2016

dataset. Images have objects with different scales, making it

challenging to detect them. When using several anchor boxes

to detect objects with different scales, the ratio seems to be

memory- and time-consuming. FPN seems to push the accuracy

boundaries by introducing a pyramid of feature maps to detect

objects of different sizes and scales in an image. It is important

to highlight that FPN is a feature detector and not an object de-

tector. Therefore, FPN has to be used with an object detector in

its ROI.

Mask R-CNN120: this method extends Faster R-CNN by add-

ing another layer to predict the object mask in parallel with the

existing bounding box layer. This is a framework that enables

instance segmentation on a state-of-the-art level. The mask

branch added to the Faster R-CNN is a small FCN applied to

each ROI, which predicts on a pixel-to-pixel basis. In brief, the

Faster R-CNN has two stages: the RPN and the Fast R-CNN

combined. TheMask R-CNN adopts the same notion as an iden-

tical first stage of RPN, and in the second stage, it outputs a

mask for each ROI in parallel to the predicting class and box.

The branch added to the second layer is an FCN on top of a

CNN feature map. The ROI poolings lead to misalignment; there-

fore, the RoIAlign layer is proposed to preserve the pixel-level

alignments. The main method Mask R-CNN introduces is the

RoIAlign, which preserves the pixel-spatial correspondences

and replaces the quantization from the ROI pooling with bilinear

interpolation. The state-of-the-art results are achieved by

ResNeXt101-FPN in the COCO dataset. The additional mask

branch added introduces minor computational additions. Mask

R-CNN is a very promising instance segmentation method that

is very flexible and efficient for instance-level segmentation.

However, as with the original Faster R-CNN, this architecture

struggles with smaller-sized objects, mainly because of the

feature maps’ coarseness.

Other image classifications and object detections include but

are not limited to NOC, Bayes, MR-CNN and S-CNN, Hyper-

Net, ION, MSGR, StuffNet, OHEM, SDP+CRC, SubCNN, GBD-

Net, PLANET, NIN, GoogLeNet, VGGNet, ResNet, DenseNet,

RetinaNet, ResNet, Corner Net, Inception, Hourglass, Dilated

Residual Networks, Xception, VGG, DetNet, Inception, dual

path networks (DPN), FishNet, ResNeXt, and GLoRe.93,103,121

For microcirculation analysis, we conclude that deep convolu-

tional neural networks have lifted much of the burden for feature

engineering, which was the main focus in the pre-D-CNN era,
and changed the focus to designing more accurate and efficient

network architecture. Despite the great successes, all methods

suffer from the intense labor of creating the bounding boxes.

All ‘‘newer’’ methods need exponentially more RAM and GPU

in exchange for increased accuracy.

Furthermore, detecting small-size objects and localizing these

objects remains a challenge. Using the stated architectures still

requires an experienced machine learning engineer to select

the appropriate parameters of the algorithms to learn the pat-

terns of the small-sized objects. Several solutions have been

suggested by the literature, including multi-task learning

(Stuffnet),122 multi-scale representation (IONet),123 and context

modeling (HyperNet).124 On the other hand, methods have

been proposed to deal with large data imbalances between the

objects and the background, such as the online mining algo-

rithms (OHEM).125 For microcirculation analysis, we believe

that a region proposal-based framework achieves better micro-

circulation data accuracy overall.

Unified-based framework
You Only Look Once (YOLO)126: YOLO is a unified-based frame-

work for object detection suggested by Redmon et al.126 The

most significant difference between this architecture and the

methods in the region proposal-based framework is the ability

to track objects in real time. As mentioned earlier, Fast R-CNN

proposes 2,000 regions to be predicted, while YOLO takes that

down to 100 regions. On a Titan X GPU, YOLO can classify up

to 45 frames per second compared with Fast R-CNN at 0.5

frames per second. YOLO takes a 224 3 224 image as an input

and divides the image into several grids. It then classifies each

object within that grid by giving it two scores: what class it be-

longs to and confidence percentage. The classification is done

by a 24-convolutional layer with a 2-FC layer. According to the

tests, YOLO was ineffective at localization, and had low accu-

racy with comparison to R-CNN. Despite the high speed of

YOLO, the low accuracymakes it an unsuitable choice for micro-

circulation analysis.

