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Abstract

Predicting changes in protein thermostability due to amino acid substitutions is essential for understand-
ing human diseases and engineering useful proteins for clinical and industrial applications. While recent
advances in protein generative models, which learn probability distributions over amino acids conditioned
on structural or evolutionary sequence contexts, have shown impressive performance in predicting various
protein properties without task-specific training, their strong unsupervised prediction ability does not extend
to all protein functions. In particular, their potential to improve protein stability prediction remains under-
explored. In this work, we present SPURS, a novel deep learning framework that adapts and integrates two
general-purpose protein generative models–a protein language model (ESM) and an inverse folding model
(ProteinMPNN)–into an effective stability predictor. SPURS employs a lightweight neural network module
to rewire per-residue structure representations learned by ProteinMPNN into the attention layers of ESM,
thereby informing and enhancing ESM’s sequence representation learning. This rewiring strategy enables
SPURS to harness evolutionary patterns from both sequence and structure data, where the sequence like-
lihood distribution learned by ESM is conditioned on structure priors encoded by ProteinMPNN to predict
mutation effects. We steer this integrated framework to a stability prediction model through supervised train-
ing on a recently released mega-scale thermostability dataset. Evaluations across 12 benchmark datasets
showed that SPURS delivers accurate, rapid, scalable, and generalizable stability predictions, consistently
outperforming current state-of-the-art methods. Notably, SPURS demonstrates remarkable versatility in pro-
tein stability and function analyses: when combined with a protein language model, it accurately identifies
protein functional sites in an unsupervised manner. Additionally, it enhances current low-N protein fitness
prediction models by serving as a stability prior model to improve accuracy. These results highlight SPURS
as a powerful tool to advance current protein stability prediction and machine learning-guided protein en-
gineering workflows. The source code of SPURS is available at https://github.com/luo-group/SPURS.
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1 Introduction
Thermodynamic stability, measured by changes in Gibbs free energy (∆G), is a fundamental property of

proteins. Characterizing protein stability is crucial for addressing biomedical challenges, from interpreting
disease mutations to guiding protein engineering in industrial and clinical applications1–3. Although experi-
mental techniques such as directed evolution are successful in identifying stabilizing mutations, they require
substantial experimental effort to screen numerous mutants, as stabilizing mutations are rare and the mu-
tation exploration is often unguided. This makes computational approaches, particularly machine learning
(ML) methods, attractive for predicting changes in protein stability (∆∆G) upon amino acid substitutions,
offering faster and scalable solutions for engineering stabilized proteins.

While deep learning has revolutionized protein structure prediction with models like AlphaFold4, no sim-
ilarly transformative methods have emerged for protein stability prediction. This gap largely stems from data
scarcity and the limitations of current computational models. Existing ML methods for stability prediction5–13

are often trained on small to moderate datasets7,8,14–17, each consisting of only hundreds to thousands of
mutants and covering tens to hundreds of proteins. The mismatch between the limited data and the large de-
mands of modern ML models results in poor generalization to unseen mutations or proteins. While database
efforts15,18,19 have consolidated individual datasets, their biases toward destabilizing mutations, certain pro-
tein domains, and experimental conditions hindered progress in stability prediction.

Recent advances in mutagenesis experiments, such as complementary DNA (cDNA) proteolysis assays, of-
fer new opportunities for ML-based protein stability prediction. For example, Tsuboyama et al. released a
mega-scale dataset (hereafter “Megascale" dataset) with 776k protein folding stability measurements cover-
ing all single and selected double amino acid variants across 479 small protein domains20. This dataset, de-
rived consistently from the same assay, represents an unparalleled resource for training ML models to predict
protein stability. However, leveraging such data requires novel models capable of capturing the hidden ther-
modynamics underlying protein stability. Protein generative models, including language models (pLMs)21–24
and inverse-folding models (IFMs)25,26, have recently emerged as “foundation models" for various ML tasks
in protein informatics. These models are pre-trained to predict masked residue amino acid using context
from unmasked residues, thereby capturing evolutionary patterns or sequence likelihood distributions from
vast natural protein sequences or 3D structures. Studies have shown that these models can predict mutation
effects in a zero-shot manner by calculating the log-likelihood ratio between mutants and wild-type pro-
teins27–29, which correlates well with various measures of protein fitness, including pathogenicity30, binding
affinity31, and thermostability29, even without task-specific training.

Given the unsupervised stability prediction capabilities of these protein generative models, it is thus ex-
pected that combining them with large-scale stability data for supervised training would boost the prediction
accuracy. However, early efforts have shown that fine-tuning pLMs on the Megascale dataset yielded only
comparable or worse results than regular ML models trained from scratch32,33. This underperformance is
partly attributed to the challenge of fine-tuning large models like pLMs, which contain ∼109 parameters and
are prone to overfitting34 despite the availability of mega-scale datasets. Furthermore, pLMs focus only on
linear amino acid sequences, lacking structural information such as 3D residue interactions that are crucial
for stability prediction.

To address this, Dieckhaus et al. fine-tuned ProteinMPNN25, a protein IFM trained on natural structures,
into ThermoMPNN, leveraging structure representations for stability prediction35. ThermoMPNN demon-
strated strong generalization to unseen proteins and has since been recognized as a leading stability pre-
dictor36,37. However, inverse folding models like ProteinMPNN are constrained by the availability of high-
resolution protein structure data—ProteinMPNN was pre-trained on ∼20k curated structures from the CATH
dataset, far fewer than the 420M proteins in UniRef38. Thus, it may not fully exploit evolutionary informa-
tion from massive sequence data. We hypothesize that integrating pre-trained pLMs and IFMs, which harness
complementary sequence and structure data, could further enhance stability prediction. However, unifying
these models is a complex challenge due to differences in data modalities, model architectures, and training
scales.

In this work, we introduce SPURS (stability prediction using a rewired strategy), a deep learning frame-
work that integrates sequence- and structure-based protein generative models for protein stability prediction.
To facilitate this integration, we propose a novel rewiring strategy that implants a lightweight neural network

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2025. ; https://doi.org/10.1101/2025.02.13.638154doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.13.638154
http://creativecommons.org/licenses/by-nc-nd/4.0/


module called Adapter39,40 into a pLM (ESM23), enabling it to incorporate structural priors learned by the
IFM (ProteinMPNN25). This approach enables data-efficient adaptation of the two models to a stability pre-
dictor without overfitting. SPURS is also highly scalable, as it predicts stability changes for all point mutations
at once, conditioning on the wild-type sequence and structure, contrasting to most deep learning models that
predict stability changes for one mutated sequence at a time. This scalability enabled us to perform large-scale
stability predictions across numerous human protein domains.

