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Abstract: Rabies is a neglected zoonotic disease which is caused by negative strand RNA-viruses
belonging to the genus Lyssavirus. Within this genus, rabies viruses circulate in a diverse set of
mammalian reservoir hosts, is present worldwide, and is almost always fatal in non-vaccinated
humans. Approximately 59,000 people are still estimated to die from rabies each year, leading to
a global initiative to work towards the goal of zero human deaths from dog-mediated rabies by
2030, requiring scientific efforts from different research fields. The past decade has seen a much
increased use of phylogeographic and phylodynamic analyses to study the evolution and spread
of rabies virus. We here review published studies in these research areas, making a distinction
between the geographic resolution associated with the available sequence data. We pay special
attention to environmental factors that these studies found to be relevant to the spread of rabies
virus. Importantly, we highlight a knowledge gap in terms of applying these methods when all
required data were available but not fully exploited. We conclude with an overview of recent
methodological developments that have yet to be applied in phylogeographic and phylodynamic
analyses of rabies virus.

Keywords: rabies; discrete phylogeography; continuous phylogeography; Bayesian inference; viral
spread; environmental factors; pathogen phylodynamics; RABV

1. Introduction

Rabies virus (RABV) is the etiological cause of rabies, a fatal neurological infection in
humans and other mammals, transmitted through the saliva of rabid animals via a bite or
scratch [1]. RABV circulation is maintained through terrestrial and aerial cycles, associated
with different species within the orders Carnivora and Chiroptera [2]. Vaccines to prevent
rabies in humans have been available for over 100 years, and hence most deaths from
rabies occur in areas with inadequate public health resources and limited access to such
preventive treatments. Identifying current and potentially future at-risk communities and
the factors that increase such risks are critical steps in combating RABV-related deaths [3].

Combating viral spread and the associated disease burden is a tremendous challenge
requiring sustained research effort, to which viral sequence data represent a major asset.
Inference of viral transmission dynamics from genetic data is typically based on concepts
from phylogenetics and population genetics, but also links pathogen evolution to the
dynamics of infection and transmission. Reconstruction of the unobserved—and typically
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time-stamped—phylogeny relating a molecular sequence sample thus serves as molecular
epidemiologists’ primary tool [4], allowing them to tackle key biological questions on
viral epidemics.

Integrating genetic data along with environmental factors and population dynamics
within phylogeographic frameworks offers the opportunity to quantify how different at-
tributes influence the transmission processes that underpin the circulation of rabies across
and within countries [5,6]. These models can help us better understand RABV spread
on a landscape level, and have been recognized as a promising tool in the fight against
rabies [7,8]. Furthermore, with recent advances in high-throughput molecular sequenc-
ing, genomic data from pathogens are becoming available in unprecedented quantities
and with remarkable speed, even in resource-limited settings, aided by portable genome
sequencing technology [9]. Initial landscape phylogeographic studies such as the one by
Biek et al. [10] along with the increasing availability of genomic data and the growth in
computer processing power, paved the way for the development of complex statistical
methods. This contributed to the current popularity of Bayesian phylogeographic and
phylodynamic inference in infectious disease research [4]. Phylogeographic models extend
existing evolutionary models by including metadata, such as the sampling location of the
host species associated with a given sequence, and have led to a wide range of studies on
the evolution and spread of pathogens [11].

Two different Bayesian inference methods are widely used in order to perform phy-
logeographic analyses, i.e., a discrete phylogeography approach [12] that uses discrete
locations and a continuous phylogeography approach [13] for when fine-grained geo-
graphic data (e.g., latitude and longitude) are available. The latter type of information is
often available in the case of RABV studies. However, if only the general location is known
or the study spans multiple countries, a discrete phylogeographic model is typically used.
Both of these approaches have had a strong impact on reconstructing viral spread and are
incorporated in the widely-used BEAST software package [14].

Now that these approaches have been in use for over ten years, we compare both
methodologies (see illustration in Figure 2) with a view towards answering the following
questions: to what extent have these approaches been used to study RABV in different
host species, in different parts of the world? What are the different types of conclusions
that are reached using discrete phylogeography or continuous phylogeography? What are
the advantages and disadvantages of each approach? We also focus on extensions of these
phylogeographic models that allow for the use of covariate data by, for example, using
generalized linear models. Factors such as host density, landscape features and geopolitical
borders have been widely studied to better understand the spatial spread of the RABV.
We review these factors along with several others that are typically analysed in RABV
studies. Finally, we also discuss recent methodological advances that offer alternative
phylogeographic inference frameworks. We note that this is not an exhaustive review
of the literature. Some important rabies-endemic regions (most notably India) were not
(yet) studied using these phylogeographic inference methods, and the studies presented
in this review hence do not offer a complete overview of the dispersal history of RABV
lineages across the world. Instead, our goal is to highlight the insights generated from
the application of these methods, to synthesise the state of the art and to outline novel
approaches developed to study pathogen phylodynamics. We refer to a recent scoping
review [15] for a detailed overview of mathematical modelling of disease dynamics and
phylodynamics to characterize dog rabies dynamics and control.

2. (Lack of) Genomic Data, Geographic Scope and Methodological Expertise

Genomic data can provide important and unique insights into rabies spread and
persistence that can inform control efforts [16]. High-throughput sequencing technologies
can be used for rapidly obtaining the whole virus genome, which may offer increased dis-
criminatory capacity and allow for a more targeted infection control response [17]. Notably
whole-genome sequencing of viruses is a powerful tool for studying virus evolution and
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tracking outbreaks [18]. Despite their great potential to provide a better understanding of
the processes determining rabies spread and persistence, few phylogeographic studies on
RABV have made use of whole genomes (see Tables 1 and 2).

Genomic data for rabies are used infrequently, and their use is usually limited to
research studies that perform retrospective analyses that may not have an actionable
impact in real time [16]. Brunker et al. [16] provide a framework for shortening sequencing
time to two to three days in an affordable manner, sometimes even reducing costs by
about half the price. This is particularly useful for low and middle-income countries
where genomic research is challenging due to insufficient infrastructure, shortage in supply
chain or logistical obstacles. Brunker et al. [16] demonstrate the feasibility of real-time
sequencing of RABV to rapidly inform policy decisions and disease management across
different locations in Kenya, Tanzania, and the Philippines.

The availability of data is a considerable challenge in effectively studying RABV dis-
persal dynamics, and is closely tied to its geographic scope. Both of these factors typically
influence the phylogeographic methods that researchers choose to employ. Compared to
the studies using discrete methods, for instance, the geographic areas under consideration
in continuous phylogeographic studies are generally much smaller. Furthermore, discrete
phylogeographic methods are often employed in preliminary analyses before conducting
continuous phylogeographic analyses [19,20]. The smaller geographic scope of continuous
phylogeographic analyses can be partly explained as a data-availability issue, given that a
continuous approach requires precise geographic coordinates. Rabies diagnosis requires a
brain biopsy and it is thus difficult to diagnose antemortem [21]. Most of the time, rabies
samples are obtained from roadkill or euthanized suspected rabid animals, and available
data are hence sporadic in nature. Reliably tracking the precise movement of rabid animals
across vast geographic areas and across political borders depends on sustained surveil-
lance efforts, and would require considerable coordination and cooperation [16,22,23]. The
ARTIC network, a Wellcome Trust-funded project to develop the application of genomic
surveillance for viral outbreak response, provides comprehensive open-source resources
for laboratory and sequencing work, bioinformatics, phylogenetics and subsequent data
analyses [16].