YOLOv2127: YOLOv2 addresses the precision issues brought

by YOLOv1. It first replaces the CNN classifier with DarkNet19

instead of GoogLeNet. DarkNet19 is a simpler classifier utilizing

19 convolutional layers followed by 5 max-pooling layers, allow-

ing for faster performance on the same dataset. It also removes

the FC layer for prediction and uses the anchor boxes method

instead, increasing the recall accuracy by 7%. Batch normaliza-

tion is added between each convolutional layer, increasing the

mAP by 2%. Furthermore, it increases the image input from

224 3 224 to 448 3 448, which increases the mAP by an addi-

tional 4%. In Faster R-CNN, the size of the anchor boxes is

defined beforehand, and YOLOv2 utilizes k-means clustering

on the training set to find the right aspect ratio of the anchor

boxes to use, increasing its accuracy by a further 5%.

YOLOv3128: this is an improved version over the YOLOv2 that

increases overall accuracy with multi-scale labeling of small ob-

jects. YOLOv3 uses three separate feature maps to predict the

ROIs. It also uses DarkNet53 with independent logistic classi-

fiers, allowing it to detect multi-overlapping objects in the image.

With these changes, YOLOv3 is suited to detect smaller objects

within the grid, but it performs worse with medium to larger

objects.
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Single Shot MultiBox Detector (SSD)129: this improved the

detection precision of a one-stage detector by implementing

multi-reference and multi-resolution detection techniques. SSD

detected objects of different sizes and scales across the network

instead of just applying detection on the last layer. SSD main-

tains the speed of YOLO but has higher accuracy on the same

standardized sets used to benchmark YOLO. SSD uses

VGG16 as its backbone for image classification.

RetinaNet130: this introduces focal loss, which increases the

prediction accuracy on small and medium objects compared

with the previously mentioned detectors. In an image, the object

of interest is relatively smaller than the background image. There-

fore, the number of background images creates a class imbal-

ance. The focal loss function aims to increase the weight of the

minority class while reducing the weight associated with the ma-

jority class. RetinaNet archives comparable accuracies with the

region proposal-based framework at the expense of speed.

CornerNet131 challenges the use of anchor boxes by stating

that they create the data imbalance issue in the first place. It

also states that anchor boxes create unnecessary parameters

that have to be tuned, which slows down the training and predic-

tion time. Instead, CornerNet uses key points in a bounding box

with a single convolutional neural network. It achieves the high-

est accuracy when compared with the standard benchmark da-

taset; however, it is slower than YOLO.

When examining the architectures in the unified framework, we

generally notice a trade-off between speed and accuracy. With

theabovemethods, asaccuracy increased, the time fordetection

also increased. In microcirculation analysis, having an accurate

method is more important than a fast method. Moreover, the dif-

ference in time analysis between the unified framework and the

region proposed framework in microcirculation image analysis

can boil down a few seconds. Therefore, we recommend the

useof a regionproposed framework formicrocirculation analysis.

Upscaling images using deep neural networks
From our review, the microscope videos have very low resolution.

Upscaling the image might help the researcher annotate the data

better. The upscaling process involves improving an image’s de-

tails by increasing the dimensions and interpolating those extra

pixels using a mathematical method. These mathematical

methods include an enhanced deep super-resolution network

(EDSR),132 an efficient sub-pixel convolutional neural network

(ESPCN),133 a fast super-resolution convolutional neural

network (FSRCNN),134 and a Laplacian pyramid super-resolution

network (LapSRN).135 EDSR employs an architecture similar to

ResNetwithout thebatch normalization layer and theReLUactiva-

tion layer after the residual block. This architecture can be used to

create a scale factor of 2. ESPCN extracts the feature maps and

applies the upscaling at the end of the network. Like ESPCN,

FSRCNNapplies upscalingat the endof the networkwitha smaller

filter size. LapSRN is based on the Laplacian pyramids concept,

upscaling gradually through the network.

