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Abstract: Sallow and/or dull skin appearance is greatly attributable to the yellow components of
skin tone. Bilirubin is a yellow chromophore known to be made in the liver and/or spleen and is
transported throughout the body via the blood stream. Recent publications suggest bilirubin may
be synthesized in other cells/organs, including the skin. We found human keratinocytes express
the transcripts involved in bilirubin biosynthesis. In parallel, we also found human keratinocytes
could indeed synthesize bilirubin in monolayer keratinocytes and in a 3D human skin-equivalent
model. The synthesized amount was substantial enough to contribute to skin yellowness. In addition,
oxidative stress enhanced bilirubin production. Using UnaG, a protein that forms a fluorescent species
upon binding to bilirubin, we also visualized the intracellular expression of bilirubin in keratinocytes.
Finally, we screened a compound library and discovered that the sucrose laurate/dilaurate (SDL)
combination significantly reduced bilirubin levels, as well as bilirubin-mediated yellowness. In
conclusion, bilirubin is indeed synthesized in epidermal keratinocytes and can be upregulated
by oxidative stress, which could contribute to chronic or transient yellow skin tone appearance.
Application of SDL diminishes bilirubin generation and may be a potential solution to mitigate
yellowish and/or dull skin appearance.

Keywords: bilirubin; keratinocyte; oxidative stress; skin yellowness; skin tone; skin color; sucrose
laurate; sucrose dilaurate

1. Introduction

Yellow skin color is frequently associated with sallow and/or dull skin appearance,
which is considered a barometer of poor health. Coincidentally, dull skin appearance can
be exacerbated by conditions that commonly lead to increased inflammation and oxidative
stress, such as sleep deprivation, acute and/or chronic mental or physical stresses, and
poor diet [1–5]. However, it is not fully understood what underlying factors contribute to
yellow skin appearance.

Bilirubin is a metabolite of senescent red blood cells largely produced in the spleen,
bone marrow, and/or liver. Bilirubin is transported in the blood stream, mostly in
a form tightly bound to albumin. Free or unbound bilirubin is reported to have the
ability to diffuse out of blood vessels and into tissues, where it can act beneficially as an
antioxidant [6]. However, bilirubin can also be cytotoxic to cells. For instance, excessive
bilirubin accumulation induces neurotoxicity in the jaundice condition frequently oc-
curring in newborn babies, manifesting with signature yellow skin color [7]. Bilirubin
formation involves the action of heme oxygenases (HMOXs). Two isoforms of heme
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oxygenase have been characterized: an inducible form, heme oxygenase-1 (HMOX1), and
a constitutively expressed form, heme oxygenase-2 (HMOX2) [8–11]. HMOXs catalyze
the first rate-limiting step to oxidize and degrade heme into carbon monoxide, ferrous
iron, and biliverdin in an equal stoichiometric ratio [12,13]. Biliverdin is subsequently
degraded to produce bilirubin by biliverdin reductase. HMOXs are also reported to
be induced by a variety of stress factors, such as hypoxia, hyperoxia, proinflammatory
cytokines, nitric oxide, heavy metals, ultraviolet (UV) ray radiation, heat shock, shear
stress, and hydrogen peroxide (H2O2) [14,15].

In 1950, London and Gray estimated that 10–20% of bilirubin excreted by humans
originates extrahepatically [16,17]. It has been speculated that free heme and porphyrin
that are not used for hemoglobin synthesis may be functional resources for bilirubin
synthesis outside the liver [7]. Corroborating these initial speculations, recent research
has shown that heme synthesis and subsequent bilirubin production can be detected
in other cell types of nonhematopoietic origin [18]. In parallel, inhibitors of heme
biosynthesis downregulate the bilirubin level [18]. In addition, Numata et al. reported
that inflammatory cytokines such as IL-1α, IL-17A, and TNF-α significantly increased
HMOX1 mRNA expression in keratinocytes in association with bilirubin accumulation
in the stratum corneum of human epidermis [19]. These studies suggest the possibility
that epidermal keratinocytes may be capable of de novo bilirubin synthesis via HMOX1
induction under stressed conditions.

Here, we hypothesize that human skin keratinocytes house the machinery to perform
de novo bilirubin synthesis, especially under oxidative stress, and the synthesized bilirubin
may contribute to yellow skin appearance. We also highlight the potential usefulness of
the combination of sucrose laurate and dilaurate (SDL) as a novel cosmetic ingredient in
managing bilirubin-mediated yellowness.

2. Results
2.1. Bilirubin-Synthesis-Related Genes Are Expressed in Human Keratinocytes and Upregulated by
Oxidative Stress