In our literature review, we encountered several epidemiological studies in which
the sequence data were accompanied by either precise geographic coordinates or discrete
locations, but no phylogeographic methodologies were applied [24–32]. In many cases,
exploring the geographic spread of RABV was explicitly one of the study goals. Two
of these papers even employed BEAST [14] in order to construct phylogenetic trees, but
stopped short of conducting phylogeographic reconstructions. We aim to achieve a more
widespread awareness of the available phylogeographic methodologies, and particularly
the insights that they can provide, in the hope that this leads to an increased usage and in
turn to a better understanding of the worldwide spread of RABV. Towards the end of this
study, we provide useful recommendations to perform these types of analyses, including
possible approaches to deal with missing (genomic and location) data. We also found that,
despite precise geographic coordinates being available, the application of phylogeographic
methods was not possible due to missing sequencing data [33–35]. This is especially an
issue for research in developing countries, where sequencing efforts are often hindered
by their expense. For example, while costs are estimated to have dropped to GBP 60 per
sequence, and are estimated to drop further as workflows are optimised [16], this can still
pose a significant hurdle in developing countries, where R&D expenditure often accounts
for less than 0.5% of the GDP.

A lack of funding is only part of a broader problem: one of unequal access to scientific
advances and the impact of this inequality on the fight against rabies. For example, several
surveys in developing countries reported a deficiency of knowledge on how to treat
wounds from dog bites [23,36,37]. We refer to Figure 1 as an illustration. Many countries
stand out as being either over-represented or under-represented in terms of sequencing
efforts: developed countries have not seen a human death due to rabies in years, but they
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still produce a non-negligible number of sequences (sampled from non-human hosts).
Meanwhile, in Central Africa and Southeast Asia few sequences are produced compared to
the burden of rabies. A striking example is India, which accounts for more than 50% of
human rabies deaths worldwide [38], but for which we found no phylogeographic studies.
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Figure 1. World maps showing the global incidence of the yearly number of deaths due to canine-associated rabies as
estimated by Hampson et al. [38] (A), and the number of (partial and whole genome) sequences for rabies lyssavirus on
GenBank collected between 1 January 1882 and 15 March 2021 (in any host; B).

3. Discrete Phylogeographic Inference

Genomic data now often have associated discrete locations of sampling, in the form
of a municipality, district, province, or country. Examining the (location) traits associated
with sequence data in an evolutionary context requires a model of how these traits evolve
throughout evolutionary history [11]. In such a case, one can posit a continuous-time
Markov chain (CTMC) model that begins at the root of the phylogeny and proceeds
down the phylogeny to its tips (which are associated with the observed data), acting
independently along the branches. Here, the CTMC state space consists of discretized
sequence sampling locations. This is analogous to the standard CTMC-based modelling of
molecular sequence character evolution along phylogenies [39]. While this discrete CTMC-
based model allows for movement between any two sampling locations in the spatial
reconstruction, such movements are very unlikely for most pairs of geographic locations
under consideration. The corresponding transition rates in the model that are expected to
be zero can lead to extremely high variance estimates for the inferred ancestral locations.
Fortunately, this limited data problem can be overcome by a parsimonious selection of
parameters using Bayesian stochastic search variable selection (BSSVS) [12]. BSSVS, which
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is traditionally applied to model selection problems in a linear regression framework,
enables us to simultaneously determine which transition rates are zero depending on the
evidence in the data and efficiently infer the ancestral locations [12].

In addition to reconstructing the spatio-temporal spread of a virus, one can examine
the relationship of covariates with this spread. This is done by extending the discrete
phylogeographic model using a generalised linear model (GLM) for the transition rates
between locations. This approach, developed by Lemey et al. [40], parameterizes the
transition rate from one location to another as a log-linear function of several potential
covariates. Importantly, it is necessary to have covariate data for all discrete locations in
the model. Again invoking BSSVS, various combinations of covariates can be tested so that
we obtain both the probability of inclusion of a certain covariate as well as its effect size.
This GLM approach has been employed, for example, to analyse the effect of the global air
transportation network on seasonal influenza [40].

Table 1 shows an extensive overview of studies that reconstructed the spatial dispersal
of RABV using discrete phylogeographic inference. As previously mentioned, discrete
phylogeographic analyses are sometimes performed as preliminary analyses before per-
forming continuous phylogeographic analyses. Such an approach may be used to identify
the different RABV clades in circulation and the potential introductions of the virus into
potential areas of interest.

Table 1. Overview of discrete phylogeographic studies on RABV considered. Many of these studies did not have whole-
genome sequences at their disposal. Dogs constitute the species of attention in the majority of studies.

Publication Year Sequences Region Species

Brunker et al. [41] 2015 59 (whole) + 50 (partial) Tanzania dogs

Brunker et al. [6] 2018 152 (whole) Tanzania dogs

Omodo et al. [23] 2020 84 (partial) Uganda livestock, dogs,
jackals and foxes

Hayman et al. [42] 2021 139 + 88 (partial) Ghana dogs, cats

Talbi et al. [43] 2010 287 (partial) North Africa dogs

Mollentze et al. [44] 2013 636 (partial) South Africa dogs

Seetahal et al. [45] 2013 183 (partial) Trinidad livestock (bovine,
caprine, ovine, equine)

Trewby et al. [46] 2017 289 (whole) USA-Canada border raccoon

Streicker et al. [47] 2019 75 (partial) Central America vampire bats

Carnieli et al. [48] 2011 71 (partial) Brazil dogs

Horton et al. [49] 2015 139 (partial) Middle East domestic dogs, wildlife

Dellicour et al. [20] 2019 109 (whole) Iran dogs, wolves,
jackals, foxes

Tohma et al. [50] 2014 233 (partial) Philippines dogs

Dibia et al. [51] 2015 63 (partial) Indonesia dogs, cattle, goat, cat

Lin et al. [52] 2016 220 (partial) Taiwan ferret badgers

Lan et al. [53] 2017 156 (partial) Taiwan ferret badgers

Yu et al. [54] 2012 110 + 90 (partial) China

dogs, cats, deer,
raccoon dogs,

striped field mice,
ferret badgers

Guo et al. [55] 2013 232 (partial) China dogs
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Table 1. Cont.

Publication Year Sequences Region Species

Ma et al. [37] 2017 36 (partial) Shaanxi (China) dogs

Zhang et al. [56] 2017 452 (partial) Yunnan (China) dogs, humans

Tian et al. [19] 2018 1034 (partial) Yunnan (China) dogs

Wang et al. [57] 2019 112 (partial) China and neighbours dogs

Yu et al. [58] 2021 155 (partial) North and South Asia

dogs, red fox,
swift fox,

raccoon dogs,
cow, sheep

camel

Table A1 shows those studies that employ discrete phylogeographic inference in
combination with collected covariate data that may act as relevant predictors of RABV
spread. Some of those covariate data can however be hard to come by and can be part of
the reason why geographical features, along with their clear impact on the habitats and
movement of species carrying RABV, are predominantly used in these types of analyses.