TRADITIONAL COMPUTER VISION OBJECT DETECTION
TECHNIQUES

In this part of the review, we present computer vision object

detection techniques that can be used for microcirculation anal-
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ysis. These presented methods do not use neural networks for

classification. Such techniques are also known as feature de-

scriptors; they were gaining momentum from the early 1990s un-

til the rise of deep learning in 2012.103 Although feature descrip-

tors have fallen out of favor comparedwith deep learningwith the

benchmark datasets, they are still very relevant for microcircula-

tion analysis. Their computational power and simplicity make

these algorithms easier to implement on low-powered or bat-

tery-powered devices in hospitals.

Computer vision techniques aim to locate the image of interest

from the background by distinguishing between edges, colors,

textures, corners, and other image properties. Such traditional

computer vision techniques need the values coded beforehand,

which were found via trial-and-error methods and domain exper-

tise. Below are three computer vision technique detection

methods that can used for microcirculation analysis.

The template matching-based object detection136 methods

consist of two steps. The first step is the template generation

step, in which a template is generated by an expert based on

the training set; the second step involves matching new data

with that template-based image. A similar measure is then

applied to detect similarities between these images. Statistical

methods, such as the sum of absolute differences or Euclidean

distances, can quantify the similarities between the template

and test data. The template matching detection stage can be

further categorized into methods: rigid template matching

(RTM) and deformable template matching (DTM). Further modi-

fications for the stated template methods include the SIFT, the

speeded-up robust features, and the binary robust independent

elementary features.

The main disadvantage of RTM is that it is sensitive to slight

changes in viewpoint, shadows, and other challenges, as was

stated earlier, while DTM needs a lot of geometrical engineering

in the template beforehand. Moreover, these templates require

two independent parameters to be tuned, the template to be

generated from the training set, and the most suitable method

for measuring similarities to be selected. This makes this

approach time-consuming for the case of microcirculation

analysis.

Another set of methods involves knowledge-based object

detection.137 These can be further divided into geometric knowl-

edge and context knowledge. A priori knowledge of the shape

is encoded into the geometric knowledge methods. However,

this is extremely difficult with capillaries since the shapes are irreg-

ular. Context knowledge encodes the spatial relationship between

the object and the background around how the neighboring pixels

interact. Again, due to the different shades of skin and blood, this

method is not preferred for microcirculation analysis.

Object-based image analysis (OBIA)138 is the most promising

for microcirculation analysis and comprises two parts: the image

segmentation part and the object classification part. OBIA aims

to group similar pixels together based on statistical methods. In

the case of microcirculation analysis, we would like to highlight

the pixels of capillaries and separate them from the background.

Promising methods under the OBIA techniques are background

subtraction methods, geometric transformation methods, and

image thresholding techniques. These methods can be used in

combination with each other or independently to detect capil-

laries in an image.
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Background subtraction methods
Background subtraction is a step in image preprocessing, where

the goal is to remove the background and keep the object of in-

terest.139 The three methods stated next can take in an image of

microcirculation and attempt to calculate an approximation of

the location of the capillaries.

d Mixture of Gaussian method: this method uses Gaussian

mixture-based background/foreground segmentation.140

It takes in a pixel with a K Gaussian distribution and at-

tempts to model the background. This method is based

on using the L-recent window version after the sufficient

statistics equation is calculated

d Improved mixture of Gaussian method: this method is also

based on a Gaussian mixture-based background/fore-

ground segmentation but uses recursive equations to

update the parameters.141 The previous method selects

the background based on K Gaussian distribution, while

this method uses an adaptive density estimation142

d Statistical background image estimation: this method uses

Bayesian segmentation with Kalman filters and Gale-

Shapley143matching to approximate the background image

Marcomini andCunha144 compare the performances of all three

above-mentioned methods using accuracy rate, precision rate,

and processing time, and conclude that the improved mixture of

Gaussianmethods had the best performance in their experimental

dataset. This has also been shown to be the best method among

the three for background selection in the CapillaryNet paper.36
Image thresholding techniques
In its simplest form, thresholding involves changing a pixel value

if it is above or below a certain value.145 This value or threshold

can be determined by several methods, and the change of value

can also be calculated by different methods. In microcirculation,

this can be beneficial for determining the set of values that repre-

sent the capillary and the other that represents the background.

