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Down syndrome associated childhood
myeloid leukemia with yet unreported
acquired chromosomal abnormalities and a
new potential adverse marker:
dup(1)(q25q44)
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Abstract

Background: Children with constitutional trisomy 21, i.e. Down syndrome (DS, OMIM #190685) have a 10 to 20-fold
increased risk for a hematopoietic malignancy. They may suffer from acute lymphoblastic leukemia or acute myeloid
leukemia (AML). AML referred to as myeloid leukemia of Down syndrome (ML-DS) is observed especially after birth at
an early gestational age and characterized by enhanced white blood cell count, failure of spontaneous remission, liver
fibrosis or liver dysfunction, and is significantly associated with early death. There are only few studies yet focusing on
the clonal cytogenetic changes during evolution of ML-DS.

Case presentation: In a 1.4-year-old boy with DS an immunophenotype consistent with AML-M1 according to
French-American-British (FAB) classification was diagnoses. Cytogenetic and molecular cytogenetic analyses
revealed, besides constitutional free trisomy 21, an unbalanced translocation as der(16)t(1;16)(q25.3;q24), plus
a balanced translocation t(3;20)(q25;q13.1). A poor clinical outcome was observed here.

Conclusions: To the best of our knowledge, an ML-DS case associated with identical acquired chromosomal
abnormalities was not previously reported. Our findings suggest that especially partial trisomy 1q25 to 1q44
may be indicative for a poor prognosis in ML-DS.

Keywords: Down syndrome, Trisomy 21, AML, Acquired chromosomal abnormalities (ACAs), Clone evolution,
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Background
Children with trisomy 21 or Down syndrome (DS,
OMIM #190685) have a compared to normal population
10- to 20-fold increased risk for developing an acute
leukemia; lymphoblastic as well as myeloid leukemia
were reported [1, 2]. Acute myeloid leukemia- (AML-)
affected children develop a unique type of malignancy,
referred to as myeloid leukemia of Down Syndrome
(ML-DS), which is recognized as a separate entity in the
actual World Health Organization (WHO) classification

of leukemia [3]. ML-DS is especially found in children
born at early gestational age and is characterized by
enhanced white blood cell (WBC) count, failure of spon-
taneous remission, as well as liver fibrosis or liver
dysfunction. Also ML-DS is significantly associated with
poor outcome and early death [4–6]. ML-DS cases have,
according to French-American-British (FAB) classifica-
tion, in the majority of the cases M7 morphology, thus
they are also called acute megakaryoblastic leukemia
(AMKL) cases. As most ML-DS cases are young at diag-
nosis, the disease occurs almost exclusively in children
< 5 years old. A beneficial clinical outcome may occur if
treated with reduced intensity chemotherapy protocols
without stem cell transplantation [7–9].
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Even though data on cytogenetics of ML-DS are
scarce, it is known that the karyotypic patterns of this
entity are different from those observed in AML of chil-
dren without DS, e.g. translocations t(8;21), t(15;17),
t(9;11), inversion inv.(16), as well as AMKL associated
translocations t(1;22) and t(1;3) are rather typical for
ML-DS [10–12]. The most frequent imbalances in
ML-DS are duplications in 1q (16%), or deletions in 7p
(10%) and/or 16 (7.4%) [10]. However, the potential clin-
ical impact of these cytogenetic abnormalities is not
known, yet. Therefore, the importance of studying and
reporting cytogenetic alterations for better classification
and risk stratification of ML-DS and non-DS-AML is
well recognized [5, 10–14]. There is especially controver-
sial data on the impact of acquired chromosomal abnor-
malities (ACAs) in ML-DS (see [4, 14] versus [5, 11]).
Here, we describe a typical ML-DS case with two yet

unreported ACAs involving chromosomes 1 and 16 as well
as 3 and 20, obviously associated with a poor prognosis.

Case presentation
A 1.4-year-old boy with DS without familial medical
history of malignancy presented with 10 days consisting
flu and fever, being pallor and unconscious. This patient
was the fifth child of healthy, unrelated parents. The
mother and the father were at birth of the child, 42 and
54 years old, respectively. Also there was no infection in
the pregnant woman during the pregnancy.
At diagnosis the small boy was found to have septi-

cemia, acidosis, dehydration, and lung crackles. Physical
examination and ultrasound showed hepatomegaly. His
hematological parameters revealed low hemoglobin level
(Hgb) (4 g/dl), low platelet count (47 × 109/l), and
elevated WBC count. Biochemistry determined urea of
118 mg/dl (normal value up to 40 mg/dl) but normal
creatinine levels (0.1 mg/dl). Thus, he was diagnosed as
ML-DS patient. The patient received blood transfusion
repeatedly, stayed in the hospital for 1 week, and then
was transferred to hematological malignancy hospital to
confirm diagnosis and treatment. Peripheral blood cell
analyses revealed a WBC count of 59.08 × 109/l (18.8%
neutrophils, 47.2% lymphocytes, 0.1% eosinophiles, 29.6%
monocytes and 4.3% basophiles), red blood cells count of
4.93 × 106/mm3, Hgb level of 11.2 g/dl, and platelet count
of 24 × 109/l. Blasts in bone marrow aspiration were
present in 32% of analyzed cells. The patient had not
received any chemotherapy treatment and died unfortu-
nately died 9 days after diagnosis from the disease due to
respiratory arrest, and before cytogenetic and flow-
cytometric results were available. His mother agreed with
scientific evaluation of the case and the study was
approved by the ethical committee of the Atomic Energy
Commission, Damascus, Syria.

