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Phenotyping of plant growth improves the understanding of complex genetic traits and eventually expedites the development of
modern breeding and intelligent agriculture. In phenotyping, segmentation of 3D point clouds of plant organs such as leaves and
stems contributes to automatic growth monitoring and reflects the extent of stress received by the plant. In this work, we first
proposed the Voxelized Farthest Point Sampling (VEPS), a novel point cloud downsampling strategy, to prepare our plant
dataset for training of deep neural networks. Then, a deep learning network—PSegNet, was specially designed for segmenting
point clouds of several species of plants. The effectiveness of PSegNet originates from three new modules including the
Double-Neighborhood Feature Extraction Block (DNFEB), the Double-Granularity Feature Fusion Module (DGFFM), and the
Attention Module (AM). After training on the plant dataset prepared with VFPS, the network can simultaneously realize the
semantic segmentation and the leaf instance segmentation for three plant species. Comparing to several mainstream networks
such as PointNet++, ASIS, SGPN, and PlantNet, the PSegNet obtained the best segmentation results quantitatively and
qualitatively. In semantic segmentation, PSegNet achieved 95.23%, 93.85%, 94.52%, and 89.90% for the mean Prec, Rec, FI,
and IoU, respectively. In instance segmentation, PSegNet achieved 88.13%, 79.28%, 83.35%, and 89.54% for the mPrec, mRec,

mCov, and mWCov, respectively.

1. Introduction

Plant phenotyping is an emerging science that connects
genetics with plant physiology, ecology, and agriculture [1].
It studies a set of indicators formed by the dynamic interac-
tion between genes and the growth environment to intui-
tively reflect the growth of plants [2]. The main purpose of
the research is to accurately analyze the relationship between
phenotypes and genotypes by means of computerized digiti-
zation, to improve the understanding of complex genetic
traits, and eventually expedite the development of modern
breeding and precision agriculture [3-5]. Generally speak-
ing, the analysis of plant phenotypes mainly focuses on
organs, including the aspects such as leaf characteristics,
stem characteristics, fruit traits, and root morphology. As
the organ with the largest surface area, leaves serve for the
main place of photosynthesis and respiration [6]. Therefore,

the leaf area, leaf length, width, and the leaf inclination are
among the most critical phenotypic factors [7]. In addition
to leaves, the stem system not only forms the skeleton of
the plant structure but also spatially connects all other
organs such as leaves, flowers, and fruits. The phenotyping
of the stems can reflect the extent of stress received by the
plant.

The key to plant phenotyping is to segment plant organs
efficiently and correctly. Since the 1990s, a flow of researches
have emerged upon the task of plant organ segmentation,
especially the leaf segmentation for disease recognition.
The 2D image-based phenotyping is usually based on tradi-
tional image processing, machine learning, and pattern
recognition algorithms, such as the threshold-based segmen-
tation [8, 9], edge detection [10, 11], region growing [12, 13],
clustering [14, 15], and their combinations and extensions
[16-20]. In recent vyears, deep learning based on
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convolutional neural networks (CNNs) has reached state of
the art on image classification and image segmentation
[21-23]. References [24-29] applied image deep learning
networks to segment fruits and leaves from plant images.
However, the 2D phenotyping methods usually deal with
simple rosette plants (e.g., Arabidopsis or tobacco) or several
monocotyledonous plants with fewer leaves (e.g., wheat and
maize). The main reason is that a 2D image is taken from
only one viewing angle, missing the depth information.
And the occlusion and overlapping between leaves in the
canopy bring huge challenges to the segmentation algo-
rithms based on 2D images. Moreover, images cannot fully
describe the complete spatial distribution of the plant struc-
ture, resulting in a less reliable statistical significance of the
measured phenotypic traits.