Listed below are five thresholding techniques that can be used

for microcirculation analysis.

d Binary threshold: this method takes in two values—the

threshold value and the value to be given if the value is

higher than the threshold value. The values under the

threshold value will be set to zero

d Truncating threshold: similar to the above method, it takes

in two values. However, anything lower than the threshold

value remains the same, while anything higher gets the as-

signed value

d Zero threshold: anything lower than the threshold value be-

comes zero, while anything higher stays the same

The above methods are fairly simple, and these values are

determined by the user. However, they are not the optimal

method if different parts of the same image have different illumi-

nation. The object of interest may have a higher or lower value

depending on the light; therefore, the next twomethodswere de-

signed to deal with this issue.

d Adaptive thresholding146: thresholding is applied locally on

some pixels rather than globally on the whole image.
Thresholding can be calculated in two ways: mean of an

area or weighted sum where the weights are decided by

a Gaussian window. The size of the window is decided

by the user. This way, every window-sized part of the im-

age gets a threshold applied to it based on a calculation

d OTSU binarization147: this method is optimal for images

with two peaks in their histogram. It finds a value between

the two peaks in a histogramwhere the variance is minimal

for both classes and applies thresholding based on that.
Edges and lines
There are several methods for detecting edges and outlines of

the capillaries. Below, we list those most relevant to microcircu-

lation detection.

d Contours148: this involves drawing a line joining the pixels

with the same color or intensity. In our case, this can

help highlight the outline of a capillary. This method has

the highest accuracy when thresholding is applied before-

hand, so more pixels have similar values. In the below

method, we use a marching square algorithm, which line-

arly interpolates the pixel values to find the algorithm

output148

d The Canny edge detector149 can detect and quantize the

capillary area. This is a multi-stage detector that uses a

Gaussian derivative to compute the gradients. The

Gaussian attempts to reduce the noise in the image, and

the curves are detected by selecting the maximum

pixel value

d Skeletonization150 is a method used to find the central

pixels within the border image to get the object topology.

This method iterates over the image several times, starting

from the border of the object andmoving toward the center

until it terminates
Histogram equalization
An image can be enhanced using histogram equalization

methods. Histogram equalization151 can be done using three

methods: standard equalization, contrast stretching, or adaptive

equalization.

d In a standard equalization, the most frequent value is

spread out to roughly have a linear cumulative distribution

graph

d In contrast stretching, the image pixels are rescaled to

include all values between the 2nd and 98th percentile

d With adaptive equalization, changes in pixels occur locally

based on a window size rather than the whole image
Image denoising
Image can be enhanced by reducing the noise. This is called im-

age denoising.152 There are several ways to denoise an image;

total variation filters, bilateral, wavelet denoising filters, and

non-local means denoising algorithm.

d The total variation filter uses the L1 norm gradient to re-

move noise from the image
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d The bilateral filter averages the pixels based on the

weighted average of the window used by the user

d The wavelet denoising filter represents the image as a

wave and analyzes the wavelet coefficients. The wavelet

coefficients that are under a certain threshold are repre-

sented as noise and are removed

d A non-local means denoising algorithm estimates the value

of a pixel based on similar patches from other similar areas

in the image. This method can be applied either by spatial

Gaussian weighting or uniform spatial weighting
STATE-OF-THE-ART MICROCIRCULATION IMAGE
ANALYSIS TECHNIQUES

In this section, we present the methods used by other re-

searchers to develop their microcirculation analysis systems.

The following methods utilize computer vision techniques to

segment and, in some cases, quantify the capillaries. A summary

table is shown in Table 1.