We benchmarked SPURS on 12 datasets measuring changes of thermostability (∆∆G) or melt temper-
ature (∆Tm) upon mutations and found that it outperformed state-of-the-art stability prediction methods.
Notably, SPURS also excels in identifying stabilizing mutations, a challenge for most methods due to the
imbalance between stabilizing and destabilizing mutations in current datasets41. The superior stability pre-
diction ability of SPURS makes it a versatile method for protein function analysis. We showed that SPURS’s
stability predictions can be combined with pLMs for protein functional sites identification and used to en-
hance low-N protein fitness prediction. Overall, SPURS provides a high-performance, pre-trained model for
predicting stability in unseen proteins or mutations, with wide applicability to protein engineering tasks, such
as functional site discovery and fitness prediction.

2 Results

2.1 SPURS: thermostability prediction leveraging protein generative models
SPURS is a deep learning framework designed to predict changes in protein thermostability (∆∆G) upon

point mutations. It takes as input the wild-type sequence of a target protein, x = (x1, . . . , xL), where L is the
protein length, xi ∈ Σ is the i-th amino acid, and Σ is the set of 20 canonical amino acids (AAs). In addition
to the sequence, SPURS incorporates the 3D structure of the wild-type protein to inform its prediction. The
structure is described by the coordinates of its atoms, S = {ci ∈ RNb×3}Li=1, where ci is the 3D coordinates of
the Nb backbone atoms (e.g., C, Cα, O, and N atoms) in the i-th residue. This structure can be abstracted as
a graph, where nodes represent backbone atoms and edges are formed based on an atom-pair distance cutoff.
If an experimentally determined structure is unavailable for the input protein, SPURS employs AlphaFold4 to
predict the structure.

The neural network architecture of SPURS is an effective integration of two pre-trained generative models:
ESM23, a Transformer-based protein language model (pLM), and ProteinMPNN25, a graph neural network-
based inverse-folding model (IFM). SPURS utilizes ProteinMPNN as a structure encoder to extract geometric
features important to protein stability and leverage the sequence evolutionary priors learned by ESM to dissect
the mutation effect on stability (Methods). To bridge these two models, SPURS employs a lightweight neu-
ral network module, called Adapter39,40, which wires the structure embeddings from ProteinMPNN into the
sequence embedding of ESM (Methods). During training, only the Adapter layer and ProteinMPNN param-
eters are updated, while ESM’s parameters remain fixed. This integration strategy introduces only minimal
architecture alterations to ESM and ProteinMPNN, preserving the rich representations and evolutionary pri-
ors learned from pre-training while avoiding overfitting. This Adapter-based approach also makes SPURS
more data-efficient for fine-tuning to stability prediction, as it requires updating 98.5% fewer parameters
compared to fine-tuning the entire ESM model used in previous studies33,37. Although this work specifically
uses ESM and ProteinMPNN, SPURS is a model-agnostic framework and can integrate other sequence- and
structure-based generative models24,42 for stability prediction.

At the output layer, SPURS predicts the ∆∆G for all possible point mutations in a protein in a single
forward pass of the neural network, generating an L × 20 matrix (Methods). This scalability is a major
advancement over existing models. Previous stability prediction methods32,33,43–45 often require a single for-
ward pass for each mutant sequence, necessitating O(L× 20) forward passes to predict stability changes for
all single substitutions in a protein of length L. In contrast, SPURS generalizes this one-prediction-per-pass
approach to an all-prediction-per-pass approach. Instead of taking the mutant as input, SPURS predicts sta-
bility changes for all possible substitutions simultaneously by conditioning on the wild-type sequence and
structure. This is achieved by learning per-residue latent representations and using a decoder, whose param-
eters are shared across all residues, to predict the effect of mutating each residue to all 20 AAs (including the
wild-type). Consequently, SPURS reduces the number of forward passes from O(L × 20) to O(1), enabling
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Figure 1: SPURS architecture. SPURS is a deep learning framework that rewires pre-trained protein generative models,
including a protein language model (ESM2) and an inverse folding model (ProteinMPNN), to predict stability changes
(∆∆G) upon sequence mutations. It takes a protein’s wild-type sequence as input and, using AlphaFold2 for structure
prediction if an experimental structure is unavailable, conditions on both of sequence and structure to predict the ∆∆G
for all possible single-mutation variants. Through a rewiring strategy, SPURS integrates evolutionary and structural priors
learned by ESM2 and ProteinMPNN to learn structure-enhanced evolutionary features, which are passed to a prediction
module that outputs a matrix ϕ, allowing efficient decoding of ∆∆G predictions for all single mutations. SPURS’s perfor-
mance is demonstrated in tasks of stability prediction, functional site identification, and fitness prediction. Abbreviations:
Struct=Structure; Evo=Evolution.

efficient large-scale protein stability analysis. In our experiments, SPURS predicted stability changes for all
single substitutions in 118 full-length proteins from the ProteinGym database28 (average length: 492 AAs) in
just 20 seconds on an NVIDIA A40 GPU.

We trained SPURS on the Megascale stability dataset, which contains measurements of stability changes
for 230,337 mutations across 241 proteins. The unprecedented size of this dataset allows SPURS to learn
generalizable representations for unseen proteins and mutations. Additionally, the dense sampling of muta-
tions per protein in the Megascale dataset (covering all single mutations) enables SPURS to effectively learn
rich representations for all L× 20 possible mutations in a single forward pass.

2.2 SPURS enables accurate protein stability prediction
To evaluate SPURS’s performance in predicting protein stability changes upon mutations, we curated 12

datasets of stability measurements from published studies (Supplementary Methods). These datasets vary
in terms of the number of proteins and the coverage of mutants measured (Fig. 2a), collectively forming a
comprehensive benchmark for assessing stability prediction models. We began by using the Megascale splits20
constructed by the ThermoMPNN study35, which contains 272,721 single-substitution mutants with corre-
sponding ∆∆G measurements across 298 proteins. These sequences were split into the training, validation,
and test sets at a ratio of 80/10/10 and filtered the training and validation sets to remove sequences with
greater than 25% sequence identity to those in the test, and other independent datasets (Supplementary
Methods). Throughout our experiments, SPURS was trained on this filtered Megascale training set.

Model architecture ablation: We first compared SPURSwith ThermoMPNN (re-trained using our training
set), the state-of-the-art ML model for stability prediction, on the Megascale test set covering 28,312 mutant
sequences of 28 proteins (Fig. 2b). SPURS outperformed ThermoMPNN in Spearman correlation (0.83 v.s.
0.77). This improvement can be attributed to the effective integration of ESM and ProteinMPNN by SPURS,
which incorporates both sequence and structural priors, in contrast to ThermoMPNN that only fine-tunes the
structure-based ProteinMPNN. An ablation study, where we fine-tuned ESM and ProteinMPNN individually
using multi-layer perceptrons (MLPs) on top of frozen ESM or ProteinMPNN layers, confirmed that fine-
tuning either model alone led to performance drops compared to SPURS (Fig. 2b). Interestingly, we observed
that even the sequence likelihood predicted by the unsupervised ESM and ProteinMPNN exhibited a non-
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Figure 2: SPURS achieves accurate prediction for protein stability. a, The numbers of proteins and mutants across the
datasets used for training and evaluation. b, Performance comparison of SPURS with baseline methods on the Megascale
test set. ESM and ProteinMPNN use the sequence probability difference between the mutant and wild type as zero-shot
stability predictors, while FT-ESM and FT-ProteinMPNN are their fine-tuned (FT) versions with supervised regression. All
supervised models were trained on the filtered Megascale training set. *: Mann-Whitney U test P < 0.05. c, SPURS’s
performance against baselines on the Megascale test set and ten independent test datasets. d, Precision-recall results
of stabilizing mutation identification on the Megascale test set. e, Comparison of SPURS with baseline methods on the
Domainome dataset. ESM1v (full) takes the full-length protein sequence as input, whereas ESM1v (domain) takes domain
subsequences. Abbreviations: VEP=Variant effect predictors; RSASA=Relative solvent-accessible surface area.