Compared with images, 3D models not only contain the
information of color and texture but can also carry the most
important information—the depth. Depth directly over-
comes the problems caused by occlusion and overlapping,
which are becoming the basis for high-precision phenotypic
measurement. In recent years, with the development of low-
cost and high-precision 3D imaging technology, plant phe-
notyping methods based on depth images or point clouds
are quickly emerging. As the 3D imaging technique with
the highest precision, Light Detection and Ranging (Lidar)
is now widely used for 3D reconstruction and phenotyping
of tall trees [30, 31], maize [32, 33], cotton [34], and several
other cash crops [35-37]. 3D sensors based on Structured
Light and Time-of-Flight (ToF) have also become two
important means for 3D phenotyping on plants due to their
remarkable real-time performances [38, 39]. References [40,
41] reconstructed and analyzed a variety of greenhouse
crops and cash crops using binocular stereo vision. Refer-
ences [42, 43] carried out 3D reconstruction and phenotypic
analysis on crops by using the multiview stereo (MVS) tech-
nique. Miao et al. designed a toolkit—Label3DMaize [44],
for annotating 3D point cloud data of maize shoots; the
toolkit facilitates the preparation of manually labeled maize
3D data for training and testing on machine learning
models.

Despite the precise 3D data, how to effectively separate
plant individuals from the cultivating block and how to fur-
ther divide each plant into organs to calculate phenotypic
parameters are two difficult tasks in phenotyping. Unsuper-
vised leaf segmentation on 3D point clouds has already
begun to attract interests. Paproki et al. [45] improved the
point cloud mesh segmentation algorithm and proposed a
hybrid segmentation model that could adapt to the morpho-
logical differences among different individuals of cotton, and
they achieved the separation of leaves from stems. Duan
et al. [46] used the octree algorithm to divide the plant point
cloud into small parts and then manually merged each part
into a single organ according to their spatial topological rela-
tionships. Itakura and Hosoi [47] utilized the projection
method and the attribute extension for leaf segmentation;
they also tested the segmentation accuracy of seedlings of 6
types of plants. Su et al. [48] and Li et al. [49] used the Dif-
ference of Normal (DoN) [50] operator to segment leaves in
point clouds of magnolia and maize, respectively. In addi-
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tion, Zermas et al. [51] proposed to use node information
in the 3D skeleton of plant to segment the overlapping maize
leaves. The abovementioned point cloud segmentation and
phenotyping techniques still lack generality on segmentation
of different crop species with diverse leaf shapes and canopy
structures. Meanwhile, their applications are sometimes
restricted by the complicated parameter tuning in segmenta-
tion. Pan et al. [52] and Chebrolu et al. [53] used spatiotem-
poral matching to associate the organs in growth for
phenotypic growth tracking.

Designing a general 3D segmentation method for multi-
ple plant species at different growth stages is the current
frontier of 3D plant phenotyping. With the recent break-
through in artificial intelligence, deep learning-based seg-
mentation methods for unorganized and uneven point
clouds are becoming popular across both academics and
the agricultural industry. Previous studies mainly focused
on the multiview CNNs [54-58] that understand the 3D
data by strengthening the connection between 2D and 3D
by CNNs on images. However, two issues exist in multiview
CNNs, ie., it is hard to determine the angle and quantity of
projection from a point cloud to a 2D image, and the repro-
jection from the segmented 2D shapes back to the 3D space
is not easy. Some studies resorted to a generalization from
2D CNNs to the voxel-based 3D CNNs [59-63]. In 3D
CNN, the point cloud is first divided into a large number
of voxels and 3D convolutions are used to achieve direct seg-
mentation on the point cloud. However, the computational
expense of this method is high. PointNet [64] and Point-
Net++ [65] operate directly on points and are able to simul-
taneously conduct classification and semantic segmentation
at point-level. Since then, improvements on the PointNet-
like framework were made to enhance the network perfor-
mance mainly by optimizing and/or redesigning the feature
extraction modules [66]. Masuda [67] applied PointNet++
to the semantic segmentation of tomato plants in green-
house and further estimated the leaf area index. Li et al.
[68] designed a PointNet-like network to conduct semantic
and instance segmentation on maize 3D data. Similarity
group proposal network (SGPN) [69] devised a similarity
matrix and group proposals to realize simultaneous instance
segmentation and semantic segmentation of point clouds.
Graph neural networks (GNNs) [70-74] obtained informa-
tion between adjacent nodes by converting the point cloud
into a connective graph or a polygon mesh.