To determine the expression of bilirubin-synthesis-related genes and the impact of
oxidative stress, we conducted a transcriptome analysis study using human telomerase
reverse-transcriptase-modified immortalized keratinocytes (tKCs) [20]. A simplified dia-
gram of the bilirubin production pathway with three major rate-limiting enzymes encoding
genes (ALAS1, HMOX1, and BLVRB) is shown in Figure 1A. In the tKC keratinocyte
monolayer culture, we detected gene expression of various transcripts related to the heme
catabolic pathway such as δ-aminolevulinic acid dehydratase (ALAS), uroporphyrinogen
III synthase (UROS), uroporphyrinogen III decarboxylase (UROD), oxygen-dependent
protoporphyrinogen IX oxidase (PPO), and ferrochelatase (FECH), as well as de novo biliru-
bin synthetic pathway gene expression, including biliverdin reductase (BLVRA, BLVRB),
HMOX1, and HMOX2 (Figure 1B). Upon stimulation with H2O2, the expression of all key
genes, including ALAS, HMOX1, and BLVRB, was significantly upregulated (Figure 1B).
These results suggested that keratinocytes are equipped with an intracellular mechanism
to synthesize bilirubin de novo.
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Figure 1. Transcriptome expression of key genes involved in heme and bilirubin synthesis detected 
from tKC cell culture with and without hydrogen peroxide treatment. (A) Simplified diagram of 
heme biosynthesis and bilirubin production (B) List of key genes with transcriptome expression 
level, log2 fold changes, and p-values of hydrogen peroxide treatment group vs. no treatment con-
trol group. Genes encoding key enzymes (ALAS1, HMOX1, and BLVRB) were all significantly up-
regulated by hydrogen peroxide treatment (250 µM, 6 h). n = 6/group. 

2.2. Evidence for De Novo Synthesis of Bilirubin via Heme Synthesis in Human Keratinocytes 
Although the culture media did not contain any bilirubin, we detected marginal lev-

els of bilirubin in the keratinocyte monolayer culture (Figure 2A). Notably, the bilirubin 
concentration increased in a dose-dependent fashion with the addition of hemin, a natural 
substrate of HMOX1 and HMOX2 (Figure 2A). These results strongly suggested the de 
novo synthesis of bilirubin in human keratinocytes. The dose-dependent upregulation of 
bilirubin by hemin further supports the notion that hemin is a natural substrate for 
HMOXs [21]. 

Figure 1. Transcriptome expression of key genes involved in heme and bilirubin synthesis detected
from tKC cell culture with and without hydrogen peroxide treatment. (A) Simplified diagram of
heme biosynthesis and bilirubin production (B) List of key genes with transcriptome expression level,
log2 fold changes, and p-values of hydrogen peroxide treatment group vs. no treatment control group.
Genes encoding key enzymes (ALAS1, HMOX1, and BLVRB) were all significantly upregulated by
hydrogen peroxide treatment (250 µM, 6 h). n = 6/group.

2.2. Evidence for De Novo Synthesis of Bilirubin via Heme Synthesis in Human Keratinocytes

Although the culture media did not contain any bilirubin, we detected marginal
levels of bilirubin in the keratinocyte monolayer culture (Figure 2A). Notably, the bilirubin
concentration increased in a dose-dependent fashion with the addition of hemin, a natural
substrate of HMOX1 and HMOX2 (Figure 2A). These results strongly suggested the de
novo synthesis of bilirubin in human keratinocytes. The dose-dependent upregulation
of bilirubin by hemin further supports the notion that hemin is a natural substrate for
HMOXs [21].

Airyscan confocal microscopy was then used for visualizing and detecting bilirubin
in keratinocytes transiently transfected with the UnaG-mCherry bilirubin-binding probe
(Figure 2B). Although these keratinocytes were maintained in bilirubin-free medium, the
transfected mCherry-positive keratinocytes coexpressed UnaG-binding bilirubin (green
fluorescence) (Figure 2C). These results further underscored the notion that bilirubin was
indeed synthesized by human keratinocytes de novo.

We next assessed the role of the heme synthesis pathway in de novo bilirubin pro-
duction in keratinocytes using succinyl acetone (SA), an inhibitor of ALAS, which is a
rate-limiting heme biosynthetic enzyme [15,22] (Figure 1A). As expected, the synthesized
bilirubin level was significantly inhibited by SA treatment (Figure 3A).



Int. J. Mol. Sci. 2022, 23, 5884 4 of 16Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 2. (A) Dose–response effect of hemin on de novo bilirubin production in keratinocytes for 48 
h. Bar indicates mean ± SEM. *; p < 0.05 vs. no treatment group. (B) UnaG-mCherry bilirubin sensor. 
Observation of mCherry allows identification of transfected and expressing cells in absence of bili-
rubin-induced UnaG fluorescence and enables signal normalization to correct for cell-to-cell expres-
sion variation. (C) Human keratinocytes expressing sensors grown and maintained in bilirubin-free 
EpiLife media. mCherry (red) confirms sensor expression. UnaG fluorescence (green) indicates in-
tracellular de novo synthesis of bilirubin in keratinocytes. Scale = 10 µm. 
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Figure 2. (A) Dose–response effect of hemin on de novo bilirubin production in keratinocytes for
48 h. Bar indicates mean ± SEM. *; p < 0.05 vs. no treatment group. (B) UnaG-mCherry bilirubin
sensor. Observation of mCherry allows identification of transfected and expressing cells in absence
of bilirubin-induced UnaG fluorescence and enables signal normalization to correct for cell-to-cell
expression variation. (C) Human keratinocytes expressing sensors grown and maintained in bilirubin-
free EpiLife media. mCherry (red) confirms sensor expression. UnaG fluorescence (green) indicates
intracellular de novo synthesis of bilirubin in keratinocytes. Scale = 10 µm.
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Figure 3. (A) De novo bilirubin synthesis in keratinocytes with or without succinyl acetone (SA, an 
inhibitor of ALA dehydratase) for 48 h. Bar indicates mean ± SEM. n = 4/group. *; p < 0.05 vs. un-
treated control group. (B) Representative images of untreated control keratinocytes (left, endoge-
nous bilirubin) and keratinocytes treated with SA for 48 h (right). Scale = 10 µm. (C) Quantification 
of UnaG green fluorescence (bilirubin) by image analysis in nontreated control and 1 mM SA-treated 
keratinocytes for 48 h. SA treatment inhibited intracellular production of bilirubin. Bar indicates 
mean ± SEM. *; p = 0.001 versus control. 