trivial Spearman correlation with the ∆∆G measurements in Megascale (0.46 and 0.61, respectively). This
observation is consistent with previous studies29 and suggests that protein generative models, even without
explicit training on stability data, capture evolutionary features predictive of stability. This forms the basis
of our hypothesis and other works33,35 that supervised fine-tuning of protein generative models improves
stability prediction.

Overall performance: Next, we evaluated SPURS’s generalizability using eight test sets from other stud-
ies7,8,14,17,35,43,46. We excluded sequences in the Megascale training and validation sets that had more than
25% sequence identity with the test sets. We additionally included six leading baselines, including biophysi-
cal models (FoldX47, Rosetta48), and ML methods (PROSTATA44, RASP32, Stability Oracle49, ThermoNet6).
SPURS showed significantly improved (for 7/8 test sets) or comparable performance across all datasets com-
pared to these baselines (Fig. 2c and Supplementary Tables S1 and S2).

We then explored SPURS’s ability to generalize to melting temperature (∆Tm) prediction, another mea-
sure of protein stability. Even though SPURS was only trained on ∆∆G data, it demonstrated improved
Spearman correlations on two ∆Tm datasets43, S4346 and S571 (Fig. 2c). This highlights SPURS’s broad
capability to capture stability-related features beyond its training data.

Prioritizing stabilizing mutations: Given that stabilizing mutations are of particular interest in protein
engineering, we evaluated SPURS’s performance in identifying such mutations. Since destabilizing mutations
dominate stability datasets, many existing methods tend to optimize predictions for these overrepresented
destabilizing variants, which can lead to inflated accuracy. To address this imbalance, we evaluated SPURS’s
ability to prioritize stabilizing mutations (N=1,178) from a much larger pool of destabilizing mutations
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(N=27,139) in the Megascale test set, where stabilizing mutations are defined as those with ∆∆G< − 0.5
kcal/mol50. Across various prediction cutoffs, SPURS consistently outperformed ThermoMPNN in both pre-
cision and recall (Fig. 2d), indicating its robustness in identifying stabilizing mutations.

Domainome dataset benchmark: Finally, we applied SPURS to the recently released Human Domainome
dataset36, which quantifies the impact of human missense variants on protein stability by protein abundance
in cells. This dataset contains 563,534 variants across 522 proteins, offering the largest diversity and coverage
among our benchmarks (Fig. 2a). The original Domainome study reported that ThermoMPNN outperformed
other stability models, including general variant effect predictors, such as AlphaMissense51 and EVE30, struc-
tural features (relative solvent accessibility), and dedicated stability predictors. When we evaluated SPURS
on this dataset, it significantly improved upon the best baseline, ThermoMPNN (correlation 0.54 vs. 0.49),
further demonstrating SPURS’s generalizability for protein stability prediction (Fig. 2e).

Taken together, our benchmark results demonstrate that SPURS achieved state-of-the-art performance for
protein stability prediction, with superior generalizability and less bias than existing models.

2.3 SPURS identifies functionally important sites in proteins
Proteins perform various cellular functions, largely through interactions with other molecules. Identifying

the specific sites or regions responsible for these interactions is essential to understanding biological processes
and developing biomedical applications. Stability is just one biophysical property that contributes to protein
function, while others, such as binding specificity and enzymatic activity, often trade-off with stability during
evolution52. Thus, the loss of function due to mutations can be attributed to either direct disruption of molec-
ular interactions or structure destabilization that leads to reduced protein abundance. Mutations at protein
binding interfaces, active sites, and allosteric sites tend to have larger effects on function than what changes in
stability alone can explain20,53,54, making it challenging to deconvolve the effects of substitutions on intrinsic
function from those on stability54,55. Some recent experimental studies attempted to resolve this biophysical
ambiguity by quantifying mutation effects on both protein binding and abundance, allowing comprehensive
mapping of functional sites53,56. Inspired by this, we hypothesized that a similar strategy, using SPURS’s sta-
bility predictions alongside evolutionary fitness scores from pLMs, could help disentangle mutation effects on
function and identify functional sites.

Specifically, we used SPURS to predict∆∆G and ESM1v27 to estimate the evolutionary fitness of a protein
variant (Supplementary Methods). Here, ‘fitness’ broadly refers to protein functions like binding affinity,
catalytic activity, andmore. ESM1v has been shown to be effective for zero-shot predictions of mutation effects
on protein fitness27. We applied a sigmoid function to model the non-linear relationship between stability
and fitness (Fig. 3a; Supplementary Methods), following prior work that employed non-linear Boltzmann
distribution to model the relationship between free energy changes caused by mutations in protein folding
and those in protein binding53,56–59. A recent study showed that the residuals (errors) from the fitted sigmoid
curve indicate whether mutations have larger or smaller effects on protein fitness than can be explained by
changes in stability36. Our approach builds on this study by extending functional site identification beyond
the restricted set of 500 protein domains with experimental stability data36, scaling up to diverse, full-length
proteins using SPURS’s accurate stability predictions. We computed the fit residuals for all single mutations
in a given protein (Fig. 3b) and defined a per-site function score by averaging residuals across all mutations at
each site (Supplementary Methods). Residues with higher function scores are more likely to be functionally
important36 (Fig. 3b,c).

To evaluate SPURS’s ability to identify function sites, we used 239 proteins from the Domainome dataset
which have functional site annotation in the Conserved Domain Database (CDD)60. Out of the total 14,434
residues across these proteins, 3,516were labeled as functional, while the rest were considered non-functional.
SPURS’s function score significantly distinguished functional from non-functional sites (Fig. 3d; t-test P <
1 × 10−150). At the individual protein level, SPURS achieved an average AUROC of 0.69. Given that SPURS
was not trained on functional site labels, as previous supervised methods were61, these results demonstrated
its strong unsupervised capability for identifying functional sites in proteins.