3.1. Host Species

As can be seen from Table 1, the past twelve to fifteen years have seen a wide range of
studies on the spread of RABV in different host species. Most cases of human rabies result
from dog bites in developing areas where canine rabies is common, whereas rabid wild
animals are usually responsible for human rabies in regions where dogs are vaccinated [59].
There are several different species that have been reported to spread rabies in different parts
of the world, including raccoons and skunks in North America, bats and dogs in South
America, dogs in Asia, and badgers in Taiwan. We here delve into more detail regarding
those studies and focus on the various carrier species encountered in our literature search.

3.1.1. Dogs

Carnieli et al. [48] found that the lineages in the southeastern region of Brazil in the
1970s were closer to the most recent common ancestor of all the lineages than the lineages
in the midwestern, northern and northeastern regions. Based on previous studies [60–62],
Carnieli et al. [48] hypothesize that the urbanization of new regions, development of
roads, human migration have a major impact on the spread of rabies. Carnieli et al. [48]
suggest that the move of capital to the midwestern region of Brazil experienced significant
economic growth along with migratory flow of humans causing the spread of RABV from
southeastern region to other regions in Brazil. Testing socio-economic factors within a
GLM framework will provide further details about the spread of RABV on a regional level.

The role of human activities in mediating the spread of dog RABV has been continually
examined using phylogeographic methods over the past decade, with studies incorporating
a variety of factors ranging from natural geographical barriers to human population density.
Talbi et al. [43] used a GLM to show that road distances are better predictors of the spatial
spread of dog RABV in northern Africa than spatial accessibility or raw geographical
distance. The authors observed occasional long-distance (>200 km) dispersal within a
span of 1–2 years, and that the RABV diffusion process was restricted by geopolitical
boundaries at larger scales. As this is inconsistent with what was observed in endemic
wildlife rabies [10], it is clear that humans have played an active role in the spread of dog
RABV. Similar evidence of long-distance migration and a high dispersal rate has been
found in Tanzania [41]. Using GLMs, Brunker et al. [6] found that the presence of dogs,
but not their density, was of importance in the spread of rabies in the Serengeti district
in Tanzania. The authors also found that while rivers acted as barriers, roads acted as
facilitators of the spread on a large scale.
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Hayman et al. [42] studied the spread of RABV in dogs in Ghana. They believed that
initially the large tropical forest system along the Ghana-Ivory Coast border provided a
barrier to dog movements and hence fewer viruses were from the Ivory Coast. Rapid
deforestation and increasingly easy inter-country travel were put forth by the authors as
the reasons behind the trans-boundary movements of RABV. As non-human involvement
would require viruses to be transmitted at an approximate rate of between 39 to 53 km
per year, the study showed that the more likely reason for this virus’ presence in Ghana
was that an infected animal was trans-located from the east, thus introducing a new sub-
lineage to the region. RABV epidemiology was more intricate than expected in West
Africa and there were repeated introductions of RABV into Ghana [42]. This analysis also
highlighted the potential problems of independent developing countries implementing
rabies control programs in the absence of a regional one asking for greater cooperation in
combating rabies.

Omodo et al. [23] observed mixed lineages circulating between northern and western
Uganda which could have been associated with the movement of dogs or wild animals such
as foxes, jackals, mongoose and hyenas along these regions (Lake Albert and the Semliki
River). The cross-border movements of animals between Sudan, Democratic Republic
of Congo, Tanzania, and Uganda could potentially have contributed to the introduction
of two lineages in Uganda seen in the study [23]. The authors stated that the location
of Uganda at the crossroads of three major biogeographical regions (Ethiopio-Somalian,
Sudano-Congolian, Zambezian) may have favored the local circulation of different rabies
lineages from adjacent regions. Phylogenetic analyses in the study linked the circulation
of one lineage in Uganda (detected from 2010 to 2012 in all localities sampled) to a Tan-
zanian lineage and the episodic presence of a second lineage (in 2010 in Moyo), also to a
Tanzanian lineage.

For a human rabies case in South Africa, the use of phylogeographic methods was
crucial to understand transmission pathways and incidences of long-range transmission
and introductions from distant or separately administered regions [44]. Specifically, it lent
confidence to the assessment that the sporadic human rabies case represented neither a
failure of surveillance nor the re-emergence of rabies in a carefully maintained rabies-free
area, and showed how other countries could potentially benefit from effective surveillance.

Inter-island transportation of infected animals, mainly dogs, is one of the main reason
behind the persistence of rabies in Indonesia [51]. Using a species-annotated tree inferred
through discrete trait methods, Dibia et al. [51] revealed that the infections in other animal
species (cats, goats and pigs) originated from dogs. Through a phylogeographic analysis,
they also revealed that the risk remains high for newly rabies-free areas and intensified
control areas such as Bali. Philippine RABV strains were introduced from China around
the beginning of the 20th century. Tohma et al. [50] found that upon this introduction,
the RABVs evolved within the Philippines to form three major clades, and there was no
indication of introduction of other RABVs from any other country. The phylogeographic
reconstruction in the same study [50] revealed island-to-island migrations within the
Philippines. Importantly, it showed that the evolutionary pattern of these viruses was
strongly shaped by geographical boundaries, indicating that the seas were a significant
geographical barrier for viral dispersal.

Guo et al. [55] indicated that within Southeast Asia, isolates mainly clustered ac-
cording to their geographic origin. They found evidence of sporadic exchange of strains
between neighboring countries, but it was shown that the major strain responsible for
the Chinese epidemic in the 2010s (i.e., during the third rabies epidemic in China since
1949; Tao et al. [24]) had not been exported. They claimed that the national geographical
boundaries and border controls were effective at halting the spread of rabies from China
into adjacent regions. They also found that the epidemic in 2013 was dominated by variant
strains that were likely present at low levels in previous epidemics in China. Guo et al. [55]
affirmed the accuracy of the phylogeographic analyses with epidemiological linkages
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between high-incidence provinces consistent with observations based on surveillance data
from human rabies cases.

Wang et al. [57] detected six sub-clades of RABV circulating in China and found
that each of them had a specific geographical distribution, reflecting possible physical
barriers to gene flow. Their phylogeographic analysis revealed minimal viral movement
among different geographical locations. Zhang et al. [56] used phylogeographic analyses
to reveal that in China, within-country circulation accounted for more infections than
virus importation. The authors observed that the entry of RABV into southern China from
Southeast Asia was the only well-supported case of virus importation into China.

Ma et al. [37] detected viral migration paths from Sichuan, Guizhou, and Hunan to the
Hanzhong prefecture of Shaanxi, followed by viral spread to Xi’an and other prefectures.
As only Sichuan is adjacent to Hanzhong prefecture of Shaanxi province, the rabies strain
in Shaanxi might have come from the neighboring Sichuan province [37]. The range of
rabies-affected areas has extended in China, spreading from the east and south to the west
and north as noted by Ma et al. [37]. They suggest that this pattern may be the result of
the gradual development of a transportation network which increased the opportunity for
rabid dogs to move or be transported among different areas. It would be interesting to test
this hypothesis formally by including road distances as a variable in a GLM framework.