GTG-banding on peripheral blood sample revealed a
karyotype of 47,XY,t(1;16)(?;?),t(3;20)(?;?),+21c[17]/47,X
Y,+21c[3] (Fig. 1). Further studies were performed by
molecular cytogenetics (Fig. 2). Dual-color-FISH (D-
FISH) using specific WCP probes for chromosomes #1,
#3, #16, and #20 confirmed that no other chromosomes
were involved besides #1 and #16 in an imbalanced plus
#3 and #20 in a balanced translocation (data not shown).
aMCB, using probes for chromosomes #1, #3, #16, and
#20 (Fig. 2) revealed the following final karyotype:

47,XY,der(16)t(1;16)(q25.3;q24),t(3;20)(q25;q13.1),
+21c[17]/47,XY,+21c[3]

Immunophenotyping of peripheral blood specimen
characterized this case as AML-M1 according to FAB
classification. The blast cell population (32% of leuko-
cytes) was positive for CD45dim, CD7, CD13dim, CD33,
HLA-DR, CD38, and CD117 and negative for CD64,
CD34, CD10, CD15, CD11b and CD14.

Discussion and conclusions
The natural history of leukemia in children with DS
suggests that trisomy 21 directly contributes to the
malignant transformation of hematopoietic cells. Ap-
proximately 15% of pediatric AML cases occur in DS
children. Thus, ML-DS contribute more than 90% of the
most common FAB subtype of DS AML patients and at
the same time the majority of cases are diagnosed under
the age of 4 years [15–17]. Zipursky et al. [9] have esti-
mated that DS children have a 500-fold increased risk of
developing ML-DS compared with non-DS children,
highlighting the unique relationship between trisomy 21,
leukemogenesis, and a specific leukemia phenotype.
Other AML FAB subtypes have also been described in
ML-DS including M0, M1/M2, and M6, but less
frequently [15–17].
The cytogenetic profiles of ML-DS cases differ signifi-

cantly from non-DS patients with AML [16, 18, 19].
ML-DS children show more frequently acquired triso-
mies of chromsomes 8, 11, and 19, dup(1p), del(6q),
del(7p), dup(7q), and del(16q) [10]. Typically, the favor-
able translocations associated with non-DS AML [e.g.,
t(8;21); t(15;17); inv(16), 11q23 rearrangements] are
rarely seen in ML-DS patients [10]. For ML-DS children
older than 4 years cytogenetic features, molecular biol-
ogy findings and response to therapy significantly
diverge from younger patients, and are similar to the
ones found in non-DS patients with AML [17]. However,
recently de Souza et al. [20] reported a new ML-DS case
associated with new acquired ACAs and they suggested
those were clearly associated with the disease-progress
and associated with an adverse risk. The case presented
here share some feature with that of de Souza et al. [20]
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Fig. 2 Karyotype and chromosomal aberrations were confirmed using molecular cytogenetic approaches. aMCB results are shown. The normal
chromosomes (#) are depicted on the left side of each image and the derivative of the other chromosomes on the right side of normal chromosomes. The
unstained regions when suing chromosome-specific aMCB-probesets on the derivative chromosomes are shown in gray. Abbreviations: # = chromosome;
der = derivative chromosome

Fig. 1 GTG-banding revealed an unbalanced translocation t(1;16)(q25.3;q24) and balanced translocation t(3;20)(q25;q13.1) in 17/20 metaphases.
All derivative chromosomes are marked and highlighted by arrow heads

Moassass et al. Molecular Cytogenetics  (2018) 11:22 Page 3 of 6



such as involvement of chromosomes 1 and 3 was and
a poor outcome. Furthermore, chromosomal bands
such as 1q25, 3q25, 16q24, and 20q13 are involved in
chromosomal rearrangements frequently [21]. More-
over, translocations or inversions involving 3q21 and
3q26 are associated with a high-risk in AML, and these
patients usually present with a poor prognosis [17].
However, in our case observed specific translocations
der(16)t(1;16)(q25.3;q24) and t(3;20)(q25;q13.1) has
never been reported as ACAs in ML-DS or AML cases
to date [21].
Several studies have suggested that mutations in the

hematopoietic zinc-finger transcription factor gene
GATA-1 (a transcription factor that regulates the differ-
entiation of megakaryocyte and erythrocyte precursors),
could be an initiating event in DS leukemogenesis [22,
23]. Besides the involvement of GATA-1 and trisomy 21
is strongly associated with leukemogenesis [20]. Cyto-
genetic analyses revealed other acquired recurrent
abnormalities associated with gain of chromosome 21.
Forestier et al. [10] analyzed 189 ML-DS cases and they
confirmed a distinct entity, originating from other gen-
etic pathways than non-DS patients with AML.
Partial trisomy of chromosome 1q is commonly ob-