Case studies of function site identification We further explored SPURS’s predicted functional sites across
seven protein domains that ranked high or mid in AUROC (Fig. 3e). These proteins were chosen to cover
human domains that represent various sizes from 56 to 97 residues, diverse structural folds, and different
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Figure 3: SPURS accurately guides functional site annotation. a, ESM1v-predicted fitness scores and min-max normal-
ized stability changes (-∆∆G) predicted by SPURS for the HMG-box domain (UniProt ID: P35716). A sigmoid function is
used to fit the relationship between fitness and normalized stability change. Color gradient represents SPURS’s predicted
function score. b, Heatmap depicting function scores of the HMG-box domain, with red letters indicating CDD-annotated
DNA-binding sites. c, Structure of the HMG-box domain (PDB ID: 6T7C), where residues are colored by function scores
and DNA-binding sites are annotated. d, Distribution of function scores for functional sites annotated in CDD and other
sites across 239 human domains. e, SPURS’s AUROC performance for the functional site annotations across 239 human
domains. f-m: The structures colored by SPURS’s function scores for the six highlighted dots in e. Below each structure, a
scatter plot shows the predicted function score for each residue, with CDD-annotated functional sites marked as ×. f, LIM
domain in FHL1 (UniProt ID: Q13642; PDB ID: 1X63). g, SH3 domain in GRB2 (P62993, 1IO6). h, Alcohol dehydroge-
nase (P00327, 1QLH). i, Zoom-in view of the zinc ion around the catalytic center. j, SAM domain in CNKSR2 (Q8WXI2,
3BS5). k, MBD domain in MECP2 (P51608, 5BT2), l, PDZ domain in DLG3 (Q92796, 2FE5), m, PDZ domain in SCRIB
(Q14160, 6XA7).
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functions, including protein-protein interaction, DNA binding, ion interaction, and enzymatic activity. By
mapping SPURS’s function score onto their 3D structure, we found high-score regions significantly enriched
for functional sites (Figs. 3f-m).

Annotation for diverse functions: In the LIM domain, which contains two four-residue zinc fingers,
SPURS assigned high scores exclusively to the zinc-coordinating residues (Fig.3f). Similarly, in the SH3
domain, SPURS accurately captured its critical peptide-binding sites (Figs. 3g). We extended this analysis to
proteins not presented in Domainome, such as alcohol dehydrogenase (EC 1.1.1.1), a zinc-dependent enzyme.
SPURS successfully identified its key zinc-binding residues (C46, H62, and C174) and a stabilizing residue
(S48), which forms hydrogen bonds critical for the enzyme’s structure (Fig. 3h-i)

Identification of binding sites: Notably, despite being trained only on single-chain inputs, SPURS iden-
tified interaction interfaces and binding sites. For example, it highlighted SAM domain residues near the
heterodimer interaction interface (Fig. 3j), even though its interacting partner’s sequence or structure was
not provided to SPURS. A similar observation was made for the MBD domain, where SPURS not only re-
covered DNA binding sites but also identified a β turn located between two β-strands and close to the DNA
helix (Fig. 3k). While CDD did not annotate this β-turn as functional sites, it appeared to coordinate the
protein-DNA binding, suggesting the potential of SPURS for discovering new functional sites.

Annotation consistency: SPURS also demonstrated consistency across different proteins harboring the
same domain. For example, in two proteins with PDZ domains (Figs. 3l-m), SPURS assigned high function
score to several residues that occupy structurally corresponding positions in the two proteins. A serine residue
(S239 in Fig. 3l and S875 in Fig. 3m) consistently received the highest function score in both structures de-
spite their different structural contexts. While SPURS prioritized consistent functional sites for both proteins,
it also captured the context-dependent nature of binding and gave higher scores to residues involved in spe-
cific ligand interactions unique to each protein. In one case where the domain binds to a small glycerol
molecule (Fig.3l), a lysine (K299) interacting with the molecule received a higher score than its counterpart
in the other protein, while in the second case where the same domain binds to a peptide (Fig.3m), SPURS
prioritized residues (L872, H928) close to the peptide. Importantly, the ligands were only shown for visual-
ization and were not provided as input to SPURS. Nonetheless, SPURS was able to identify both conserved
functional sites for the same domain across proteins and context-dependent sites specific to each protein’s
binding function.

These case studies illustrate SPURS’s strong agreement with CDD annotations and its ability to identify both
conserved and context-specific functional sites. Unlike previous methods that rely on docking structures62 or
supervised learning61, our approach is unsupervised, requiring only sequence input, with structural predic-
tions generated by AlphaFold when needed. This approach alleviates data bottlenecks, making it a powerful
tool for applications like hotspot identification in protein engineering.

2.4 SPURS improves low-N protein fitness prediction
After establishing SPURS’s accuracy in predicting protein stability changes, we explored whether it could

extend to enhancing the prediction of mutation effects on general protein properties beyond stability. Many
laboratory assays have been developed to measure various protein properties like binding affinity, expression,
and solubility, often generally referred to as fitness. However, experimental techniques can only probe a
tiny fraction of the exponentially large sequence space and screen their fitness, making it critical in protein
engineering to develop ML models that generalize well from small-sized (low-N) fitness data to predict for
unseen sequences26,34,63.

Here, we aim to improve low-N fitness prediction models with SPURS. Proteins need to be structurally
stable to perform functions. We thus hypothesized that SPURS’s stability predictions could serve as a strong
prior for fitness prediction. We propose a simple yet effective approach that incorporates SPURS’s ∆∆G
prediction to improve protein fitness prediction. Our approach was inspired by a leading supervised low-N
fitness predictionmodel called ‘Augmentedmodel’26. To predict the fitness of a protein variant, the Augmented
model uses the one-hot-encoded sequence and an evolutionary density score, which is the likelihood ratio
between the mutant and the wild-type sequences from pLMs like ESM or other sequence density models
(e.g., DeepSequence64 or EVE30), to train a Ridge regressor on fitness data. We extended the Augmented
model by incorporating SPURS’s ∆∆G predictions as an additional feature in the regressor (Fig. 4a bottom;
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Supplementary Methods). We referred to our enhanced model as SPURS-augmented ESM if ESM is used as
the sequence density model, or similarly if other models are used.

We compared SPURS-augmentedmodels with a series of Augmentedmodels, including Augmented-{ESM1b21,
EVMutation65, Evotuned UniRep66, DeepSequence64}, on the fitness data of 12 proteins from the original
study26. Using 240 mutants for training and the rest for testing, we found that SPURS-augmented models
outperformed their counterparts for most proteins, with a 7% improvement in Spearman correlation (Fig. 4b).
To further assess performance, we used the ProteinGym benchmark28, which includes 200+ deep mutational
scanning (DMS) datasets of protein fitness, spanning different functions such as enzyme catalytic activity,
binding affinity, stability, and organismal fitness. We excluded the DMS datasets measuring stability, since we
focused on the performance improvements enabled by SPURS for general fitness beyond stability. Across
the resulting 133 DMS datasets, our SPURS-augmented DeepSequence model outperformed Augmented
DeepSequence–the most competitive method reported26–in 123 cases, with an overall 10% improvement
in Spearman correlation (Fig. 4c). Performance improvements were highest in datasets measuring expression
(13.0%) and organismal fitness (11.8%) compared to activity (6.5%) and binding (7.3%) (Fig. 4d). These
improvements were consistent across varying training set size N from 48 to 240 samples, and to 80% of the
total sequences in a DMS dataset (Fig. 4e).

b

Activity Binding Expression

Organismal Fitness

0 10 0

Augmented model (Hsu et al.)