Horton et al. [49] found no evidence that the RABV strains circulating in Iran were
direct descendants of virus ancestors that existed in the region 4000 years ago. In contrast,
these analyses supported at least one introduction of rabies from Europe with subsequent
spread, albeit on a markedly different timescale, in the last 150 years. They reported
co-occurrence of distinct lineages in Iran which was also seen in an analysis by Dellicour
et al. [20]. Horton et al. [49] suggested that these lineages corresponded to independent
introductions of rabies in Iran, highlighting the importance of the geographical position
of the Iranian region. With the exception of two viruses detected in Iran from the Arctic-
like lineage, the study found an apparent barrier to the spread of the Arctic-like lineage
at approximately 60 degrees longitude, corresponding to the Iranian border. The study
also found that there is a clear and strongly supported distinction between the viruses
circulating in Pakistan and Afghanistan, and those further west. In contrast with the
Iranian border as a barrier to eastward spread, there was significant support in the study
for the spread of rabies among countries to the west of Iran. Their evidence of descendants
of a wildlife-associated lineage in dogs in Turkey and Azerbaijan revealed that wildlife and
dog rabies were not as distinct.

3.1.2. Bats

Phylogeographic analyses have provided statistical support for at least three inde-
pendent introductions of RABV into Trinidad from the mainland, favoring Brazil and
Uruguay as source populations [45]. The analyses show three largely temporally defined
lineages within the phylogeny from which each of the three Trinidadian lineages arose.
The reconstructions in the study revealed that the lineages belonged to a widespread clade
of RABV variants perpetuated by Desmodus rotundus (vampire) bats. This suggests that the
Trinidad outbreaks most likely originated from rabid Desmodus rotundus bats. The study
showed the dates of divergence from the Brazilian and Uruguayan ancestors predated
lineage expansion within Trinidad by several years. Seetahal et al. [45] suggested that the
spread of RABV by Desmodus rotundus bats occurred via gradual movement of infected
bats flying to regions of the mainland neighbouring Trinidad with subsequent entry. They
believed that during the years before the expansion of lineages in Trinidad, RABV from
Brazil and Uruguay spread northward from country to country on the mainland until being
isolated in Trinidad several years later. This migratory pattern of vampire bats would be
interesting to explore using continuous phylogeographic inference as such an approach
would infer a spatial velocity for RABV in this area, and certain landscape features could
be tested as factors that facilitate or impede movement.
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Streicker et al. [47] conducted a discrete phylogeographic analysis to identify RABV
clades in Costa Rica and inferred five distinct clades with origins in North and South
America. Their study indicated bidirectional viral dispersal involving countries to the
north and south of Costa Rica at different time points.

3.1.3. Raccoons

Trewby et al. [46] observed that in Canada, in and near the province of Quebec, vacci-
nated areas are still vulnerable to long-distance translocation events, effectively allowing
RABV infection to bypass areas of vaccination completely. The authors stated that if such
events were the result of local spreading, the sampled sequences would have been ge-
netically similar to the sampled sequences from the US-Canada border. However, their
phylogenetic analyses showed that this was not the case and hence the outbreak was a result
of either a long-distance transmission or non-exhaustive sampling. These phylogeographic
analyses strongly supported the backflow of infection from Quebec across the border into
the US. The analyses also revealed that some areas experienced multiple incursions, either
in short succession (Ontario, Quebec) or separated by several years (New Brunswick) [46].
The authors suggested the lack of natural barriers along the Quebec border to be a likely
contributing factor for the higher transboundary transmission, compared to the major
rivers or lakes that reinforce the border between Ontario-US. These deterministic factors
can be tested in a follow-up analysis using a GLM framework. Other potential contributing
factors that affect the temporal and spatial variation in raccoon demography or vaccination
coverage affecting local pressure of infection as suggested by Trewby et al. [46] can also be
tested using GLMs.

3.1.4. Badgers

Lin et al. [52] found that the transmission of RABV in ferret badgers likely originated
from Eastern Taiwan, then moved across the central region to western regions. Northern
Taiwan however, remained a rabies-free zone despite the existence of ferret badgers and
exhaustive testing [63,64]. Lin et al. [52] suggest that the Da-An River was a natural barrier
that prevented the spread of RABV to the northern region. However, the study states that
the reason for the river to be a barrier is unclear. As the Da-An river was not examined
using a formal statistical test to be a barrier for RABV spread, valuable insights could be
attained by incorporating the geographical barriers of Taiwan in a GLM framework.

According to the location-annotation phylogeny reconstructed by Lan et al. [53],
three major genotypes of ferret badger RABV circulated in three different geographical
areas in Taiwan. They observed that two genotypes had distributed into central and
southern Taiwan between two ecological river barriers (the Da-An River and the JhuoShuei
River), and the third genotype had been limited in southeastern Taiwan by the Central
Mountain Range.

3.1.5. Livestock

Yu et al. [54] suggested that the 2007 epidemic in China was primarily composed
of a younger strain (1992) with a geographical dispersion that was consistent with the
recorded spread of the virus, and an older strain (1960) that corresponded to a previous
epidemic. Their analyses revealed that this latter group exhibited a different geographical
pattern, and that this strain remained at low levels throughout the country and was able to
re-emerge as the epidemic took hold. They discovered a small number of migration events
played the major role in the spread of the virus. This was also supported by the observation
that the branch order in the tree coincided with epidemiology data that showed that the
neighboring provinces of Hunan, Guangxi and Guizhou experienced rabies outbreaks
sequentially. The authors also showed that Hunan in southwest China served as a major
source of geographic dispersal. Additionally, they identified locations such as Jiangsu that
acted as popular migration event spot and aided dissemination of the virus. As the reasons
why Jiangsu acted as a major migration source was unclear, using socio-economic variables
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including trade data in a GLM could reveal underlying factors that impacted the spread of
the virus. The phylogenetic analyses of Yu et al. [54] placed ferret badger sequences at the
top of two distinct sub-clades of samples isolated from dogs, demonstrating that the rabies
in wildlife was not a consequence of spillover from dogs.

Yu et al. [58] showed that the geographic origin of the Arctic-like (AL) RABVs was in
Siberia and the far-east region in Russia approximately in 1830s. The authors found that
the ancestral AL RABV then diversified and immigrated from east Russia to countries in
Northeast Asia, while the viruses in South Asia were dispersed to the neighboring regions
from India. It is important to note that RABV sequences from the Indian subcontinent
were not included in this study. Yu et al. [58] report that the migratory event between east
Russia and India was not statistically supported, as assessed through its corresponding
Bayes factor. Therefore, the migration trajectory of AL lineages between east Russia and
India remains uncertain. Dogs, domestic animals and raccoon dogs accounted for the
overwhelming majority of the distribution in the reconstructed ancestral host. Yu et al. [58]
observed the dispersal of AL RABVs from South Asia to West Asia via two transmission
routes: one was the India-Nepal-Iran route, and the other involved transmission along the
India-Pakistan-Afghanistan-Iraq route. The reconstruction revealed that after the 1990s, the
South Asian countries, especially India, witnessed a large number of AL RABVs cases and
the viruses rapidly spread to Nepal, Bangladesh and Bhutan. The dispersal between India
and Nepal, India and Bangladesh, and Bangladesh and Nepal, and between Bangladesh
and Bhutan was statistically supported by high Bayes factors. They however observed
no viral exchange between the South Asian countries and West China (Qinghai and Tibet
provinces). We suspect that the natural barrier of a high-altitude Himalayan landscape
between the two regions halted the spread of the viruses, which can be formally tested
using a GLM Figure 2.