The effect of SA on intracellular bilirubin expression was further tested with the 
UnaG-mCherry sensor assay in living keratinocytes. SA inhibited the intracellular expres-
sion of bilirubin (Figure 3B,C). These data indicated that ALAS is likely to be one of the 
major regulatory enzymes for bilirubin production in human keratinocytes. 

2.3. Enhanced Bilirubin Production by H2O2 Treatment in Keratinocytes 
To investigate the impact of oxidative stress on keratinocyte-derived bilirubin pro-

duction, the monolayered keratinocytes were treated with H2O2 for 48 h, followed by bil-
irubin quantification using HPLC-MS/MS. The noncytotoxic levels of H2O2 significantly 
upregulated bilirubin production (Figure 4A), suggesting that oxidative stress could up-
regulate the de novo synthesis of bilirubin in keratinocytes. 

Figure 3. (A) De novo bilirubin synthesis in keratinocytes with or without succinyl acetone (SA, an
inhibitor of ALA dehydratase) for 48 h. Bar indicates mean ± SEM. n = 4/group. *; p < 0.05 vs. un-
treated control group. (B) Representative images of untreated control keratinocytes (left, endogenous
bilirubin) and keratinocytes treated with SA for 48 h (right). Scale = 10 µm. (C) Quantification of
UnaG green fluorescence (bilirubin) by image analysis in nontreated control and 1 mM SA-treated
keratinocytes for 48 h. SA treatment inhibited intracellular production of bilirubin. Bar indicates
mean ± SEM. *; p = 0.001 versus control.
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The effect of SA on intracellular bilirubin expression was further tested with the UnaG-
mCherry sensor assay in living keratinocytes. SA inhibited the intracellular expression
of bilirubin (Figure 3B,C). These data indicated that ALAS is likely to be one of the major
regulatory enzymes for bilirubin production in human keratinocytes.

2.3. Enhanced Bilirubin Production by H2O2 Treatment in Keratinocytes

To investigate the impact of oxidative stress on keratinocyte-derived bilirubin produc-
tion, the monolayered keratinocytes were treated with H2O2 for 48 h, followed by bilirubin
quantification using HPLC-MS/MS. The noncytotoxic levels of H2O2 significantly upregu-
lated bilirubin production (Figure 4A), suggesting that oxidative stress could upregulate
the de novo synthesis of bilirubin in keratinocytes.
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Figure 4. (A) Impact of hydrogen peroxide (H2O2) treatment (48 h) on de novo bilirubin synthesis in
keratinocytes. Bar indicates mean ± SEM. n = 4/group. *; p < 0.05 vs. untreated control. (B) Time-
course detection of bilirubin in EpiDerm™ 3D human epidermal equivalence cultures (sum of tissue
and medium) with and without 30 µM hydrogen peroxide (H2O2) in medium for 72 h. Bilirubin was
quantified using HPLC-MS method. Data are mean ± SEM. n = 4/group. *; p < 0.05 vs. baseline,
ˆ; p < 0.05 vs. without H2O2 group.

We next confirmed bilirubin production and its augmentation by H2O2 using Epi-
Derm™ (MatTek Co., Ashland, MA, USA), a commercially available, reconstituted, three-
dimensional (3D) human skin-equivalent model. No bilirubin was detected from fresh
medium. Bilirubin was readily detected in untreated control skin-equivalents (Figure 4B).
Upon H2O2 treatment, bilirubin levels were significantly increased at both 24 h and 48 h
compared with untreated control samples, while significance was lost at 72 h (Figure 4B).
This increasing trend of bilirubin level is consistent with the results in the aforementioned
monolayer keratinocyte culture.

We also calculated the net amounts of bilirubin produced in the 3D human skin-
equivalent model (Table 1). The untreated control samples showed bilirubin levels ranging
from 1.4 to 2.3 µg/mL, with an increasing pattern at a later time point, while H2O2-
treated groups showed significantly higher bilirubin levels, ranging from 2.8 to 4.0 µg/mL,
than controls (Table 1). These results suggested that bilirubin was generated even in the
well-differentiated 3D skin-equivalents, and its production was significantly enhanced by
oxidative stress.
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Table 1. Time-course changes in total bilirubin (BR) concentration with and without 30 µM hydrogen
peroxide treatment in MatTek EpiDerm™ 3D human skin-equivalent model. Tissue volume was
estimated as 0.0025 mL/tissue based on assumption of 8 mm in diameter, 50 µm in thickness. Data
are mean ± SEM. n = 4/group.