2.5 1.6

SPURS-Augmented 
model (Ours)

0.5

ΔΔG

a
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Supervised
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Onehot

Evolutionary 
Density Score

Fitness

Onehot

Supervised
Model Fitness

d

80%
Training Set

e

0 10 0 2.5 1.6

Figure 4: SPURS-augmented models enhances low-N protein fitness prediction. a, Architecture of the SPURS-
augmented model. Compared to the Augmented models developed by Hsu et al. 26, our approach incorporates SPURS’s
predicted stability change as an additional feature. b, Comparison of SPURS-augmented models (squares) and corre-
sponding Augmented models (circles) on 12 proteins benchmarked in Hsu et al. 26. Aug=Augmented. c, Performances of
SPURS-augmented DeepSequence and Augmented DeepSequence across all Datasets in ProteinGym, excluding stability-
related DMS datasets or those with fewer than 240 mutants. DMS dataset names on x-axis were abbreviated, and a
mapping to their full names defined by ProteinGym is provided in Table S3. d, Relative Spearman correlation improve-
ment of SPURS-augmented DeepSequence compared to Augmented DeepSequence across different fitness categories from
c. e, Low-N prediction performance of SPURS-augmented DeepSequence and Augmented DeepSequence across varying
training set size N . In d-e, the dot, bar, or line plots represent the mean±s.d. of the test performance of 20 repetitions of
model training, with each trained on a randomly sampled training set of 240 mutants using different random seeds.
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In summary, we showed that the SPURS’s ∆∆G predictions provide useful priors for protein fitness pre-
diction, consistently enhancing leading low-N models across various DMS datasets and training data sizes.
We note that our SPURS-augmented model itself is not designed to be a stand-alone state-of-the-art predictor
that outperforms a large volume of existing low-N models that leverage sophisticated deep learning models
(e.g., pLMs)26,34,63. Instead, the evaluation here was designed to show that SPURS offers a simple yet effective
enhancement to already-competitive models.

3 Conclusion
We have presented SPURS, a novel deep learning framework for protein stability prediction. SPURS effec-

tively integrates ESM and ProteinMPNN to predict∆∆G values using a neural network rewiring strategy. Our
experiments showed that SPURS outperforms many state-of-the-art stability predictors across multiple bench-
marks, providing accurate, rapid, scalable, and generalizable stability predictions. We also demonstrated that
SPURS, when combined with a protein language model (pLM), can accurately identify protein functional
sites in an unsupervised manner. Furthermore, SPURS serves as a stability prior, enhancing the accuracy of
existing low-N protein fitness prediction models. Although we showcased its integration with ProteinMPNN
and ESM2, the SPURS framework is versatile and can be adapted to incorporate other inverse folding models
(IFMs)42 and pLMs21,67. While this work focused on single-mutation variants due to the availability of sta-
bility data, future extensions could include predictions for multi-mutation or indel variants by aggregating
individual mutation effects, as done in other methods68,69.

4 Methods

4.1 Representations of input sequence and structure
SPURS takes a protein’s wild-type sequence as input and predicts thermostability change (∆∆G) for all

possible single-mutation variants (Fig. 1). SPURS additionally incorporates the wild-type 3D structure of
the target protein when available. If the experimentally determined structure is not accessible, SPURS uses
AlphaFold4 to predict the structure. In our experiments, experimental structures were used for the proteins
in Fig. 4b and AlphaFold-predicted structures for other experiments, in line with previous studies28,35.

SPURS integrates ProteinMPNN25 as a structure encoder and ESM223 as both a sequence encoder and
mutation effect predictor. ProteinMPNN is a message-passing neural network (MPNN)70,71, a type of graph
neural network, which learns representations from a protein structure. It treats the structure as a graph,
where nodes are backbone atoms (N, Cα, C, O, and Cβ) and edges are formed by connecting each atom to its
48 nearest neighbors. This structure graph is passed through the MPNN consisting of three encoder and three
decoder layers, producing a per-residue embedding in RL×128, where L is the protein length. To improve
representation learning, we replaced the autoregressive decoding in the original ProteinMPNN model with
a masked decoding scheme (Supplementary Methods). We concatenated MPNN’s output embedding with
its internal residue embeddings (RL×128) learned based on the amino acid identity, resulting in a combined
structure features zs ∈ RL×256. ESM2, a 33-layer Transformer72, encodes a protein sequence as a per-
residue embedding ze ∈ RL×1280. Since ESM2 is pre-trained on massive natural sequence data, the output
embeddings ze capture evolutionary patterns of protein language, referred to as evolutionary features.

4.2 Model rewiring to learn structure-enhanced evolutionary features

To inject the structure feature zs ∈ RL×1280 captured by ProteinMPNN into the evolutionary feature
ze ∈ RL×1280 learned by ESM2, SPURS rewires ProteinMPNN into ESM2 to create interactions between
the structure and evolutionary features, resulting in a structure-enhanced evolutionary feature za ∈ RL×1280.
This rewiring mechanism is achieved by a parameter-efficient neural network module called Adapter40, which
has been proven effective for fine-tuning large language models and for protein sequence design39,73. The
Adapter layer can be represented as

za = W 2 · GELU(W 1 · (MultiHead(ze, zs, zs) + ze) + b1) + b2, (1)
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where MultiHead(Q,K, V ) is the multi-head attention layer72 with query embedding Q, key embedding K,
and value embedding V . Here, we used ze as the query and zs as both key and value. The attention output is
added back to ze through a residual connection, followed by a two-layer MLP parameterized by W {1,2} and
b{1,2}, with a GELU activation function74, to produce the structure-enhanced evolutionary features za. By
learning to extract and integrate features from both structural and evolutionary contexts, SPURS is expected
to provide more informed stability prediction with the enhanced feature za. The Adapter is inserted after
the 31st layer of ESM2 (out of 33 layers), with the position determined by a hyperparameter search on the
validation set. After applying the Adapter, za is passed through the remaining layers of ESM2, then projected
from RL×1280 to RL×128 via a linear layer. It is then concatenated with the structure feature zs ∈ RL×256 to
reinforce the structure prior, resulting in the final protein embedding zo ∈ RL×384.

Building on previous findings that fine-tuning only the Adapter layer can achieve comparable performance
to fine-tuning the entire Transformer model39,40, we froze the ESM2 parameters (650million parameters) and
optimized only the Adapter and ProteinMPNN parameters (9.9 million parameters). This approach (Fig. 1)
reduced training cost by 98.5% compared to updating the full SPURSmodel, without compromising prediction
accuracy.

4.3 Efficient stability prediction module
To predict the stability changes, the embedding zo is passed through a multi-layer perceptron (MLP)

g : R384 → R20, with each output dimension corresponds to one of the 20 amino acids (AAs). This MLP,
shared across all L positions in the protein sequence, projects zo ∈ RL×384 to a matrix ϕ = g(zo) ∈ RL×20.
The element of this L × 20 matrix ϕ is indexed by the sequence position and AA type, in which ϕ(i, a)
represents a trainable weight that approximates the thermostability (∆G) when the residue at position i is
mutated to amino acid a.