Continuous phylogeography Discrete phylogeography

Figure 2. Comparison between continuous and discrete phylogeographic inferences, two methods that have been frequently
used to reconstruct the spread of RABV lineages. Both methods can be seen as character mapping approaches: ancestral
reconstruction of the longitude X (in blue) and latitude Y (in red) in the case of the continuous phylogeographic inference,
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and of the discrete location (A, B, C, D, or E) in the case of the discrete phylogeographic inference. The continuous and
discrete phylogeographic methods employ a (relaxed) random walk diffusion model (in green) and a discrete diffusion
model, respectively. While the former one is spatially explicit and allows the inference of internal nodes across unsampled
locations, the latter one requires the preliminary delimitation of discrete locations and does not allow inferring ancestral
locations outside this pre-defined set of locations.

4. Continuous Phylogeographic Inference

When (more) fine-grained geographic information about sequence sampling locations
is available, it is possible to use a continuous phylogeographic inference to reconstruct
viral spread over time. Lemey et al. [13] introduced a model that reconstructs the viral
dispersal history in continuous space via a two-dimensional relaxed random walk. Here,
the two dimensions correspond to latitude and longitude coordinates and the phylogeo-
graphic reconstruction is thus spatially-explicit. The relaxed random walk starts at the
root of a phylogeny and proceeds down its branches, with the change in location from
one end of a branch to the other being normally distributed. Importantly, this model
accommodates heterogeneity in the viral dispersal by allowing the diffusion rate of the
process to vary along the different branches of a phylogeny. This is crucial for realistic
spatio-temporal reconstructions.

While a discrete phylogeographic approach has proven to be useful in a wide range
of scenarios, it presents several disadvantages compared to the continuous approach.
First, discrete phylogeography requires an arbitrary grouping of geographic locations that
can be an unrealistic, oversimplified representation of the area of study. Furthermore,
the range of geographic locations is restricted to the sampling locations, and requiring
the locations of all ancestors of the samples to correspond to a subset of the sampling
locations can be unrealistic. Finally, discrete phylogeographic reconstruction is highly
susceptible to sampling bias. Undersampling or oversampling from certain locations
can substantially impact the estimates of transition rates between locations and, in turn,
spatial reconstructions [65]. A disadvantage of the continuous approach is the need for the
geographical information to be as precise as possible, with less recent data sets only having
more coarse-grained location information (e.g., province or country of sampling) available.

Table 2 shows an extensive overview of studies that reconstructed the spatial dispersal
of RABV using continuous phylogeographic inference. The requirement of having precise
sampling coordinates has resulted in fewer such studies being available as compared to
those performed using discrete phylogeographic inference, as listed in Table 1.

As with the discrete phylogeographic framework, one can examine the relationship
of covariates with viral spread. In a continuous phylogeographic inference setup, testing
the association of environmental factors with viral spread is however currently performed
in a post-hoc manner. Such an analysis is hence split up into two steps: a first step
performing continuous phylogeographic inference to generate a set of location-annotated
phylogenetic trees, followed by a second step to assess the impact of environmental factors
on viral spread (in particular on the dispersal velocity of viral lineages), conditional on
the collected phylogenies [66]. This assessment makes use of an environmental raster
to compute environmental distances (or “weights”) for each phylogeny branch, which
represent the degree to which the environmental variable impedes (or facilitates) lineage
movement. Correlations between movement duration and these environmental weights
are then assessed, and the statistical significance of these correlations are evaluated using
null distributions generated by a randomization procedure.

4.1. Host Species

As can be seen from Table 2, the past ten years have also seen quite a range of studies
on the spread of RABV in different host species. Table A2 shows those studies that perform
a post-hoc inference in order to test the impact of environmental factors on viral spread.
Interestingly, our list of publications shows that these studies have to a lesser extent focused
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on RABV epidemics in Asia and to a larger extent on studying the situation in Latin America.
We here again delve into more detail regarding these continuous phylogeographic studies
and focus on the various carrier species analysed in those studies.

Table 2. Overview of continuous phylogeographic studies on RABV considered. As was the case for the discrete phylogeo-
graphic studies, many analyses did not have whole-genome sequences at their disposal.

Publication Year Taxa (Whole
Genomes) Region Species

Brunker et al. [6] 2018 152 (whole) Tanzania dogs

Omodo et al. [23] 2020 84 (partial) Uganda livestock, dogs,
jackals and foxes

Kuzmina et al. [22] 2013 241 (partial) North America skunks

Pepin et al. [67] 2017 73 (partial) Colorado (USA) skunks

Musial et al. [68] 2018 193 (partial) Florida (US) raccoons

Carnieli et al. [69] 2013 53 (partial) Brazil dogs

Vieira et al. [70] 2013 41 (partial) Brazil cattle, vampire bat

Torres et al. [2] 2014 790 + 547 (partial) Argentina vampire bat

Streicker et al. [71] 2016 264 (partial) Peru vampire bats

Streicker et al. [47] 2019 75 + 40 (partial) Costa Rica vampire bats

Fusaro et al. [72] 2013 160 (partial) Italy and the Balkans foxes

Tian et al. [19] 2018 1034 (partial) Yunnan (China) dogs

Dellicour et al. [20] 2019 109 (whole) Iran dogs, wolves,
jackals, foxes

Dellicour et al. [5]
(meta-analysis) 2017 [2,10,22,43,70]

North America,
North Africa,

Eastern Argentina,
Eastern Brazil

skunk, raccoon,
domestic dog,
vampire bats

4.1.1. Dogs

Carnieli et al. [69] analysed a data set of RABV isolates from North and Northeast
Brazil with the aid of continuous phylogeographic methods. The authors inferred that
the most recent common ancestor of the samples became established at the end of the
nineteenth century on the border of the Brazilian states of Paraíba and Pernambuco and
diversified into the lineages associated with dogs and crab-eating foxes (Cerdocyon thous).
Carnieli et al. [69] found that around 1910, the original C. thous lineage diversified into two
main sub-lineages in the same area while the dog-associated lineage diversified around
1945 and moved towards the north and south. The authors deduced that the dog-associated
lineages dispersed at an average rate of 30.5 km/year and the C. thous-associated lineages
dispersed at an average rate of 9.5 km/year. The authors showed that the dispersion of
RABV lineages isolated from dogs followed human activities and was associated with
urban centers. The dispersion of lineages isolated from C. thous, on the other hand, was
shown to reflect this animal’s solitary habits and ecological niches. The results of this study
indicated that the genetic identities of the two RABV sub-lineages isolated from C. thous
were maintained because one of them spread to the southern part of the Northeast Region
of Brazil while the other moved to the north of the same region, suggesting that C. thous
sub-populations found in different areas acted as hosts for and transmitted each of the
two sub-lineages intraspecifically. The phylogeographic analysis in this study made it
possible to infer not only the movement of the virus lineages but also the probable location
where dispersion and diversification occurred, proving it to be useful for reconstruction
and surveillance [69].
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The use of discrete phylogeographic methods by Dellicour et al. [20] revealed at least
eight RABV clades in Iran, each with independent introductions of rabies in Iran. The
authors’ analysis of metadata associated with these clades suggested relatively frequent
RABV transmissions between dog and wildlife animal populations, and vice versa. Similar
complex transmission patterns were identified in Tanzania [6] as well as in Turkey [49]. The
continuous phylogeographic analysis by Dellicour et al. [20] in Iran highlighted that viral
lineages tended to spread towards and remain in accessible areas associated with relatively
high human population density. In addition, their analysis underlined that lineages were
less likely to spread towards grasslands and to occur in barren vegetation areas. They
also suggested that populated areas represent strategic places for vaccination campaigns
because they can act as crossroads of transmission chains.