served in infants with ML-DS and AMKL, which is most
often resulting from an unbalanced translocation, like in
the present case, or a simple duplication [24]. The long
arm of chromosome 1 accommodates genes involved in
the control of normal myeloid cell kinetics. Several inter-
esting genes map in this region 1q, including IL6RA and
BCL2-related are located at 1q21, MNDA (1q22),
CENPR (1q32-q41), and TP53BP2 (1q42.1~q42.2) [25].
For the chromosome 16 related imbalance two genes

might specifically be considered: (i) Interferon regula-
tory factor 8 (IRF8) also known as interferon consen-
sus sequence-binding protein located at 16q24.1,
codes for a transcription factor, which plays a critical
role in the regulation of lineage commitment and
myeloid cell maturation including the checkpoint for a
common myeloid progenitor to differentiate into a
monocyte precursor cell [26]. (ii) The human FOXF1
gene located at 16q24.1, previously denominated Forkhead
Related ACtivator-1, encodes a homologue of the mouse
forkhead box-F1 (Foxf1) transcription factor [27]. Gene
knockout studies have shown that the function of mouse
Foxf1 is indispensable for organ morphogenesis, including
the lung, liver, gallbladder, esophagus, and trachea [28].
Despite the largely unknown role of FOXF1 in can-
cer, several lines of evidence have linked human
FOXF1 function to tumorigenesis [29]. Recently, it
was suggested that FOXF1 may play a dual role in
tumorigenesis as an oncogene or a tumor suppressor
gene depending on tissue cell types and disease
stages [30].

As shortly discussed above, age has been recognized as
a prognostic factor in ML-DS [31]. In fact, it has been
proposed that DS children who present over 4 years of
age are suffering from ‘normal sporadic AML’ occurring
in a child with DS, rather than from ‘true’ ML-DS [32].
In addition, ML-DS patients with a history of transient
myeloproliferative disease have a significantly better out-
come than children with ML-DS without documented
transient myeloproliferative disease [5]. Blink et al. [11]
demonstrated that age ≥ 3 years and high WBC count
(> 20 × 109) are correlated with poor outcome (event-
free survival) in ML-DS. These variables are also known
from non-DS pediatric AML studies, in which older
age and high WBC predict for poor outcome [33].
According to the literature the here observed partial

monosomy 16q24 to 16qter has no clear impact on
prognosis, and the meaning of the balanced transloca-
tion t(3;20)(q25;q13.1) needs to be delineated by further
case studies. However, the present case of ML-DS may
have an adverse outcome due to the partial trisomy
1q25.3 to 1qter, as also supported at least by one further
similar case [20] and the known adverse effects of distal
partial trisomy 1q in other malignancies [32].

Material and methods
Cytogenetics and molecular cytogenetics
Chromosomal analysis on peripheral blood sample using
GTG-banding according to standard procedures [34]
was performed prior blood transfusions. A minimum of
20 metaphase cells was analyzed. The karyotype was
described according to the International System for
Human Cytogenetic Nomenclature (ISCN 2016) [35].
Fluorescence in situ hybridization (FISH) using whole

chromosome painting (WCP) probes for chromosomes
1, 3, 16, and 20 (MetaSystems, Altlussheim, Germany)
was done according to manufacturer’s instructions [34].
Array-proven multicolor banding (aMCB) probes sets
based on microdissection derived region-specific librar-
ies for chromosomes 1, 3, 16, and 20 were hybridized
and evaluated as previously reported [36]. A minimum
of 10 metaphase spreads were analyzed, each, using a
fluorescence microscope (AxioImager.Z1 mot, Carl
Zeiss Ltd., Hertfordshire, UK) equipped with appropri-
ate filter sets to discriminate between a maximum of
five fluorochromes plus the counterstain DAPI (4′,6-
diamino-2-phenylindole). Image capture and process-
ing were performed using an ISIS imaging system
(MetaSystems).

Flow cytometric immunophenotype
Immunophenotyping was performed using a general
panel of fluorescent antibodies against the following
antigens typical for different cell lineages and cell types:
CD1a, CD2, CD3, CD4, CD5, CD8, CD10, CD11b,
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CD11c, CD13, CD14, CD15, CD16, CD19, CD20, CD22,
CD23, CD32, CD33, CD34, CD38, CD41a, CD45, CD56,
CD57, CD64, CD103, CD117, CD123, CD138, CD209,
CD235a and CD243; in addition antibodies to Kappa
and Lambda light Chains, IgD, sIgM, and HLADr were
tested. All antibodies were purchased from BD Biosciences.
Samples were analyzed on a BD FACSCalibur™ flow
cytometer. Autofluorescence, viability, and isotype controls
were included. Flow cytometric data acquisition and ana-
lysis were conducted by BD Cellquest™ Pro software.
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