Dobbe et al.153 used a frame averaging method to remove the

cell gaps within the capillary and applied an algorithm to detect

capillaries. They also removed capillaries that were out of focus

since they considered them to add noise to the frame averaging

method. However, this can significantly reduce the capillary den-

sity values.

The study of Hilty and co-workers34,35 is similar to that of

Dobbe et al.,153 but with some minor changes. Hilty et al.34

use an algorithm to detect capillaries that are 20–30 mm

wide. This type of detection can sometimes lead to the

detection of artifacts, such as hair or stains of similar sizes.

Furthermore, the mean of the images across the whole

video is not always the best representation value since

different parts of the video might have different lighting or

capillaries that can be out of optimal focus. Moreover,

videos with slight motion will have to be completely disre-

garded since the central line is calculated across all frames

instead of per frame.

Bezemer et al.155 used 2D cross-correlation to fill in gaps in the

images. However, this method also has some problems because

it does not consider the dynamic changes in blood flow, which

can reduce the prediction accuracy.

Tam et al.156 have a method to detect capillaries that requires

the user to select points on the image. The algorithm then de-

cides if there is a capillary present. This method cannot be

used in a clinical environment because it would take too long

to analyze a microscopy video.

Geyman et al.157 take a more manual approach to find the

number of capillaries. They used software to click away the ma-

jor blood vessels and then applied hardcoded calculations to

detect the total number of capillaries based on the number of

pixels in the region of interest. This is a manual method that is

particularly subject to observer differences among datasets.

Demir et al.158 used a method called contrast limited adaptive

histogram equalization (CLAHE) to detect capillaries. This method

makes it easier to see capillaries by equalizing the contrast in an

image. CLAHE is usually combined with a median filter, which is

a tool that removes outliers from data. They also used an adjust-

able threshold to make the detection more accurate. However,
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this method is not perfect and sometimes requiresmanual adjust-

ments depending on the lighting and skin thickness.

Cheng et al.159 created a system that allows users to increase

the contrast and smoothen images of capillaries manually, in or-

der to make them easier to see. The system also generates mac-

ros, which are sets of instructions that can be applied to future

images to save time. However, themacros generated by the sys-

temmay not work well if the brightness or thickness of the skin in

the images changes.

To find and quantify the capillaries in an image, the Tama

et al.167 study uses binarization, skeleton extraction, and seg-

mentation. First, binarization is applied to the green channel

since it is assumed to have the highest contrast between the

capillaries and the background. Next, the top-hat transform

method is used to reduce uneven illumination, followed by

Wiener filtering to remove noisy pixels. Then, the Gaussian

smoothing method is used to smoothen the image. Finally, the

OTSU thresholding method is applied to segment the capillaries

from the background. This method relies on the user finding a

reference frame from the video with the highest contrast.

The work described next use ML techniques to segment and,

in some cases, quantify the capillaries.

Prenta�sic et al.164 trained a neural network to segment the

microvasculature structure. The segmentation took approxi-

mately 2 min per single image, with an accuracy of 83%. The

time taken and the high-end hardware used to analyze a single

image make it unsuitable for clinical use since the users would

like the results instantly.

Dai et al.160 employed a custom neural network for segmenta-

tion, comparable with Prenta�sic et al.164 Dai et al.,160 on the other

hand, utilized five CNN blocks instead of three. For picture

improvement, they employed gamma correction and CLAHE.

They reported an accuracy of 60.94%, which is insufficient for

application.

Nivedha et al.165 classified the capillaries using the image’s

green channel and a support vector machine. This approach

required a manual step in which the user cropped the region of

interest to enhance histogram equalization. They compared

several denoising filters, including Gaussian, Wiener, median,

and adaptive median. They concluded that the Gaussian filter

is best suited to their data. Furthermore, they examined other

segmentation methods, such as OTSU, k-means, and the water-

shed, and determined that the OTSU approach was best suited

to their data. The segmented pictures were then fed into an SVM,

which produced an accuracy of 83.33%.