4.1.2. Bats

Vampire bats are major rabies reservoir hosts and have affected the cattle popu-
lation across the globe [2]. Torres et al. [2] showed that in highly populated areas in
Argentina, vampire bats fed almost exclusively on cattle. It was previously observed by
Delpietro et al. [73] that the bat population reached higher densities in human-populated
areas and lived in roosts mainly located in human buildings and could inhabit areas that
lacked natural roosts if prey were available [74]. Continuous phylogeographic inference of
vampire bat RABV in Argentina by Torres et al. [2] revealed that a slower dispersion in the
northwestern region correlated with the presence of geographical barriers that made raising
livestock more difficult, while a faster dispersion in the northeastern region occurred due
to the presence of uninterrupted grasslands favouring denser livestock areas. The authors
concluded that RABV transmission dynamics in Argentina were characterized by initial
epizootic waves followed by local enzootic cycles with variable persistence, with multiple
foreign introductions possibly from Brazil.

In Brazil, Vieira et al. [70] found that RABV followed a centrifugal dispersion pattern
with a mountain barrier being the only resistance factor curbing spread. While studying
vampire bats RABV in Peru, Streicker et al. [71] found that male bats spread the virus
between genetically isolated female populations. The study further indicated unanticipated
gene flow through the Andes mountains connecting the RABV-free Pacific coast to the
RABV-endemic Amazon rainforest. Using Bayesian phylogeography with landscape
resistance models, Streicker et al. [71] projected invasion routes through northern Peru
that were validated by real-time livestock rabies mortality data. Their results implied that
while female vampire bats tended to stay in a particular area, male vampire bats likely
contributed disproportionately to rabies spatial spread. Moreover, the authors suggest that
setting up barriers to male dispersal will delimit the boundaries of viral distributions. The
phylogeographic reconstructions from this study therefore provide useful insights that
could help in curbing the spread of RABV due to bats.

Streicker et al. [47] found that within Costa Rica, viruses showed little contemporane-
ous spatial overlap and no lineage was detected across all years of surveillance (2004–2017).
GLM tests suggested that lineage disappearances were more likely to be explained by viral
extinctions than undetected viral circulation (which also explains why culling is not all that
helpful). Their results suggested a Central American corridor of RABV invasions between
North and South America, and showed that apparent disease endemicity may arise through
recurrent pathogen extinctions and re-invasions which can be readily detected in relatively
small data sets by joint phylogeographic inference (i.e., including a GLM).

4.1.3. Skunks

Continuous phylogeographic analyses showed that rivers (with the exception of the
Mississippi River and Rio Grande River) and roads did not constitute significant barriers
for skunk RABV as compared to deserts or mountains [22,67]. The analyses by Kuzmina
et al. [22] showed slow dispersal rates in skunk RABV as compared to raccoon or fox RABV.
While reconstructing the spatial spread, the same study showed that skunk RABV exhibits
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a similar large-scale expansion at the present time compared to what was observed in the
mid-Atlantic raccoon rabies epizootic [10,13]. This suggested strategic areas (such as the
Mississippi River valley) for initiation of local or step-wise oral vaccination campaigns.
The analysis of temporal dynamics by Pepin et al. [67] showed that skunk rabies were most
likely to spread to new areas during the first half of the year, when skunk populations were
producing new offspring.

4.1.4. Raccoons

As the land in the Florida peninsula is homogeneous without significant barriers, the
speed of raccoon RABV diffusion was also found to be spatially homogeneous by Musial
et al. [68]. The emergence of strong phylogeographic structure in the virus was seen by
the authors in the form of five monophyletic lineages that diverged during the early years
of colonization and went on to each occupy a distinct sub-region of Florida. Based on
samples taken over multiple decades, Musial et al. [68] showed that the spatial distribution
of these lineages changed little since the 1970s. This phylogeographic stability allowed
them to retrospectively identify a small set of counties within Florida as the likely source
of the virus strain that seeded a much larger rabies outbreak in the northeastern USA in
the 1970s. All of the viral clades detected in the study diverged while rabies expanded
through a novel host system, suggesting that colonization and expansion processes drove
the viral dispersal patterns. The study indicated that the mean center of each clade’s
geographic distribution moved very little and the general locations of these centers were
often preserved over multiple decades. This stability, as well as the absence of lineage
turnover, implied that spatial genetic patterns in RABV were preserved through time, long
after the initial invasion process. It also highlighted the overriding importance of local
host movement processes, resulting in limited spatial admixture, in the maintenance of
raccoon RABV.

4.1.5. Foxes

Fox rabies re-emerged in northeastern Italy at the end of 2008 and circulated until
early 2011. Fusaro et al. [72] identified two viral genetic groups referred to as Italy-1 and
Italy-2. Phylogenetic and phylogeographic analyses in their study revealed that both
groups had been circulating in the Western Balkans and Slovenia in previous years and
were only later introduced into Italy and occupied different areas of the Italian territories.
The authors showed that the RABVs belonging to the Italy-1 group remained confined to
the region of introduction and their spread was minimised by the implementation of oral
fox vaccination campaigns. On the other hand, they showed that Italy-2 viruses spread
westward over a territory of 100 km from their first identification in the Friuli-Venezia
Giulia region and likely crossed the northern territories where surveillance was inadequate.
Fusaro et al. [72] noted the reduced passive surveillance in Italy in the period prior to the
first rabies notification and the difficulty in retaining high awareness of field staff for rabies
re-introduction in the areas that had experienced a rabies-free status for over ten years.

5. Meta-Analysis of Relevant Environmental Factors

While there have been studies explaining the dynamics of RABV in different hosts
and habitats, Dellicour et al. [5] carried out a comparative meta-analysis of the dispersal
dynamic of RABV lineages, re-analysing data sets involving various host species (raccoons,
skunks, bats, and domestic dogs). The authors adapted the analytical procedure introduced
by Dellicour et al. [75] to test the impact of miscellaneous environmental factors on the
dispersal velocity of RABV lineages.