So far, deep learning has becoming a promising solution
for high-precision organ segmentation and phenotypic trait
analysis of plant point clouds. However, several problems
are yet to be solved—(i) the lack of a standardized downsam-
pling strategy for point clouds that are specially prepared for
deep learning; (ii) the network design for multifunctional
point cloud segmentation is challenging—e.g., a network is
hard to keep balance between the organ semantic segmenta-
tion task and the instance segmentation task; and (iii) the
lack of generalization ability among different species; e.g., a
good segmentation network for monocotyledonous plants
may not work properly on dicotyledonous plants.

To address the above challenges, a deep learning net-
work—PSegNet, was designed to simultaneously conduct
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plant organ semantic segmentation and leaf instance seg-
mentation on a manually labeled point cloud dataset of mul-
tiple species. PSegNet obtained state-of-the-art results on
two kinds of dicotyledonous plants (tobacco and tomato)
and a monocotyledonous plant—sorghum. The detailed
contributions are stated as follows:

(i) We proposed Voxelized Farthest Point Sampling
(VEPS), a novel point cloud downsampling strategy
that possesses advantages from both Voxelization-
based Sampling (VBS) and Farthest Point Sampling
(FPS). VEPS is suitable to be used to prepare diversi-
fied dataset for training of deep neural networks
because it can easily augment point cloud data by
the random initialization in sampling. Ablation
experiments “A6” showed that the proposed VFPS
strategy significantly improved the accuracies of
organ semantic segmentation and instance segmen-
tation for several varieties of crops by contrasting
with the traditional FPS

(ii) A deep learning network—PSegNet, was specially
designed for segmenting point clouds of several spe-
cies of plants. After training on the dataset prepared
with VFPS, the network can simultaneously realize
the semantic segmentation of the stem class and
the leaf class and the instance segmentation for each
single leaf. Comparing to several mainstream deep
learning networks such as PointNet++ [65], ASIS
[75], SGPN [69], and PlantNet [76], our PSegNet
obtained the best segmentation results qualitatively
and quantitatively. The effectiveness of the modules
in the architecture of PSegNet, including the
Double-Neighborhood Feature Extraction Block
(DNEFEB), the Double-Granularity Feature Fusion
Module (DGFFM), and the Attention Module
(AM), was verified separately by the ablation study

The notations and nomenclatures used in this paper are
summarized in Table 1. The rest of the paper is arranged as
follows. Materials and related methods are explained in Sec-
tion 2. Comparative experiments and results are given in
Section 3. Some further discussions and analysis are pro-
vided in Section 4. The conclusion is drawn in the last
section.

2. Materials and Methods

2.1. Point Cloud Sampling. There are usually tens of thou-
sands of points in a high-precision point cloud, and the pro-
cessing of such complicated point clouds will inevitably
incur a huge computation burden. Moreover, the majority
of modern neural networks for 3D learning only accept stan-
dardized input point clouds, i.e., a fixed number of points for
all point clouds. Therefore, it is necessary to carry out sam-
pling before substantial processing and modeling. There are
two commonly used methods for point cloud downsam-
pling—the Farthest Point Sampling (FPS) [65] and the
Voxel-based Sampling (VBS) [77]. FPS first takes a point
from the original point cloud P to form a point set A, and

TaBLE 1: Notations and nomenclatures.