Treatment—Time
Total BR Normalized to Estimated

Tissue Volume (g/tissue-mL)
p-Value

vs. Baseline vs. Corresponding Control Group

Baseline 1.44 ± 0.22 - -
No H2O2—24 h 1.43 ± 0.32 0.970 -
No H2O2—48 h 1.75 ± 0.26 0.403 -
No H2O2—72 h 2.26 ± 0.27 0.056 -

30 µM H2O2—24 h 2.80 ± 0.37 0.020 0.031
30 µM H2O2—48 h 4.01 ± 0.79 0.021 0.035
30 µM H2O2—72 h 3.93 ± 0.78 0.022 0.091

2.4. Bilirubin Has Natural Affinity toward Epidermis of Human Skin

Bilirubin is a lipid acid and is naturally lipophilic. To determine whether bilirubin has
a higher affinity for the epidermal layer and stratum corneum due to its high lipid content,
frozen human skin sections were incubated with 500 µg/mL unconjugated bilirubin. As
shown in Figure 5, bilirubin applied to thin sections of human skin showed preferential
accumulation to the epidermis and the stratum corneum, resulting in visibly yellow staining.
Considering its lower accumulation in the dermal compartment, bilirubin may be more
capable of binding to the epidermis than the dermis.
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Figure 5. Bright-field microscopy of human abdominal skin section (8 µm) incubated with either
(A) 100 µL of DMSO or (B) 500 µg/mL bilirubin dissolved in DMSO for 1 h in dark. Arrowheads
indicate visible bilirubin (yellow color) accumulation in epidermal layer of skin section. Scale
bar = 100 µm.

2.5. Assessment of Yellowness (b* Value) in Human Epidermal Explant Model Treated with
Bioavailable Concentrations of Bilirubin

To assess the impact of bilirubin in the epidermis on skin appearance, epidermal
human skin explants were incubated with bioavailable levels of bilirubin (1.4 or 2.1 µg/mL)
for 44 h in a vehicle of DPBS buffer. Afterward, skin samples were equilibrated in DPBS
buffer without bilirubin for 138 h. Changes in yellowness scores from baseline (∆b* values)
were measured at 0, 22, 44, 68, and 138 h after the initiation of culture (Figure 6). Bilirubin
treatment enhanced ∆b* values in a time- and dose-dependent manner compared with
the control vehicle during the bilirubin treatment phase (Figure 6). After 44 h (recovery
phase without bilirubin treatment), the ∆b* values of bilirubin-treated legs (both 1.4 and
2.1 µg/mL) gradually decreased to baseline levels between 68 and 138 h after the initiation
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of culture. These results further underpinned the notion that bilirubin effectively, but
transiently, binds human skin explants and increases their yellowness.
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Figure 6. Human epidermal skin explants were cultured with vehicle, 1.4 µg/mL bilirubin or
2.1 µg/mL of bilirubin for 44 h (treatment phase). At 44 h, the bilirubin treatments were replaced
with DPBS vehicle without bilirubin and epidermal skin samples were equilibrated till 138 h (recovery
phase). Data indicate mean ± SEM. n = 6/group. *; p < 0.05 of 1.4 µg/mL bilirubin leg vs. vehicle-
treated control sample. #; p < 0.05 of 2.1 µg/mL bilirubin leg vs. vehicle-treated control sample.
ˆ; p < 0.05 for 2.1 µg/mL group vs. 1.4 µg/mL group.

2.6. Transcriptomic Profiling Analysis of Keratinocytes by Bilirubin Treatment

Bilirubin is well known to act as a chemical antioxidant and is thought to offer cytopro-
tection [23]. On the other hand, high levels of bilirubin are known to induce neurotoxicity,
as represented in jaundice [7]. To elucidate the functional properties of bilirubin, we treated
keratinocytes with 1.4, 5, or 14 µg/mL of bilirubin and performed a transcriptome profiling
assay. We found significant upregulation of gene sets related to “response to oxidative
stress”, “prostaglandin stimulus”, and “heme metabolic process” pathways in a dose-
dependent manner, mostly at 24 h time points across all bilirubin concentrations (Figure 7).
In addition, we observed significant gene upregulation in the pathways of “apoptosis”
and “skin pigmentation”, with significant downregulation of genes in “innate immune
response” even at the lowest bilirubin concentration (1.4 µg/mL). These results suggested
that bilirubin has broader biological potential beyond oxidative stress response.
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2.7. SDL Diminishes Bilirubin Levels in Keratinocytes

In order to mitigate skin yellowness induced by bilirubin, we screened over 100 skin
care materials and identified SDL as the most potent compound to reduce bilirubin. In
a chemical in vitro assay, the addition of 0.01% SDL significantly reduced the bilirubin
level within 20 h (Figure 8A). Furthermore, in the keratinocyte monolayer culture model,
SDL significantly reduced H2O2-induced bilirubin production (Figure 8B). The effect of
SDL treatment on intracellular bilirubin was also visualized and quantified in human
keratinocyte cell cultures using the UnaG-mCherry bilirubin sensor (Figure 8C,D). SDL
treatment significantly reduced the intracellular levels of bilirubin (Figure 8C,D).
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in absence or presence of 0.001% SDL for 48 h. Scale = 10 µm. (D) Calculated green fluorescence
intensity (bilirubin) normalized to red fluorescence intensity (mCherry). Bar indicates mean ± SEM.
n = 13/group. *; p < 0.01.