In their analysis of the skunk RABV data set, Dellicour et al. [5] found that human
population density was associated as a supported conductance factor (i.e., a factor that
facilitates movement). However, for the same data set, no supported association was
found between lineage dispersal velocity and the ‘barren vegetation’ and ‘elevation’ en-
vironmental layers [5], which differs from a previous study of the same data set [22] that



Viruses 2021, 13, 1628 15 of 23

suggested deserts and mountains acted as barriers for viral spread. For the raccoon RABV
data set, [5] confirmed that the elevation was supported a resistance factor (i.e., a factor
that impedes movement), reaffirming what was previously highlighted by Biek et al. [10].
The analysis of a raccoon RABV data set by Dellicour et al. [5] also revealed that human
geographic variables had a supported association with RABV lineage dispersal velocity:
the ‘inaccessibility’ layer (grid of travel time to the nearest major city) and the ‘urban
areas’ layer were identified as supported resistance and conductance factors, respectively.
Dellicour et al. [5] further reiterated the influence of human activity in the high diffusivity
of RABV in domestic dogs, similar to Talbi et al. [43] and Brunker et al. [41]: the three
factors that seemed to impact RABV lineage dispersal velocity were mainly the presence
of urban areas and human population density (identified as conductance factors), as well
as ‘inaccessibility’ (identified as a resistance factor). For bat RABV data sets however, the
meta-analysis showed that anthropological factors did not appear to have been associated
with an important impact on the dispersal of those RABV lineages. In Latin America, the
common vampire bat is a leading cause of human and animal rabies that result in unvacci-
nated livestock dying every year [70,71]. Owing to the complexity of RABV circulation in
bat communities, none of the environmental factors tested by Dellicour et al. [5] proved
to significantly impact the dispersal velocity of bat RABV lineages in their meta-analysis.
One of the explanations put forward by the study was that the factors they tested may not
have been the factors that are relevant to the ecology of bats. Sampling bias or sampling
from a restricted area within a wider region of bat dispersal could also have compromised
the statistical power necessary to identify relevant factors [5].

6. Recommendations and Useful Resources

In this review, we presented a wide range of applications to the study of RABV of
two highly popular approaches to perform phylogeographic inference. In this section, we
provide a few general guidelines on which of these approaches to employ for the different
types of location data available, along with recent extensions of these approaches to deal
with missing (genomic and location) data.

The key choice for which phylogeographic analysis to perform lies with the level of
geographic precision for the location data associated with the collected sequences. Simply
put, when very precise location data (e.g., GPS coordinates) are available for the collected
sequences, continuous phylogeographic inference should be performed. If this is not the
case, and only more coarse-grained location information (e.g., district, county, province
or country), discrete phylogeographic inference can be performed. Both approaches have
an associated framework to test the impact of environmental variables on viral spread, as
discussed in this review, and this should hence not play a role in the decision of which
approach to use. Additionally, both approaches lead to location-annotated phylogenetic
trees as part of the end result, that can make for insightful visualisations. It is hence
imperative that the collection of associated metadata, such as location data, be treated at
the same level of importance as the collection of genomic data.

The decision to discard sequences because of missing associated location data is
frequently made. Given the different types of data-availability problems associated with
the study of RABV, we suggest to exploit recent developments to make use of as much
genomic and location data as possible. For continuous phylogeographic analysis [13],
missing coordinates can be dealt with by providing a polygon describing the known region
of sampling [76,77]. If even this information is unknown, then the sequence will still
have to be discarded. For discrete phylogeographic analysis [12], typically one sampling
location is assigned to a sequence, although in the case of uncertainty multiple locations
can be considered with equal probability (using ambiguity codes), as well as using specific
probabilities based on different sources of information [78]. In the atypical case of having a
known RABV infection with available location data but missing genomic data, the use of
“ghost” or “sequence-free” samples can be considered [79,80].
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Overall, for these different types of analyses, the http://beast.community/ last ac-
cessed on 10 August 2021 website provides a wealth of information in the form of tutorials
that make use of example data sets that are also provided. A typical workflow for a
discrete phylogeographic analysis on RABV in North American bat populations can be
found on http://beast.community/workshop_discrete_diffusion last accessed on 10 Au-
gust 2021, whereas two tutorials for continuous phylogeographic analysis are provided on
http://beast.community/workshop_continuous_diffusion_yfv last accessed on 10 August
2021 and http://beast.community/workshop_continuous_diffusion_wnv last accessed on
10 August 2021, for yellow fever virus and West Nile virus respectively, although the exact
same steps are used to set up a RABV analysis. As apparent from these webpages, different
software packages are required to perform all of the required steps in the proposed tutori-
als. Download links for BEAST [14], BEAGLE (required to run BEAST; Ayres et al. [81])
and other related packages for processing and visualising the output of phylogeographic
analyses can be found on http://beast.community/ last accessed on 10 August 2021 as
well. While we discuss the application of phylogeographic methods on rabies virus (RABV)
datasets here, it should be noted that these methods could also be used on genomic data
from other zoonotic viruses, provided the data contain sufficient temporal signal. We
elaborate more about the formal assessment of a temporal signal on available data in the
next section.

7. Novel Methodological Developments and Future Perspectives

As was amply shown throughout this study, phylodynamic analyses for RABV are
predominantly based on two types of phylogeographic models, i.e., one for discrete location
data [12] and another for continuous location data [13], that were both developed over ten
years ago and have an accompanying implementation in BEAST [14]. We refer to Baele
et al. [11] for a thorough and more general overview of how to connect sequence evolution
to trait evolution—where traits can comprise host, phenotypic and geographic sampling
information—and how to incorporate covariates of evolutionary and epidemic processes in
phylodynamic inference. Recent years have seen the development of additional methods
to round out a typical phylodynamic workflow, as well as increased efforts to port these
popular models into maximum-likelihood (ML) applications. With such a further adoption
of these models also comes the need to assess the impact of sampling bias on phylodynamic
inferences. While it is tempting to try to leverage these phylogeographic methods to predict
(the locations of) future outbreaks through some form of forward simulation, this is far from
straightforward as it entails drawing reliable patterns from relatively rare past events [82].
Additionally, the circumstances surrounding each outbreak are very dynamic, complicated
and unique due to interactions between virus genetics, ecology and host factors [83]. This
makes it extremely difficult to build a predictive model because such a model must be
‘trained’ on a very wide range of realistic scenarios in order to be reasonably accurate.
Given such difficulties, it has been suggested that the most effective and realistic way to
fight outbreaks is to monitor populations in countries that are most vulnerable to such
(re-)emerging epidemics [84]. In summary, the current consensus is to focus on (real-time)
surveillance rather than prediction.

We here present an overview of these ongoing efforts and conclude with a discussion
of initial work on how to assess hypothetical intervention strategies to combat viral spread
in a phylogenetic framework.

7.1. Formal Assessment of Temporal Signal

An important first step in any phylodynamic analysis is to determine whether the
available data contain sufficient temporal signal to estimate the parameters of the molecular
clock. Until recently, such assessments relied on visual explorations of the data through
regression of root-to-tip genetic distance against sampling time. TempEst [85] is a widely
used application for detecting potential issues with data quality (e.g., contamination, re-
combination or alignment errors), but is not suitable for statistical hypothesis testing and

http://beast.community/
http://beast.community/workshop_discrete_diffusion
http://beast.community/workshop_continuous_diffusion_yfv
http://beast.community/workshop_continuous_diffusion_yfv
http://beast.community/workshop_continuous_diffusion_wnv
http://beast.community/
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serves rather as a data exploration tool. To formally test whether a heterochronous data set
contains sufficient temporal signal, Bayesian Estimation of Temporal Signal (BETS) was
developed [86], based on recent advances in Bayesian model selection [87,88]. BETS can
determine the statistical support of whether a sufficient amount of molecular evolution has
occurred over the sampling time window, which is a key condition—also dubbed the ‘phy-
lodynamic threshold’ [89]—in order to obtain reliable inferences in phylodynamic analyses.