FPS Farthest Point Sampling

VBS Voxelization-based Sampling

VFPS Voxelized Farthest Point Sampling
Double-Neighborhood Feature

DNEEB Extrfction Block

DGEFM Double—Gram;\l/z[iéic;zll;eature Fusion

AM Attention Module

CA Channel attention

SA Spatial attention

DHL Double-hinge Loss

GT Ground truth

MLP Multilayer perceptron

ReLU Rectified linear unit activation

PE Position encoding

EC EdgeConv operation

AP Attentive pooling

F. Fg Feature maps after decoding

Foe Aggregated feature map after

DGFFM

L, Lern> Ling> Lonps Lo L Lreg The loss functions

C The number of semantic classes

N The number of points in a point

cloud

pi A point in XYZ space

f,r, h, £, fe, A point vector in feature space

K The parameter of KNN

o, B,y,6,,8, Parameters for loss functions

u Feature concatenation

max [+] The maximu;lp\lrilsue across the

IoUle, ¢] IoU of the two entities

MLP[| MLP operation with shared

parameters

each time then traverses all points of the set P\ A to find
the farthest point p from A. Finally, the point p is taken
out from P\ A into A, and the iteration ends till the point
set A has reached the number limit. This method can main-
tain the local density of the point cloud after sampling with a
moderate computational cost. The disadvantage of FPS is
that it may easily lose details of areas that are already sparse
and small. VBS constructs voxels in the 3D space of the
point cloud, and the length, width, and height of the voxel
are defined as three voxel parameters [, ly, I, respectively.
VBS uses the center of gravity of each voxel to replace all
original points in that voxel to achieve downsampling.
Despite the high processing speed, there are two main disad-
vantages of VBS—(i) the three parameters for the scale of
voxelization need to be adjusted according to the density
and the size of the point cloud, making the number of points



after VBS sampling to be uncertain. Therefore, VBS cannot
be directly adopted on the batch processing of a large point
cloud dataset. And (ii) VBS creates evenly distributed point
clouds, which is unfavorable for the training of deep neural
networks whose performances rely on the diversity of the
data distribution.

After studying the strengths and weaknesses of FPS and
VBS, a new point cloud downsampling strategy— Voxelized
Farthest Point Sampling (VEPS), is proposed. The VFPS
strategy can be divided into three steps shown as Figure 1.
The first step is to determine N, the number of down-
sampled points. The second step is to adjust the voxel
parameters to conduct VBS on the original point cloud to
generate a point cloud having slightly more points than N.
The last step is to apply FPS on this temporary voxelized
point cloud, and downsample is a result with N points. In
all experiments of this paper, we fix N at 4096. VEPS pos-
sesses advantages from both VBS and FPS; it can not only
generate standardized points but can also easily generate
diversified samples from the same original point cloud by
starting FPS from a randomly chosen point, which is highly
suitable to be used as a data augmentation measure for the
training of deep learning networks.

2.2. Network Architecture. The overall architecture of PSeg-
Net is shown in Figure 2. The end-to-end network is mainly
composed of three parts. The front part has a typical
encoder-like structure that is frequently observed in deep
neural networks, and the front part contains four consecu-
tive Double-Neighborhood Feature Extraction Blocks
(DNFEBs) for feature calculation. Before each DNFEB, the
feature space is downsampled to reduce the number of
points and to condense the features. The design of the mid-
dle part of the network is inspired from Deep FusionNet
[78]. We name this part as Double-Granularity Feature
Fusion Module (DGFFM), which first executes two parallel
decoders, in which the upper decoder is a coarse-grained
decoder, while the lower decoder has more layers, represent-
ing a fine-grained process. At the end of DGFFM, concate-
nation operation and convolutions are carried out to
realize feature fusion. The third part of the network has a
double-flow structure. The feature flow of the upper branch
and the feature flow of the lower branch correspond to the
instance segmentation task and semantic segmentation task,
respectively. Features on each flow of the third part pass
through the Attention Module (AM) that contains a spatial
attention and a channel attention operation, so that the
two flows can aggregate desirable semantic information
and instance information, respectively. In the output part
of PSegNet, the semantic flow obtains the predicted seman-
tic label of each point through the argmax operation on the
last feature layer to complete the semantic segmentation
task. The instance flow performs MeanShift clustering [79]
on the last feature layer to realize the instance segmentation.

2.3. Double-Neighborhood Feature Extraction Block. DNFEB
was designed to improve the feature extraction in the front
part of PSegNet. The front part contains 4 consecutive
DNFEBs. And in this encoder-like front part, DNFEB fol-
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373,397 voxels points
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Voxelization FPS
Down-sampling

FIGURE 1: Schematic diagram of the VFPS strategy. The leftmost
point cloud (a) is an original tobacco point cloud that contains a
total of 373,397 points. First, we set a number object for
downsampled point cloud, e.g., N =4096. Then, the VBS with
parameters [, =1, =1, =3cm is applied to the original point cloud
to form a point cloud (b) containing 10955 voxels. Each voxel is
represented by the center of gravity of points in the voxel, and a
voxel example is enlarged in (c). At last, FPS is applied on this
temporary voxelized point cloud to generate the final result (d)
with an exact 4096 points.

lows immediately after a downsampling of the feature space
each time. DNFEB has two characteristics: (i) it pays atten-
tion to the extraction of both high-level and low-level fea-
tures at the same time; (ii) by continuously aggregating the
neighborhood information in the feature space, the encoder
can realize comprehensive information extraction from the
local scale to the global one. The detailed workflow of
DNEFEB is shown in Figure 3, which contains two types of
K-nearest neighborhood calculations and three similar
stages in a row.