Javia et al.166 modify the ResNet18101 to quantify capillaries

and use the first 10 layers of the architecture. The main limitation

of the ResNet architecture is that images have to be resized to

224 3 224; however, most capillary images are less than

100 3 100. This means images have to be scaled up, which

makes this method inefficient and uses more resources than

needed. They reported an accuracy of 89.45% on their data;

however, ResNet18101 has 11 million trainable parameters and,

with such scaling up, training time can be up to several hours,

and prediction time can be up to several minutes. This can

make it slow and inefficient within a clinical setting. The training

and test times were not reported in this paper.

To construct their neural network, Ye et al.168 used transfer

learning and the Single Shot Detector v.2. Because it is accurate



Table 1. Summary of work in literature

Name of Technique Type of technique Outcome Summary of method

Dobbe et al.153 traditional computer vision

techniques

no accuracy reported before using a traditional computer

vision algorithm to locate capillaries,

Dobbe et al. utilize a frame-

averaging approach to eliminate the

plasma and white blood cell gaps

within the capillary

Hilty and co-workers34,35 traditional computer vision

techniques

no accuracy reported Hilty and co-workers identify

capillaries by producing a mean

picture over all frames and then

sending the resulting image through

two pipelines:

the first categorizing vessels with

diameters of 20–30 m as capillaries,

and the second classifying vessels

with diameters of up to 400 m as

venules. The capillaries are then

equalized using an adaptive

histogram after being run through a

modified curvature-based area

recognition technique154

Bezemer et al.155 traditional computer vision

techniques

no accuracy reported Bezemer et al. fill the blood flow

gaps caused by plasma and white

blood cells with 2D cross-

correlation. This is a superior

strategy since it reduces the number

of frames that must be ignored

Tam et al.156 traditional computer vision

techniques

no accuracy reported Tam et al. detect capillaries through

a semi-automated method that

requires the user to select points on

the image

Geyman et al.157 traditional computer vision

techniques

no accuracy reported a manual approach using a software

to remove the major blood vessels

and then using pre calculations to

detect the total number of capillaries

using the pixels in the region of

interest

Demir et al.158 traditional computer vision

techniques

no accuracy reported uses contrast limited adaptive

histogram equalization combined

with a median filter

Cheng et al.159 traditional computer vision

techniques

no accuracy reported generates a macro by combining

different types of traditional

computer vision techniques used to

detect capillaries

Dai et al.160 deep neural networks accuracy of 60.94% reported uses a shallow convolutional neural

network

Hariyani et al.161 deep neural networks accuracy of 64% reported uses a U-net architecture combined

with a dual attention module162,163

Prenta�sic et al.164 deep neural networks accuracy of 83% reported uses a shallow convolutional neural

network

Nivedha et al.165 deep neural networks accuracy of 83.3% reported uses a non-linear support vector

machine

Javia et al.166 deep neural networks accuracy of 89.45% reported uses a ResNet architecture

CapillaryNet36 mixture of traditional computer

vision techniques and deep neural

networks

accuracy of 93% reported uses a combination of traditional

computer vision techniques,

including image background

subtraction, image enchantment,

and shallow convolutional neural

networks

ll
OPEN ACCESS

Patterns 4, January 13, 2023 13

Review



Table 2. Name and type of technique recommended for each microcirculation data parameter

Name of technique Type of technique Goal in microcirculation images

Unified-based framework deep neural networks capillary detection and quantification

Enhanced deep super-resolution network

and Laplacian pyramid super-resolution

network

deep neural networks image upscaling

Template matching-based object detection traditional computer vision techniques capillary detection and quantification

Knowledge-based object detection traditional computer vision techniques capillary detection

Background subtraction methods traditional computer vision techniques supports in capillary quantification

Image thresholding techniques traditional computer vision techniques supports in capillary quantification

Edges and lines traditional computer vision techniques supports in capillary quantification

Histogram equalization traditional computer vision techniques image enhancement

Image denoising traditional computer vision techniques remove noise from pixelated capillary

images

Image denoising traditional computer vision techniques remove noise from pixelated capillary

images
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and not overly sophisticated, this network is ideal for finding cap-

illaries. The authors also calculated flow velocity using a spatio-

temporal diagram analysis. This procedure is time-consuming,

but it is precise.