This matrix ϕ can be used to derive the change in ∆G (i.e., ∆∆G) upon single mutations. Let x =
(x1, . . . , xL) be a protein sequence of length L, where xi ∈ Σ is the i-th AA, and Σ is the set of 20 canonical
AAs. Denote xWT and xMT as the wild-type sequence and its single-mutation variant resulting from the
substitution xWT

i → xMT
i at position i. The stability change of xMT with respect to xWT is defined as

∆∆G(xMT|xWT) = ∆G(xi = xMT
i |xWT)−∆G(xi = xWT

i |xWT). (2)

In analogy, SPURS (denoted as fθ parameterized by θ) predicts the∆∆G for the single-mutation variant xMT,
conditioned on the protein’s wild-type sequence xWT and structure SWT, as following:

fθ(x
MT|xWT,SWT) = ϕ(i, xMT

i )− ϕ(i, xWT
i ). (3)

This formulation enables efficient and scalable ∆∆G prediction: the matrix ϕ only needs to be computed
once in a single forward pass of the neural network, and then can be reused efficiently to derive the ∆∆G for
all single mutations using Eq. 3. In contrast, many existing methods use the mutant sequence as input, which
requires O(L × 20) forward passes to predict ∆∆G for all L × 20 single-mutation variants. By conditioning
on the wild-type sequence and structure, SPURS predicts all single-mutation variants altogether in one pass,
significantly improving prediction efficiency. This approach, also used by some recent studies34,69, is well-
suited for large-scale protein stability analysis.

SPURS was trained using a mean squared error (MSE) loss to minimize the difference between predicted
and experimentally measured ∆∆G values. Each batch contained all mutants corresponding to a single
wild-type protein. The model was trained for a maximum of 200 epochs on an NVIDIA A40 GPU using the
AdamW optimizer75 with a learning rate of 0.0001. A plateau scheduler was used for adaptive learning
rate adjustment, and early stopping was employed to prevent overfitting by terminating training once the
validation performance was not improved for 30 epochs. Hyperparameters such as batch size, learning rate,
and optimizer settings were fine-tuned using the Megascale validation set.
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Supplementary Information

A Supplementary Methods

A.1 Datasets
We used the training, validation, test splits of the Megascale dataset created by Dieckhaus et al.35, which

ensured no sequences sharing > 25% identity across splits. In addition, we collected ten independent test
sets, including Fireprot (HF)17,35, Ssym-direct46, Ssym-inverse46, S6698, S7837, S264814, S46176, S875443,
S434643, S57143. Among these, Fireprot (HF), Ssym-direct, Ssym-inverse and S669 were pre-filtered and
provided by Dieckhaus et al.35, while the remaining six datasets were collected from Xu et al.43. For S8754,
the mutants without known wild-type structures were excluded.

We used the Megascale training and validation sets for model training, and the Megascale test set and
the ten independent test sets for evaluation. Sequences in the training split with more than 25% sequence
similarity to any sequences in the ten independent test sets were removed using MMseqs277 for similarity
calculation. Only single-mutation variants were used for training and evaluation. The statistics of each dataset
are provided in Table S4.

Functional site annotations for Domainome sequences were obtained from the Conserved Domain Database
(CDD) by parsing the National Center for Biotechnology Information (NCBI) protein entry page (e.g., https:
//www.ncbi.nlm.nih.gov/protein/UNIPROT_ID/, where “UNIPROT_ID" is the protein’s Uniprot ID). The
functional sites for the enzyme (Uniprot ID: P00327, PDB ID: 1QLH) were downloaded from the Mecha-
nism and Catalytic Site Atlas (M-CSA; https://www.ebi.ac.uk/thornton-srv/m-csa/). Experimental fit-
ness data and baseline method predictions for the proteins in Fig. 4 were collected from the ProteinGym
study28(https://proteingym.org/).

A.2 Functional sites identification
For a given wild-type sequence, we used SPURS to predict ∆∆G and ESM1v27 to predict the sequence

likelihood change for all of its single-mutation variants. ESM’s sequence likelihood change is defined as the
log-likelihood difference (delta log-likelihood, ∆LL) between the mutant sequences xMT compared with the
wild type xWT:

sESM(xi = xMT
i |xWT) = log pESM(xi = xMT

i |xWT)− log pESM(xi = xWT
i |xWT), (4)

where pESM(xi = xMT
i |xWT) is the ESM-predicted probability of AA xMT

i occurring at position i, given the wild-
type sequence as context27. The score sESM(xMT|xWT) can be interpreted as the relative evolutionary fitness of
mutant xMT, which has been shown to be an effective zero-shot predictor of experimentally measured fitness
data27,28.

Inspired by prior studies modeling the relationship between the free energy changes due to mutations in
protein folding and those in protein binding through a non-linear Boltzmann distribution53,56–59, we applied
a sigmoid function to fit the non-linear relationship between a mutant’s stability change and evolutionary
fitness. Specifically, we defined a stability change score sstab(xi = xMT

i |xWT) as the negative SPURS-predicted
∆∆G (i.e., −fθ(·)) and min-max normalized this score across all single-mutation variants, with the minimum
set to the 0.1% percentile and the maximum to the 99.9% percentile. In this way, stabilizing mutations are
given sstab scores close to 1, and destabilizing mutations are close to 0. Next, we fit a sigmoid function on the
sstab and sESM scores of all single-mutation variants for each protein:

ŝstab(xi = xMT
i |xWT) = σ

(
sESM(xi = xMT

i |xWT)− µ

τ

)
, (5)

where σ(z) = 1/(1+ e−z) is the standard sigmoid function, µ and τ are the learnable parameters that control
the sigmoid curve’s shape, and ŝstab is the sigmoid-fit values of sstab. Following the Domainome study36, to
prioritize fitting the low-stability variants, we weighted variant by SPURS’s ∆∆G prediction:

wMT
i = max(sstab)−min(sstab)− sstab(xi = xMT

i |xWT) (6)
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The residue of the fit is defined as:

ϵ(xi = xMT
i |xWT) = sstab(xi = xMT

i |xWT)− ŝstab(xi = xMT
i |xWT). (7)

A recent study showed that the residuals indicate mutations with larger or smaller effects on fitness than that
can be counted for by stability changes36. We thus define a per-site importance score as the average residuals
across the 20 AA mutations at a site, referred to as function score:

sfunc(i) =
1

20

∑
a∈Σ

ϵ(xi = a|xWT). (8)

As shown in the previous study36 and confirmed by our results (Fig. 3), a larger sfunc(i) value suggests that
site i is more likely a functional site.