The lower part of Figure 3 enlarges the detailed calcu-
lation steps of the stage 1 of DNFEB. Take the i-th point
as example, its original XYZ space coordinate (the low-
level feature space) is represented by p,, and the feature
vector of its current feature space is f; The K-nearest
neighbors searched in the initial XYZ space are defined
as a set {p;, ' Pix}> while the K-nearest neighbors in
the current feature space are denoted by {f;;,---,f;x}. The
low-level neighborhood features are calculated by the Posi-
tion Encoding (PE) operation to obtain the encoded low-
level neighborhood feature set {r;,---,r;}, in which the
feature vector is calculated by (1):

re=p; (e J@i—p) J PPl (1)

In Equation (1), the operator U represents vector con-
catenation, and |-||, represents the L2-norm. Therefore,
ry is a 10-dimensional low-level vector, representing the
position information of the k-th point near p;. The neigh-
borhood of the current feature space is calculated by the
EdgeConv (EC) [74] operation to obtain a high-level
neighborhood feature set {h,,---,h;}. The calculation
method of h; in the set is given in (2).

hy = MLP £ | (£~ )], @

where MLP[-] represents a multilayer perception operation
with shared parameters.

The encoded low-level neighborhood {r;,---,r;} is
concatenated with the high-level neighborhood {h;,, ---, h; },
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FIGURE 2: The architecture of PSegNet. The network is mainly composed of three parts. The front part has a typical encoder-like structure in
deep learning. Four consecutive Double-Neighborhood Feature Extraction Blocks are applied in the front part computation, and the feature
space is downsampled before each DNFEB to condense the features, respectively. The middle part is the Double-Granularity Feature Fusion
Module, which fuses the outputs of two decoders with different feature granularity to obtain the mixed feature Fpgp. In the third part of
PSegNet, the features flow into two directions that, respectively, correspond to two tasks—instance segmentation and semantic
segmentation. Spatial attention and channel attention mechanisms are sequentially applied on each feature flow.
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FI1GURE 3: Demonstration of DNFEB The feature dimensions in DNFEB vary with their positions in the PSegNet, and in this figure, we only
display feature dimensions of the 4" DNFEB. A standard DNFEB contains three similar stages. The calculation process of stage 1 is enlarged
in the lower part of the figure. On stage 1, for any point 7 in the feature space, we find its K-nearest neighbors in the initial XYZ space and in
the current feature space, respectively. Secondly, position encoding is carried out for K-nearest neighbors in XYZ space to form a low-level
feature encoding of the local region. At the same time, EdgeConv is carried out for the K-nearest neighbors in the current feature space to
form a high-level feature representation of the local region. Finally, after concatenating the low-level and high-level local features, the new
feature vector of the current point i is output after the calculation of the Attentive Pooling operation.

and the combination then aggregates into a single feature
vector f; by the Attentive Pooling (AP) operation. The calcu-
lation process can be represented by the following equation.

f/= MLP i wy - (hik U r,-k) , (3)
k=1

in which the weight set {w; |k =1, ---K} is obtained by Soft-
maxing on the concatenated features of the low-level and
high-level feature sets. The following addition of all features

in the neighborhood realizes information aggregation. Equa-
tion (3) can be regarded as a generalized form of average
pooling. Due to the introduction of attention mechanism,
its effect is better than ordinary average pooling, which has
become a standard operation in deep learning. After the cal-
culation of the AP module, the vector f; becomes the output
of the i point on stage 1. After all points have completed
the AP process on stage 1, the set {f,---, fy,} will become
the input of stage 2 of DNFEB to continue the calculation.
Though the three stages seem similar, it should be noted that
several tiny differences exist among them. For example, the



output of stage 1 is concatenated with the output of stage 2;
however, the output of stage 2 is directly added with stage 3
in order to reduce the amount of parameters. And, there is
also no skip connection on stage 1.