Finally, we assessed the effects of SDL on skin-bound bilirubin. Frozen human skin
sections were incubated with bilirubin with or without SDL. The baseline fluorescence
intensity of untreated skin sections was marginal (Figure 9A). The clear green fluores-
cence of skin-bound bilirubin was visualized, especially in the epidermal compartment
(Figure 9B). Notably, SDL markedly ameliorated bilirubin-induced epidermal fluorescence
(Figure 9C). These results indicated that SDL is a useful technology to reduce skin-bound
bilirubin content.
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3. Discussion

Positioned at the interface of the body and the external environment, the skin is a
protective barrier that is constantly under attack by various stresses from both the external
environment and the internal biological system [24]. The skin is routinely exposed to
environmental damage such as UV light and pollution, resulting in reactive oxygen species
generation. The skin is also exposed to oxidative conditions derived from internal biological
responses due to physical or mental stresses [25,26]. To maintain homeostasis, the skin is
equipped with a network of redox antioxidative systems, including antioxidative enzymes
such as catalase and superoxide dismutase, as well as chemical antioxidants such as
glutathione [24,27].

It has been reported that bilirubin has cytoprotective functions by acting as an effective
antioxidant against lipid peroxidation [23]. Our data strongly indicate that epidermal
keratinocytes not only house all elements needed for de novo synthesis of heme and biliru-
bin, but the mechanism does indeed produce bilirubin via the heme synthesis pathway
(Figures 1–3). We also demonstrated that skin bilirubin synthesis is upregulated by ox-
idative stress (Figure 4). However, further studies are warranted to elucidate whether
the increased production of bilirubin is attributable to increased enzymatic activity or the
increased protein level of enzymes.

The presented evidence is well corroborated with the documented response of HMOX1
induction and detection of bilirubin in the stratum corneum [19]. In the present study, the
average bilirubin concentration calculated from the 3D human skin-equivalent model was
1.4 µg/mL (baseline level), which was significantly elevated to 4.01 µg/mL on average
by oxidative stress (Table 1). The levels are comparable to the average serum levels of
circulating bilirubin (5.2 µg/mL) in healthy women [28]. This evidence indicates that the
human skin, specifically epidermal keratinocytes, is an active and functional source of
extrahepatic bilirubin production. In addition, this study demonstrated the preferential
accumulation of bilirubin in the epidermal compared to the dermal compartment. We
do not know if this phenomenon is specific to the biological nature of bilirubin. Further
studies are necessary to clarify this mechanism. However, there is a possibility that bilirubin
produced from epidermal keratinocytes may remain in the epidermis. This is intriguing
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due to the fact that the epidermis is not directly connected to the blood circulatory system
and thus is less exposed to circulating bilirubin produced elsewhere in the body.

However, bilirubin has an aesthetically negative impact with its intrinsic yellow
color. Yellow skin color is associated with poor health. Cosmetically, it is associated with
negative characteristics such as sallow or dull skin appearance. In parallel, we found
that bilirubin had a high tendency to bind to human skin, especially to the epidermis
(Figure 5). The yellowish hue of skin explants was increased by incubation with bioavailable
bilirubin levels, which were detected in H2O2-treated skin-equivalents. The increased
yellowness gradually subsided to the baseline level after eliminating bilirubin in the
treatments (Figure 6). The fact that bilirubin had high selectivity toward the epidermal
compartment may strengthen the role of bilirubin in yellowish skin tone.

Oxidative stress can be caused by many factors, including UV radiation, exposure
to environmental pollutants such as cigarette smoke, or sleep disruption. Much attention
has been paid to the impact of UVB on the skin, as well as the oxidative stress of cigarette
smoke, leading to the enhancement of yellowness around the mouth and hands of smokers.
Our data suggest a possibility that oxidative stress from cigarette smoke may induce
bilirubin production that partially contributes to yellowness. Sleep deprivation/disruption
is a very common concern as a byproduct of modern life demands. Sleep disturbance is
reported to induce oxidative stress [29], increase the serum levels of bilirubin [30] and
even cause liver disorder [31]. Furthermore, there are various papers suggesting bilirubin
induction by inflammatory cytokines [1–5,32]. In addition, our transcriptomic analysis
showed that keratinocytes treated with a high level of bilirubin manifest oxidative stress
responses (Figure 7), which is consistent with the literature, showing bilirubin induces
oxidative stress and causes DNA damage at high concentrations [33]. The combination
of published work and our data strongly suggests that increased bilirubin formation can
be an indicator of stressed skin, which correlates with the historical view that yellow skin
equals unhealthy skin.

SDL has been widely used as a safe emulsifier or stabilizer in cosmetic, food, and
pharmaceutical industries for many years. The present study demonstrated that SDL sig-
nificantly reduced bilirubin levels and diminished the skin-bound bilirubin concentration
(Figures 8 and 9). Although further research is required to elucidate the detailed mechanism
of action, preliminary transcriptome analysis in human keratinocytes indicated SDL upreg-
ulates UDP-glucuronosyltransferase 1A1 (UGT1A1), which is the key enzyme catalyzing
bilirubin conjugation to sugars and results in increased water solubility of bilirubin and
enhanced elimination via bile and urine [34].