Hariyani et al.161 used a U-net architecture combined with a

dual attention module to try to improve accuracy for detecting

capillaries in images. However, the accuracy was only 64%,

which is not high enough to be used in a clinical setting.

Semiautomatic analysis is required for more accurate ap-

proaches, but more automatic methods are less precise and

hence inappropriate for clinical use. Furthermore, none of the

previously supercited publications used parallel frameworks to

determine capillary density. CapillaryNet is totally automated

and can categorize microcirculation movies in sim 0.9 s with

93% accuracy,36 whereas CapillaryX offers parallel frameworks

for calculating capillary density.169

A summary of the most recommended techniques is shown in

Table 2.

Conclusions
In this paper, we present the most promising deep learning and

computer vision techniques that can automate microcirculation

analysis, specifically the quantification of capillaries. Automating

the quantification of capillary density might reveal important bio-

markers to clinical personnel that might assist in helping critically

ill patients with life-threatening diseases. With the automation al-

gorithms, the analysis time can be reduced from minutes to

several seconds and decrease interobserver variability. We start

by introducing the importance of analyzing microcirculation

videos. We then present the two prominent ways of automating

the analysis of microcirculation videos: traditional computer

vision techniques and deep learning techniques. We discuss

the types of deep neural networks, then dive into details about

the convolutional neural networks. Convolutional neural net-

works are the preferred method for analyzing images since

they have the highest accuracy in image classification competi-

tions. We present why convolutional neural networks are good at

what they do and what challenges they can overcome. We then

present the anatomy of a convolutional neural network by dis-

cussing the FC layer, the convolutional layer, and the pooling
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layer. Moreover, we present different types of convolutional neu-

ral networks that combine these three modules differently. Since

convolutional neural networks can only classify images and

cannot localize the regions of the capillaries, we present deep

learning object detection techniques. The deep learning object

detection techniques consist of two main frameworks: the uni-

fied-based framework and the regional proposed framework.

We present seven different algorithms on the regional proposed

framework and six different algorithms on the unified-based

framework. We then discuss traditional computer vision object

detection techniques, specifically, non-ML-based object detec-

tion methods, such as background subtraction methods, image

thresholding techniques, edges and lines, and image enhance-

ment techniques. Through the sections in this article, we have

recommended the algorithms that can be used to develop an

automated capillary detector and quantifier. Our contribution

with this article is to assist researchers and developers with

where to start looking if they are to develop an automated algo-

rithm for capillary detection and quantification.

To finalize, combining deep neural networks with traditional

computer vision algorithms is the recommended approach to

automating capillary detection and quantification. The traditional

computer vision step is used for segmentation and area estima-

tion, while the deep neural network will be used to classify if a

capillary exists within that area. Using purely deep neural net-

works for the whole phase can be slow (due to the millions of pa-

rameters needed for a deep neural network) and computationally

and financially expensive (due to the GPU and advanced com-

puters needed). Using pure traditional computer vision algo-

rithms will reduce the overall accuracy of detecting capillaries

since artifacts (i.e., dirt, hair, and other objects that are on the

surface of the skin) can be mistakenly quantified.
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17. López, A., Grignola, J.C., Angulo, M., Alvez, I., Nin, N., Lacuesta, G., Baz,
M., Cardinal, P., Prestes, I., Bouchacourt, J.P., et al. (2015). Effects of
early hemodynamic resuscitation on left ventricular performance and
microcirculatory function during endotoxic shock. Intensive Care Med
Exp 3, 49.

18. De Backer, D., Creteur, J., Preiser, J.-C., Dubois, M.-J., and Vincent, J.-
L. (2002). Microvascular blood flow is altered in patients with sepsis. Am.
J. Respir. Crit. Care Med. 166, 98–104.

19. Wester, T., Awan, Z.A., Kvernebo, T.S., Salerud, G., and Kvernebo, K.
(2014). Skin microvascular morphology and hemodynamics during treat-
ment with veno-arterial extra-corporeal membrane oxygenation. Clin.
Hemorheol. Microcirc. 56, 119–131.