2.4. Double-Granularity Feature Fusion Module. Deep
FusionNet [78] believes that both the coarse-grained voxel-
level features and the fine-grained point-level features are
of great significance to feature learning. This network
strengthens its feature extraction ability after fusing the fea-
tures under two different granularities. Inspired by Deep
FusionNet, we design a Double-Granularity Feature Fusion
Module (DGFFM) in the middle part of our PSegNet. In
DGFFM (shown in Figure 2), two parallel decoders are cre-
ated to construct feature layers with two different learning
granularities, in which the upper decoder with less layers
simulates the coarse-grained learning process, while the
lower decoder with more layers simulates the fine-grained
learning. After obtaining the coarse-grained feature map F.
and the fine-grained feature map Fy, the module combines

them through operations such as average pooling and fea-
ture concatenation and finally obtains the aggregated feature
Fpge after 1D convolution with ReLU. The output of
DGFFM can help to improve the performances of the
semantic and instance segmentation tasks that follow.

2.5. Attention Module and Output Processing. Attention has
become a promising research direction in deep learning
field, and although it has been widely applied to 2D image
processing [80-84], the use of attention mechanism on 3D
point cloud learning networks is still in its infancy. Inspired
by [81], we design an Attention Module (AM) that contains
two subattention mechanisms, i.e., the spatial attention (SA)
and the channel attention (CA). Spatial attention (SA) tends
to highlight points that can better express meaningful fea-
tures among all input points and gives higher weights to
those more important feature vectors for strengthening the
role of key points in the point cloud representation. Channel
attention (CA) tends to focus on several dimensions (chan-
nels) of the feature vector that encode more interesting
information. The importance of each feature channel is
automatically judged via pooling along the feature channel
direction, and then, each channel is given a different weight
according to its importance to strengthen the important fea-
ture dimensions and meanwhile suppress the unimportant
dimensions.

In the structure of AM, the feature calculation is divided
into two parallel ways, the feature flow of the upper branch
performs the instance segmentation task, while the feature
flow of the lower branch corresponds to the semantic seg-
mentation task. Both feature flows first pass the calculation
of SA and then the CA. Although the calculation measures
are the same for the two flows, the parameters of parallel
convolutions are not shared. In SA, we create a vector of
4096 x 1 by carrying out average pooling on the output fea-
ture 4096 x 128 from DGFFM and then conduct sigmoid
function on the vector to obtain the spatial weight vector.
By multiplying the weight vector with the DGFFM feature,
the feature strengthened by SA is obtained, and its size is
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4096 x 128. In the following CA, we obtain two vectors with
size 1 x 128 by averaging pooling and maxing pooling along
the channel direction of the SA output, respectively. And
then, two vectors are added together after 1D convolutions.
Finally, we use sigmoid function to obtain a 1 x 128 channel
weight vector. By multiplying the weight vector with the
pooled feature vector, we obtain the strengthened feature
vector of the SA mechanism, which is also the output of a
flow of the AM module.

For the point cloud instance segmentation task, the
instance flow outputs a 4096 x 5 feature map after AM cal-
culation with an extra 1D convolution. Then, the MeanShift
clustering algorithm [79] is used on the feature map to gen-
erate the instance segmentation result. During training, the
loss of instance segmentation is calculated immediately after
clustering. For the semantic segmentation task, by using an
extra 1D convolution and an Argmax operation on the
semantic flow output feature of AM, we obtain a result of
4096 x C one-hot encoded feature, in which C represents
the number of semantic classes. The loss of semantic seg-
mentation is calculated here.