In conclusion, we showed direct evidence that epidermal keratinocytes are capable
of producing bilirubin and that keratinocyte-derived bilirubin synthesis is augmented
by oxidative stress. In addition, the predominant binding of bilirubin to the epidermis
increases yellowish discoloration. As the yellow component of skin tone is attributable
to the sallow and/or dull appearance of facial skin, bilirubin production from epidermal
keratinocytes may directly cause facial skin discoloration. We also demonstrated that
SDL is effective in reducing bilirubin in various in vitro models. SDL could be a potential
measure to prevent bilirubin-mediated unhealthy yellowish/dull skin appearance after
oxidative stress.

4. Materials and Methods
4.1. Chemicals, Reagents, and Cell Lines

Culture medium and supplements were all purchased from Thermo Fisher Scien-
tific (Waltham, MA, USA), including EpiLife calcium-free phenol red-free medium (Cat.
No.: MEPI500CA), gentamicin/amphotericin B (500X; Cat. No.: 50-0640), calcium chlo-
ride (Cat. No.: 50-9703), HKGS (100X; Cat. No.: S-001-5), trypsin/EDTA solution (TE; Cat.
No.: R001100), trypsin neutralizer solution (TN; Cat. No.: R002100), penicillin/streptomycin
(10,000 U/mL, 100X; Cat. No.: 15140122), and DPBS (Cat. No.: 14190250). The keratinocyte
cell line tKC was a kind gift from Dr. Shay (University of Texas Southwestern, Dallas,
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TX) [20]. ViaStain AO/PI staining solution was purchased from Nexcelom Bioscience
(Cat. No.: CS2-0106-5 mL, Lawrence, MA, USA) and AccuGene 1x PBS from Lonza (Cat.
No.: 51225, Alpharetta, GA, USA). Other chemicals used for all studies, including DMSO
(Cat. No.: D8418-100 mL), H2O2 (30% stock in water; Cat. No.: 216763-100mL), hemin (Cat.
No.: H9039-1G), and 4,6-dioxoheptanoic acid (succinyl acetone (SA)) (Cat. No.: D1415-
500 mg) were purchased from Sigma (St. Louis, MO, USA). Bilirubin (Cat. No.: 17161)
and bilirubin conjugate (sodium salt; Cat. No.: 17170), were purchased from Cayman
Chemicals (Ann Arbor, MI, USA). CellTiter-Glo® luminescent cell viability assay kit (Cat.
No.: G7571) was purchased from Promega (Madison, WI, USA). SDL (combination of
sucrose laurate and sucrose dilaurate at approximately 6:4 ratio) was supplied from BASF
(Ludwigshafen, Germany).

4.2. tKC Culture, Treatment, and Viability Assessment

tKCs were plated in 24-well tissue culture plates using MEPI500CA media supple-
mented with HKGS and gentamicin/amphotericin B at 200,000 cells/well. The cells were
incubated at 37 ◦C under 5% CO2 and 95% humidity for 24 h before treatment. All treat-
ments were made in MEPI500CA medium that contained 1 mM added calcium chloride
and 0.1% DMSO. After treatment, the cultures were maintained at 37 ◦C under 5% CO2 and
95% humidity for 48 h before harvesting. When harvesting, the culture supernatant was
transferred onto a fresh 24-well plate and stored on dry ice immediately and shielded from
light. Cell layers were also stored on dry ice immediately and shielded from light. Both the
cell layer plate and medium plate were subsequently frozen at −80 ◦C until quantifying
for bilirubin.

For viability assessment, the CellTiter-Glo® luminescent cell viability assay was used
according to the manufacturer’s instructions. Briefly, CellTiter-Glo® reagent was mixed
with an equal volume of cell culture medium and vortexed to create a homogeneous Cell
GLO viability working solution. After removing cell culture media, tKCs were treated
with 300 µL of the Cell GLO viability working solution. The plate was covered with
aluminum foil and agitated on an orbital shaker at 150 rpm for 10 min. The plate was
then read with a SpectroMax microplate reader (Molecular Device, San Jose, CA, USA) for
chemiluminescence intensity.

4.3. Oxidative Stress Challenge to 3D Human Skin-Equivalent Model

EpiDerm™ 3D human skin-equivalent cultures were purchased from MatTek cor-
poration (MatTek, Ashland, MA, USA) and cultured according to the manufacturer’s
recommendations. EpiDerm™ cultures contain highly differentiated human-derived epi-
dermal keratinocytes. The EpiDerm™ 3D cultures were immediately incubated with phenol
red-free medium (Part No.: EPI-100-ASY-PRF) at 37 ◦C with 95% humidity and 5% CO2 for
20 h to equilibrate. A baseline group of 4 tissues and corresponding culture supernatant
were harvested on dry ice and shielded from light before transferring to −80 ◦C for storage.
The rest of the tissues were subject to either medium treatment as control groups or 30 µM
H2O2 treatment as oxidatively stressed groups (n = 4 per group). All tissues were incubated
at 37 ◦C with 95% humidity and 5% CO2 until the designated harvesting time points: 24 h,
48 h, and 72 h.