A.3 Enhanced protein fitness prediction with SPURS
To demonstrate that SPURS can enhance supervised protein fitness prediction, we used the “Augmented

models," one of the leading low-N fitness prediction methods, developed by Hsu et al.26 as our base model.
To predict the quantitative fitness value of a variant, Augmented models represent the input sequence as a
concatenation of one-hot encoding of its amino acids in the sequence, resulting in a flattened vector with
L× |A| dimensions, where A is the set of possible amino acids. This vector is augmented to a (L× |A|+ 1)-
dimension feature vector by incorporating the delta likelihood score predicted by a protein sequence gen-
erative model, such as a pLM (e.g., sESM in Eq. 4) or other sequence likelihood models (e.g., EVmutation78,
Evotuned UniRep66, DeepSequence64). The augmented vector is then used as the input feature to train a
Ridge regression model to predict the experimental fitness value.

To enhance this approach, we incorporated SPURS’s ∆∆G prediction for input protein into the feature
vector, leading to a (L× |A|+ 2)-dimension vector for the Ridge regression. This modified model is referred
to as SPURS-augmented model. For each DMS dataset, we first set aside 20% randomly sampled mutants as
the test set. From the remaining data, we sampled N mutants as the training set, where N was set to 48, 96,
144, 192, 240, or N = 80% of total sequences in a DMS dataset, following the setup from Hsu et al.26. For
each DMS dataset, we performed 20 repetitions of random training data sampling and model training with
different random seeds, reporting the average prediction performance as the final score.

A.4 Improved ProteinMPNN decoding for structural feature learning
The original ProteinMPNN was designed as an inverse folding model to generate sequences compatible

with a given backbone structure. It employed an autoregressive (sequential) decoding scheme to generate
each amino acid one at a time, conditioning on the input structure and previously decoded amino acids:
p(xi|x<i;S) where x<i = x1 . . . xi−1. While this design aligns with ProteinMPNN’s initial purpose, it inher-
ently limits its ability to fully learn structural features for stability prediction in our work, as the model cannot
access information from the entire sequence during decoding. To overcome this limitation, we adopted a one-
shot decoding strategy, allowing each position in the sequence to access information from all other amino
acids simultaneously: p(xi|x−i;S) where x−i refers to all amino acids except at position i, thereby providing
richer sequence context and improving structure representation learning. To fully leverage the advantages
of this new strategy, we fine-tuned the ProteinMPNN model weights during SPURS’s training, rather than
keeping them fixed, allowing the model to better adapt to the refined decoding scheme and enhancing its
representation learning effectiveness.

A.5 Data availability
We used esm2_t33_650M_UR50D checkpoint of ESM2, v_48_020 checkpoint of ProteinMPNN, and

esm1v_t33_650M_UR90S_1 checkpoint of ESM1v (https://dl.fbaipublicfiles.com/fair-esm/models/
esm1v_t33_650M_UR90S_1.pt). TheMegascale dataset was downloaded from https://zenodo.org/records/
7844779. Megascale split, Fireprot(HF), S669, Ssym-direct, and Ssym-inverse were downloaded from https:
//github.com/Kuhlman-Lab/ThermoMPNN. S783, S2648, S461, S8754, S4346 and S571 were downloaded
from https://github.com/Gonglab-THU/GeoStab. Domainome dataset and the performance of baseline
models were downloaded from https://zenodo.org/records/11260616.
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B Supplementary Tables

Dataset ESM ProteinMPNN FT-ESM FT-ProteinMPNN ThermoMPNN SPURS
Megascale 0.33 0.41 0.64 0.70 0.72 0.74
Fireprot(HF) 0.43 0.55 0.48 0.64 0.64 0.67
Ssym-direct 0.36 0.58 0.43 0.71 0.71 0.76
Ssym-inverse 0.38 0.38 0.28 0.63 0.59 0.68
S669 0.37 0.43 0.46 0.46 0.44 0.50
S461 0.29 0.50 0.65 0.60 0.61 0.66
S783 0.30 0.52 0.59 0.69 0.70 0.71
S8754 0.16 0.24 0.53 0.60 0.61 0.64
S2648 0.18 0.31 0.53 0.65 0.65 0.69
S571 0.27 0.43 0.40 0.42 0.39 0.47
S4346 0.32 0.52 0.46 0.61 0.60 0.64

Table S1: Spearman correlation results for SPURS and baseline models across eleven test sets. The correlations are
computed using all mutations within each dataset collectively. This is the raw data underlying Fig. 2.

Dataset Stability Oracle PROSTATA RASP FoldX Rosetta ThermoNet
Megascale - 0.5935 0.6735 0.5735 0.5635 0.3335