20. Ellis, C.G., Jagger, J., and Sharpe, M. (2005). The microcirculation as a
functional system. Crit. Care 9, S3–S8.

21. Pittman, R.N. (2005). Oxygen transport and exchange in the microcircu-
lation. Microcirculation 12, 59–70.

22. den Uil, C.A., Klijn, E., Lagrand, W.K., Brugts, J.J., Ince, C., Spronk, P.E.,
and Simoons, M.L. (2008). The microcirculation in health and critical dis-
ease. Prog. Cardiovasc. Dis. 51, 161–170.

23. Popel, A.S., and Johnson, P.C. (2005). Microcirculation and hemorheol-
ogy. Annu. Rev. Fluid Mech. 37, 43–69.

24. De Backer, D., Hollenberg, S., Boerma, C., Goedhart, P., B€uchele, G.,
Ospina-Tascon, G., Dobbe, I., and Ince, C. (2007). How to evaluate the
microcirculation: report of a round table conference. Crit. Care 11, R101.

25. Cassoobhoy, A. (2020). What is the definition of capillaries?. visited
on 10/27/2020. https://www.webmd.com/heart-disease/heart-failure/qa/
what-is-the-definition-of-capillaries.

26. Shore, A.C. (2000). Capillaroscopy and the measurement of capillary
pressure. Br. J. Clin. Pharmacol. 50, 501–513.

27. Maricq, H.R., Spencer-Green, G., and LeRoy, E.C. (1976). Skin capillary
abnormalities as indicators of organ involvement in scleroderma (sys-
temic sclerosis), raynaud’s syndrome and dermatomyositis. Am. J.
Med. 61, 862–870.

28. Wester, T., Awan, Z.A., Kvernebo, T.S., Salerud, G., and Kvernebo, K.
(2014). Skin microvascular morphology and hemodynamics during treat-
ment with venoarterial extra-corporeal membrane oxygenation. Clin.
Hemorheol. Microcirc. 56, 119–131.

29. De Backer, D., Creteur, J., Preiser, J.-C., Dubois, M.-J., and Vincent, J.-
L. (2002). Microvascular blood flow is altered in patients with sepsis. Am.
J. Respir. Crit. Care Med. 166, 98–104.

30. Top, A.P.C., Ince, C., de Meij, N., van Dijk, M., and Tibboel, D. (2011).
Persistent low microcirculatory vessel density in nonsurvivors of sepsis
in pediatric intensive care. Crit. Care Med. 39, 8–13.

31. Natalello, G., De Luca, G., Gigante, L., Campochiaro, C., De Lorenzis, E.,
Verardi, L., Paglionico, A., Petricca, L., Martone, A.M., Calvisi, S., et al.
(2021). Nailfold capillaroscopy findings in patients with coronavirus dis-
ease 2019: broadening the spectrum of covid-19 microvascular involve-
ment. Microvasc. Res. 133, 104071.

32. Kanoore Edul, V.S., Caminos Eguillor, J.F., Ferrara, G., Estenssoro, E.,
Siles, D.S.P., Cesio, C.E., and Dubin, A. (2021). Microcirculation alter-
ations in severe covid-19 pneumonia. J. Crit. Care 61, 73–75.

33. Ince, C., Boerma, E.C., Cecconi, M., De Backer, D., Shapiro, N.I., Duran-
teau, J., Pinsky, M.R., Artigas, A., Teboul, J.-L., Reiss, I.K.M., et al.
(2018). Second consensus on the assessment of sublingual microcircu-
lation in critically ill patients: results from a task force of the european so-
ciety of intensive care medicine. Intensive Care Med. 44, 281–299.

34. Hilty, M.P., Guerci, P., Ince, Y., Toraman, F., and Ince, C. (2019). Micro-
tools enables automated quantification of capillary density and red blood
cell velocity in handheld vital microscopy. Commun. Biol. 2, 1–15.

35. Hilty, M.P., Akin, S., Boerma, C., Donati, A., Erdem, Ö., Giaccaglia, P.,
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