4.4. UnaG Bilirubin Quantification Method for Cultured tKC

UnaG is a Japanese Eel muscle protein. It binds bilirubin, forming a complex that
emits green fluorescence, making it a good bilirubin sensor [35]. The UnaG-His-FLAG re-
combinant protein used in this study was obtained from Riken Institute (Tokyo, Japan) [36].
The bilirubin detection method by UnaG was reported previously [37]. Briefly, bilirubin
was extracted from tKC cells cultured on a 24-well plate with a combination of 110 µL of
0.1% triethanolamine sourced from Univar USA Inc (Bedford Park, IL, USA) and 110 µL
of 1 µM UnaG stock made in PBS. To prevent bilirubin photodegradation, the plate was
covered with aluminum foil. The plate was shaken by a VWR Signature™ Digital Multi-
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Tube Vortexer (VWR, Batavia, IL, USA) at 2000 rpm for 20 min to extract bilirubin. A
bilirubin standard curve was obtained covering the range of 9.13 to 292.33 ng/mL. UnaG
concentration was 0.5 µM for all standards and samples. Fluorescence intensity propor-
tional was read using a SpectroMax with fluorescence filters for excitation and emission
wavelengths of 497 and 527 nm, respectively. Bilirubin concentrations were calculated by
linear regression against the bilirubin standard curve.

4.5. Bilirubin Quantification to Assess SDL Chemical Impact on Bilirubin Level

The effect of SDL on bilirubin level was assessed with 20 h incubation in a cell-free
system. Three replicates of each test sample were prepared on a 96-well plate (e.g., a
FALCON brand 96-well tissue culture plate or equivalent) at a total volume of 250 µL/well.
Positive control wells contained 25 µg/mL bilirubin in PBS buffer (AccuGENE, Cat. No.:
51225), while negative/vehicle control wells contained DMSO and PBS buffer. SDL was
dissolved in DMSO. Each test sample well contained 25 µg/mL bilirubin with SDL added
to 0.01% in PBS buffer. The plates were covered with aluminum foil and placed on top of a
microplate shaker (VWR, Cat. No.: 12620-938), followed by incubation at room temperature
for 20 h with constant shaking at 150 rpm. Bilirubin was then quantified after incubation
using a commercially available bilirubin quantification kit (Cat. No.: MET-5010, Cell Biolab,
San Diego, CA, USA). Briefly, quantitation is based on the Jendrassik–Grof method using
diazotized sulfanilic acid to react with bilirubin to form azobilirubin, detected at an OD
of 540 nm. A standard bilirubin curve is generated. Bilirubin concentrations of all testing
legs are calculated using linear regression against the bilirubin standard curve. Bilirubin
reduction activity was determined by comparing bilirubin levels of treatments vs. the
bilirubin-positive control leg.

4.6. Human Epidermal Explant Model Treatment with Bilirubin

Twelve-millimeter punch biopsies of human abdominal explant (46 years, female, skin
type III) were procured from cosmetic procedures with an IRB-approved protocol (Schul-
man Associates Institutional Review Board, Cincinnati, OH, USA). After fat removal, the
skin was cut into 1.25 cm2 squares, placed in 1 M NaCl plus 10× penicillin/streptomycin
(Invitrogen), and incubated overnight at 37 ◦C. The following day, the epidermis was
carefully peeled off with forceps and stored in phosphate-buffered saline (PBS) plus
2× penicillin/streptomycin and stored at 4 ◦C before use (Bachelor et al., 2014). To as-
sess bilirubin’s impact on skin tone appearance, the epidermal explants were cultured in
individual inserts that sat on top of 6-well culture plates. Tissues were simultaneously
treated both topically (50 µL) and in the medium 6-well plates (2.3 mL per well) with one
of the 3 treatments: control vehicle (DPBS, Thermo Fisher), 1.4 µg/mL conjugated bilirubin
solution, and 2.1 µg/mL conjugated bilirubin (sodium salt, Cayman Chemicals) solution,
respectively. Epidermal explant tissues were imaged with a Spectroshade imaging device
(SpectroShade USA, Oxnard, CA, USA) at designated time points and b* values (yellowness
score) were quantified from the images using built-in software.

4.7. Bilirubin Quantification in Biological Samples Using LC-MS/MS

Biological samples were extracted with 0.1% triethylamine (TEA) to recover synthe-
sized bilirubin. Briefly, 0.1% TEA was added into 3D human skin-equivalent tissue samples
(120 µL per tissue) or monolayer cells in the well plate (110 µL per well of a 24-well cell
culture plate), transferred to low-binding Eppendorf tubes, followed by vortexing for
10 min at room temperature. Samples were then centrifuged at 16,000× g using a benchtop
centrifuge for 10 min with the supernatants used for analysis. The standards and the sam-
ples were analyzed using gradient high-performance liquid chromatography with tandem
mass spectrometry (HPLC-MS/MS). Bilirubin can be separated by a reverse-phase column
(Atlantis T3 Column, 100Å, 3 µm, 2.1 mm × 50 mm; Waters, Milford, MA, USA). Bilirubin
and the corresponding stable isotope-labeled internal standard (ISTD) were monitored
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by electrospray ionization (ESI) in positive mode using the selected reaction monitoring
schemes below.

- Multiple reaction monitoring (MRM) transitions for analytes (bilirubin: 585.2→ 299.2);
- Their corresponding stable isotope-labeled internal standards (d4-bilirubin: 589.2→ 301.2).