7.2. Maximum-Likelihood Phylogeographic Inference

The wide range of studies we discussed in this review point to BEAST as the software
package of choice in terms of performing phylogeographic analyses for RABV. However,
this does not mean that Bayesian inference is the only possible framework for performing
such analyses. Recent years have seen the implementation of discrete phylogeographic
models in different software packages that enable maximum-likelihood phylogenetic
and phylogeographic inference. Both TreeTime [90] and PastML [91] allow for ancestral
location reconstruction based on the same discrete phylogeographic model implemented
in BEAST [12]. One important difference between these ML applications and the BEAST
implementation lies in the fact that the former both require a phylogeny to be provided
as input, with TreeTime taking an unrooted phylogenetic tree as its input and PastML
a rooted phylogenetic tree. The fact that multiple applications need to be combined to
perform phylogeographic analysis using ML may explain why BEAST is such a widely used
software application for performing (joint) phylogeographic analyses. With increasing data
set sizes as a result of genomic sequencing efforts, we do expect these ML implementations
to become more widely used due to the smaller amount of time they take to obtain
a location-annotated ML tree. Recent developments in fact opt for a combination of
ML and Bayesian inference approaches in analysing large data sets [92], whereby large
data sets are first analysed using ML inference followed by a more in-depth Bayesian
phylogeographic analysis of specific clusters of interest. Despite these novel developments,
Bayesian phylogeographic inference will remain an important staple of research studies on
pathogen spread, owing to its ability to incorporate prior information, the wide range of
available models and its inherent capability to take into account sources of uncertainty, to
name a few.

7.3. Mitigating Sampling Bias

The popularity of the discrete [12] and continuous [13] phylogeographic models has
lead to further research into the accuracy and reliability with which these models estimate
ancestral locations. In highly important work on structured coalescent models [93], De
Maio et al. [65] illustrated the need for more accurate discrete phylogeographic methods in
order to overcome the sensitivity to biased sampling. The authors used simulations and em-
pirical analyses to show that their BASTA (BAyesian STructured coalescent Approximation)
model does not exhibit sampling-dependent bias and accurately estimates parameter and
ancestral reconstruction uncertainty. Despite continuing advances in structured coalescent
approaches [94,95], applications of these methods are still confined to rather limited data
sets in terms of number of taxa and sampling locations. We refer to Baele et al. [96] for a
more in-depth comparison between discrete phylogeography and structured coalescent
models. The issue of sampling bias is not the only cause of concern to keep in mind when
employing discrete phylogeographic models. Recently, Gascuel and Steel [97] demon-
strated that it is generally impossible to accurately estimate both the ancestral locations at
the root and the migration rates along the tree branches from the observed data at the tips
of the tree. Additionally, and of particular concern, the authors note that the uncertainty of
simultaneous estimation is not reduced in a coalescent-based framework when the number
of sequences is increased. One possible approach to alleviate these concerns is to include
additional metadata (when available) in the reconstruction of the ancestral location states.
Lemey et al. [79] developed a framework to integrate individual travel history data in
Bayesian discrete phylogeographic inference and showed that this leads to more realistic
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inferences related to virus spread, in addition to ameliorating the impact of sampling bias
by augmenting the phylogeographic analysis with lineages from undersampled or even
unsampled locations.

Sampling bias can also be an issue in continuous phylogeographic inference when (a
proportion of) samples are missing from certain locations, for example. Kalkauskas et al. [80]
have recently proposed to add sequence-free samples from undersampled areas to mitigate
this issue, but acknowledge that it may be difficult to assess how many sequences to add
from those locations. As an alternative to still perform such inference, the authors propose
to use an alternative spatial Λ-Fleming-Viot (ΛFV) process, which is unexplored for use
in phylogeographic inference. While this model currently lacks an implementation in
popular software applications, Kalkauskas et al. [80] show it to be appropriate to model
viral diffusion in cases of endemic spread, with the classic continuous phylogeographic
model [13] being more appropriate for recent outbreaks.

Before performing any phylodynamic analysis, data curation efforts may require
making difficult decisions in the case of incomplete data, such as imprecise or even missing
sampling locations for sequences. In a discrete phylogeography framework [12], ambiguity
codes can be employed to specify that sequences were sampled from one of the available
locations in the data set. In a continuous phylogeography framework, a polygon defining
a uniform prior range of coordinates can be associated with a sequence for which no
accurate sampling coordinates are available [76]. A recent extension of this approach
allows for incorporation of heterogeneous prior sampling probabilities—of which the
sum is constrained to be equal to one—over a geographic area, in the form of a collection
of sub-polygons, informed by external data such as previous outbreak locations or host
species densities [77].

7.4. Assessing (Hypothetical) Intervention Strategies

As a result of a series of devastating epidemics in recent years, such as the 2013–
2016 West African Ebola virus outbreak and the ongoing SARS-CoV-2 pandemic, novel
phylogenetic and phylodynamic methods have been developed to determine the impact of
proposed intervention strategies. Dellicour et al. [98] developed a phylogenetic pruning
approach to assess the impact of preventing viral lineage movement over a range of
distances on epidemic size and duration, as well as of preventing viral lineage movement
to a specific category of administrative areas or to individual administrative areas (based
on their population size). Worobey et al. [99] incorporated travel history information into
their phylodynamic analyses [79] to uncover that early SARS-CoV-2 introductions into
Germany and the west coast of the United States were extinguished by vigorous public
health efforts. Dellicour et al. [92] made use of a phylodynamic workflow that balances
efficiency with accuracy in order to rapidly analyse a large SARS-CoV-2 data set focused on
Belgium, which they used to assess the impact of lockdown measures within the country.
Rasigade et al. [100] adapted a previously established phylogenetic method [101] to develop
a phylodynamic survival analysis approach to quantify the effect of non-pharmaceutical
interventions on the transmission rate of SARS-CoV-2 during the early dissemination phase
of the pandemic. We expect these phylogenetic and phylodynamic approaches to play a
more important role in years to come, due to their clear aim at limiting viral spread and
informing public health in general.
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Appendix A

Table A1. Overview of discrete phylogeographic inference studies that assess the relevance of
environmental factors.

Publication Year Tested Environmental Factors

Talbi et al. [43] 2010
geographical distances, human population size,

road distances, a gravity model,
spatial accessibility, population conductivity

Brunker et al. [6]
2018 dog density, dog presence, elevation, human-to-dog ratio,

rivers, roads, slope, average vaccination coverage,
number of vaccination campaigns, susceptible dog density

Lan et al. [53] 2017 ecological and geographical barriers

Table A2. Overview of continuous phylogeographic inference studies that assess the relevance of
environmental factors.

Publication Year Tested Environmental Factors

Streicker et al. [71] 2016 river valleys

Pepin et al. [67] 2017 neighbourhood, season, cardinal direction

Dellicour et al. [5] 2017 inaccessibility, barren vegetation, croplands, forests, grasslands,
savannas, urban areas, elevation, human population density

Tian et al. [19] 2018
elevation, annual mean temperature, annual precipitation,

key land cover variables, human population density,
human footprint, major roads, and inaccessibility

Dellicour et al. [20] 2019 elevation, barren vegetation, shrublands, grasslands,
croplands, major roads, inaccessibility, human population density
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