Fireprot (HF) - 0.5535 0.4435 0.5735 0.5235 0.3635

Sym-direct 0.6849 - - - - -
Sym-inverse 0.6849 - - - - -
S669 0.5049 - - - - -

Table S2: Spearman correlation results for additional baseline models across test sets. Performance as reported by
Diaz et al. 49 and Dieckhaus et al. 35 of additional baseline models on test sets. This is the raw data underlying Fig. 2.
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Abbreviation ProteinGym Name Abbreviation ProteinGym Name
A0A1I9GEU1 A0A1I9GEU1_NEIME_Kennouche_2019 A0A192B1T2 A0A192B1T2_9HIV1_Haddox_2018
A0A247D711 A0A247D711_LISMN_Stadelmann_2021 A0A2Z5U3Z0 A0A2Z5U3Z0_9INFA_Doud_2016
A0A2Z5U3Z02 A0A2Z5U3Z0_9INFA_Wu_2014 A4D664 A4D664_9INFA_Soh_2019
A4GRB6 A4GRB6_PSEAI_Chen_2020 AACC1_PSEAI AACC1_PSEAI_Dandage_2018
ACE2_HUMAN ACE2_HUMAN_Chan_2020 ADRB2_HUMAN ADRB2_HUMAN_Jones_2020
ANCSZ_Hobbs ANCSZ_Hobbs_2022 AMIE_PSEAE AMIE_PSEAE_Wrenbeck_2017
BRCA1_HUMAN BRCA1_HUMAN_Findlay_2018 CALM1_HUMAN CALM1_HUMAN_Weile_2017
C6KNH7 C6KNH7_9INFA_Lee_2018 CAS9_STRP1 CAS9_STRP1_Spencer_2017_positive
CASP3_HUMAN CASP3_HUMAN_Roychowdhury_2020 CASP7_HUMAN CASP7_HUMAN_Roychowdhury_2020
CBS_HUMAN CBS_HUMAN_Sun_2020 CD19_HUMAN CD19_HUMAN_Klesmith_2019_FMC_singles
CCDB_ECOLI CCDB_ECOLI_Adkar_2012 CCDB_ECOLI2 CCDB_ECOLI_Tripathi_2016
CCR5_HUMAN CCR5_HUMAN_Gill_2023 CP2C9_HUMAN CP2C9_HUMAN_Amorosi_2021_activity
CP2C9_HUMAN2 CP2C9_HUMAN_Amorosi_2021_abundance D7PM05 D7PM05_CLYGR_Somermeyer_2022
DYR_ECOLI DYR_ECOLI_Thompson_2019 DYR_ECOLI2 DYR_ECOLI_Nguyen_2023
ERBB2_HUMAN ERBB2_HUMAN_Elazar_2016 ENV_HV1B9 ENV_HV1B9_DuenasDecamp_2016
ENV_HV1BR ENV_HV1BR_Haddox_2016 ENVZ_ECOLI ENVZ_ECOLI_Ghose_2023
GFP_AEQVI GFP_AEQVI_Sarkisyan_2016 GAL4_YEAST GAL4_YEAST_Kitzman_2015
GDIA_HUMAN GDIA_HUMAN_Silverstein_2021 HEM3_HUMAN HEM3_HUMAN_Loggerenberg_2023
HMDH_HUMAN HMDH_HUMAN_Jiang_2019 HXK4_HUMAN HXK4_HUMAN_Gersing_2022_activity
HXK4_HUMAN2 HXK4_HUMAN_Gersing_2023_abundance HSP82_YEAST HSP82_YEAST_Mishra_2016
HSP82_YEAST2 HSP82_YEAST_Cote-Hammarlof_2020_growth-H2O2 HSP82_YEAST3 HSP82_YEAST_Flynn_2019
IF1_ECOLI IF1_ECOLI_Kelsic_2016 I6TAH8 I6TAH8_I68A0_Doud_2015
KCNJ2_MOUSE KCNJ2_MOUSE_Coyote-Maestas_2022_surface KCNJ2_MOUSE2 KCNJ2_MOUSE_Coyote-Maestas_2022_function
KCNE1_HUMAN KCNE1_HUMAN_Muhammad_2023_function KCNE1_HUMAN2 KCNE1_HUMAN_Muhammad_2023_expression
KKA2_KLEPN KKA2_KLEPN_Melnikov_2014 LGK_LIPST LGK_LIPST_Klesmith_2015
LYAM1_HUMAN LYAM1_HUMAN_Elazar_2016 MK01_HUMAN MK01_HUMAN_Brenan_2016
MET_HUMAN MET_HUMAN_Estevam_2023 MSH2_HUMAN MSH2_HUMAN_Jia_2020
MTH3_HAEAE MTH3_HAEAE_RockahShmuel_2015 MTHR_HUMAN MTHR_HUMAN_Weile_2021
MLAC_ECOLI MLAC_ECOLI_MacRae_2023 NPC1_HUMAN NPC1_HUMAN_Erwood_2022_HEK293T
P53_HUMAN P53_HUMAN_Kotler_2018 P53_HUMAN2 P53_HUMAN_Giacomelli_2018_WT_Nutlin
P53_HUMAN3 P53_HUMAN_Giacomelli_2018_Null_Etoposide P53_HUMAN4 P53_HUMAN_Giacomelli_2018_Null_Nutlin
PABP_YEAST PABP_YEAST_Melamed_2013 PA_I34A1 PA_I34A1_Wu_2015
PAI1_HUMAN PAI1_HUMAN_Huttinger_2021 PPARG_HUMAN PPARG_HUMAN_Majithia_2016
PPM1D_HUMAN PPM1D_HUMAN_Miller_2022 PRKN_HUMAN PRKN_HUMAN_Clausen_2023
POLG_DEN26 POLG_DEN26_Suphatrakul_2023 Q2N0S5 Q2N0S5_9HIV1_Haddox_2018
Q53Z42 Q53Z42_HUMAN_McShan_2019_expression Q53Z422 Q53Z42_HUMAN_McShan_2019_binding-TAPBPR
Q6WV13 Q6WV13_9MAXI_Somermeyer_2022 Q59976 Q59976_STRSQ_Romero_2015
Q837P4 Q837P4_ENTFA_Meier_2023 Q837P5 Q837P5_ENTFA_Meier_2023
Q8WTC7 Q8WTC7_9CNID_Somermeyer_2022 R1AB_SARS2 R1AB_SARS2_Flynn_2022
RASK_HUMAN RASK_HUMAN_Weng_2022_binding-DARPin_K55 RASK_HUMAN2 RASK_HUMAN_Weng_2022_abundance
REV_HV1H2 REV_HV1H2_Fernandes_2016 RDRP_I33A0 RDRP_I33A0_Li_2023
RNC_ECOLI RNC_ECOLI_Weeks_2023 RL40A_YEAST RL40A_YEAST_Roscoe_2013
RL40A_YEAST2 RL40A_YEAST_Roscoe_2014 RL40A_YEAST3 RL40A_YEAST_Mavor_2016
S22A1_HUMAN S22A1_HUMAN_Yee_2023_abundance S22A1_HUMAN2 S22A1_HUMAN_Yee_2023_activity
SC6A4_HUMAN SC6A4_HUMAN_Young_2021 SPG1_STRSG SPG1_STRSG_Olson_2014
SRC_HUMAN SRC_HUMAN_Ahler_2019 SRC_HUMAN2 SRC_HUMAN_Chakraborty_2023_binding-DAS_25uM
SRC_HUMAN3 SRC_HUMAN_Nguyen_2022 SERC_HUMAN SERC_HUMAN_Xie_2023
SPIKE_SARS2 SPIKE_SARS2_Starr_2020_expression SPIKE_SARS22 SPIKE_SARS2_Starr_2020_binding
SUMO1_HUMAN SUMO1_HUMAN_Weile_2017 TADBP_HUMAN TADBP_HUMAN_Bolognesi_2019
TAT_HV1BR TAT_HV1BR_Fernandes_2016 TPK1_HUMAN TPK1_HUMAN_Weile_2017
TPMT_HUMAN TPMT_HUMAN_Matreyek_2018 TPOR_HUMAN TPOR_HUMAN_Bridgford_2020
TRPC_SACS2 TRPC_SACS2_Chan_2017 TRPC_THEMA TRPC_THEMA_Chan_2017
UBE4B_MOUSE UBE4B_MOUSE_Starita_2013 UBC9_HUMAN UBC9_HUMAN_Weile_2017
VKOR1_HUMAN VKOR1_HUMAN_Chiasson_2020_abundance VKOR1_HUMAN2 VKOR1_HUMAN_Chiasson_2020_activity
YAP1_HUMAN YAP1_HUMAN_Araya_2012

Table S3: The abbreviations for DMS dataset names in the ProteinGym substitution benchmark dataset. For for-
matting purposes, the DMS dataset names used in the ProteinGym dataset are abbreviated in Fig. 4c. Digit suffixes are
used to further distinguish between different DMS studies targeting the same protein.
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Dataset Number of mutants Number of proteins
Megascale (training) 216,919 239
Filtered Megascale (training) 203,789 212
Megascale (validation) 27,481 31
Filtered Megascale (validation) 26,548 29
Megascale (test) 28,312 28
Fireprot (HF) 3,438 89
Ssym-direct 342 15
Ssym-inverse 342 342
S669 669 94
S461 461 48
S783 783 55
S8754 8,236 274
S2648 2,648 131
S4346 3,988 281
S571 571 37
Domainome 536,164 522

Table S4: Statistics of datasets used for model training and evaluation. The number of unique proteins and total
number of mutants across all proteins in each dataset.
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