The Used ISTD was d4-bilirubin (Toronto Research Chemicals, North York, ON,
Canada). A standard curve was constructed by plotting the signal, defined here as the peak
area ratio (peak area analyte/peak area ISTD), for each standard versus the concentration
of each analyte for the corresponding standard. The concentration of bilirubin in the
calibration standards and biological samples were then calculated using the generated
regression equation.

4.8. Estimation of Bilirubin Concentration Produced in EpiDerm™ 3D Human
Skin-Equivalent Model

The diameter of each 3D human skin-equivalent model tissue is 8 mm, and the
thickness is about 50 µm. By using such dimensions, an individual 3D human skin tissue
volume was calculated as: π × (0.4 cm)2 × 0.005 cm = 0.002513 cm3 = 0.002513 mL. Upon
normalizing the sum of bilirubin produced by each tissue, i.e., factor in bilirubin quantified
from both tissue itself and corresponding culture supernatant/medium, the mean bilirubin
concentration per milliliter tissue volume of each group was calculated.

4.9. Sample Preparation and Data Analysis for Microarray Studies

To investigate the impact of ROS stress, tKC cells were plated out at a density of
250,000 cells/well into 12-well plates. After growing for 24 h at 37 ◦C in a CO2 incubator,
the tKCs were treated with a media control vehicle and hydrogen peroxide at 250 µM for 1 h,
respectively, before harvesting 6 h later for microarray analysis. To investigate the impact
of bilirubin treatment on human primary keratinocytes, a control vehicle (10% water) and
conjugated bilirubin at 1.4 µg/mL, 5 µg/mL, or 14 µg/mL, were added respectively, before
harvesting for microarray analysis at 6 h and 24 h. Samples were collected in RNAlater®

buffer, flash-frozen, and stored at −80 ◦C prior to RNA extraction. RNA was extracted
and purified using the RNeasy kit (QIAGEN, Germantown, MD, USA). Purified RNA
was converted to biotin-labeled complementary RNA copies using the HT 3′ IVT Plus
kit (Affymetrix, Santa Clara, CA, USA), per the manufacturer’s protocol. Biotinylated
cRNA was fragmented by limited alkaline hydrolysis and then hybridized overnight to
Affymetrix GeneTitan U219 array plates using the Affymetrix GeneTitan instrument and
protocol. Probe set expression values were calculated by quartile normalization and PLIER
summarization algorithms. Differentially expressed genes were analyzed using the ANOVA
model implemented in the R limma package [38]. Gene Set Enrichment Analysis (GSEA)
was performed using GAGE (Generally Applicable Gene set Enrichment for pathway
analysis) model [39] against Gene Ontology datasets.

4.10. Visualization of Bilirubin Content within Cells Using UnaG Fluorescence

HaCaT keratinocytes were cultured in EpiLife medium (Thermo Fisher). At 72 h
prior to imaging, cells were seeded in 35 mm quad No1.5 polymer coverslip-bottomed
dishes (Ibidi) and grown to 70% confluency at the time of transfection. At 48 h prior to
imaging, the cells were transfected with the CMV-UnaG-mCherry construct (Figure 2B)
using Lipofectamine 3000 (Thermo Fisher). Transfection materials were added to Optimem
Reduced Serum medium (Thermo Fisher) and added to cells for 4 h before the medium was
removed and replaced with fresh media. Treatments were added to the cells at this stage
for 48 h. Immediately prior to imaging, the media was removed, and Fluorobrite medium
(Gibco) was added. All live-cell imaging was performed on a Zeiss LSM 880 confocal
microscope with the Airyscan detector with either a 20X 0.8 NA Plan-Apochromat air
lens or a 63X 1.4NA Plan-Apochromat oil immersion lens. The imaging environment was
maintained at 37 ◦C and 5% CO2. UnaG was excited using a 488 nm laser and emission
captured by the Airyscan detector with a 495–550 nm bandpass filter. mCherry was excited
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using a 594 nm laser and emission captured by the Airyscan detector with a 645 nm long
pass filter. Mean fluorescent intensity of cells was measured using ImageJ. Individual cells
were isolated by ROI and the mean fluorescence intensity of each channel measured. UnaG
intensity values are expressed as a proportion of the mCherry signal to normalize and
control for variation in probe expression.

4.11. Visualization of SDL Effect on Bilirubin Reduction in Human Skin Sections

A 10 µm amount of fresh frozen human skin sections was dried at RT for 30 min,
followed by rehydration with PBS. Sections were incubated either with or without (negative
control) 50 µg/mL bilirubin 1 h at RT in the dark, followed by washing with PBS. Sections
were then treated with either (1) vehicle—0.5% DMSO in PBS or (2) 0.01% SDL in vehicle
overnight at RT in the dark, washed in PBS, and DAPI counterstained using NucBlue fixed
cell stain Ready Probes reagent (Invitrogen, Carlsbad, CA, USA). For comparison, fluores-
cent images were captured with a Zeiss Observer.Z1 microscope (Carl Zeiss Microimaging,
Jena, Germany) at equal gamma values, pixel ranges, and exposures.

4.12. Statistical Analysis

Statistical significance for all in vitro experiments, except for the transcriptome anal-
ysis, was determined by Student’s t-test unless stated otherwise. Values of p < 0.05 were
considered statistically significant.
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