2.6. Loss Functions. The loss functions play an indispensable
role in the training of deep learning networks, and our PSeg-
Net uses carefully designed different loss functions to super-
vise different tasks at the same time. In the semantic
segmentation task, we use the standard cross-entropy loss
function L, which is defined as follows:

t\‘
|
|
M=
Mo

Il
—
-

Il
—

/(i) log x,(i), (4)

sem

in which x;(i) is the predicted probability that the current
point p; belongs to class j, and x]'-(i) is the one-hot encoding
of the true semantic class of the point. If the point truly
belongs to the category j, the value of x}(i) is 1, otherwise
0. In the instance segmentation task, the number of
instances in an input point cloud is variable. Therefore, we
use a comprehensive loss function that includes three
weighted sublosses under an uncertain number of instances
to supervise the training. The equation for the instance loss
L, is given as follows:

Lins:a'Ls+:8'Ld+Y'Lreg' (5)

The weights of sublosses L, L, Ly, in the total loss are

represented by a, f3, y, respectively. L, is devised to make it
easier for the points of the same instance label to gather
together. The function L, is to make the points of different
instance labels to repel each other in clustering to facilitate
accurate instance segmentation. L, is the regularization loss
which is used to make all cluster centers close to the origin of
the feature space and help to form an effective and regular
feature boundary for the embedding. The equations of L,

Ly Ly are given as follows:
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where I represents the number of instances in the current
point cloud batch being processed and N; represents the
number of points contained in the i-th instance; c; repre-
sents the center of the points belonging to the i-th instance
in the current feature space, and f; represents the feature

vector of the point j in the current feature space. The param-
eter §, defines a boundary threshold that allows the aggrega-
tion of points of the same instance, and 28, represents the
nearest feature distance threshold of two different instances.
In addition, in the output feature Fp,p of the DGFFM, in
order to help integrating coarse-grained features and fine-
grained features, it is also necessary to impose a supervision
on this midlevel feature space. The purpose is to constrain
the features belonging to the same instance to come closer
in advance, while the features belonging to different
instances to drift apart. Reference [69] proposed a point-
level Double-hinge Loss (DHL) Ly, , which considered the
constraints of the semantic task and the instance task on
the middle-level features of the network. We directly trans-
planted DHL to the feature map Fpqp; therefore, the total
loss function of PSegNet can be represented as follows:
L= Lsem + Lins + LDHL' (9)
2.7. Evaluation Measures. In order to verify the semantic
segmentation performance of PSegNet on the plant point
cloud, we calculate four quantitative measures—Prec, Rec,
F1, and Intersection over Union (IoU) for each semantic
class, respectively. For all the four semantic measures (repre-
sented in percentage), the higher means the better. The
measure Prec means precision, and it is the proportion of
the points correctly classified in this semantic class to all
the points predicted by the network. The notation Rec
means recall, which reflects the proportion of the points cor-
rectly classified in this semantic class to the total points of
this class in the ground truth. IoU reflects the degree of over-
lapping between the predicted areas of each semantic cate-
gory and the corresponding real areas, and Fl is a
comprehensive indicator calculated as the harmonic average
of Prec and Rec. The equations of the four quantitative mea-
sures are given in the first half of Table 2, in which TP rep-
resents the number of true positive points of the current
semantic category, and FP represents the false positive
points of the current category, while FN stands for the false
negative points.
The measures—mCov, mWCov, mPrec, and mRec, were
used to evaluate the results of instance segmentation, and the

TasLE 2: The quantitative measures used in this work.

Measures Equations
p TP
r _
“ TP + FP
TP
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Semantic segmentation TP+ EN
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equations of the four measures are defined in the second
half of Table 2, respectively. In Table 2, IG,, represents
the ground truth point set of the m-th instance under the
same semantic class; IP, represents the predicted point
set of the n-th instance under the same semantic class.
max [-] represents the maximum value of all terms evalu-
ated. The binary function IoU[, -], which accepts two
inputs as the point set of ground truth and the predicted
point set from the network, is calculated exactly as the
semantic IoU equation. The parameter C is the number
of semantic classes for calculation of the Mean Precision
(mPrec) and the Mean Recall (mRec). Because the dataset
has three plant species, the semantic classes include the
stem class and the leaf class of each plant species, which
fixes C at 6. The notation |TP(sem=1i)| represents the
number of predicted instances whose IoU is above 0.5
in the semantic class i. The notation |IP(sem =1)| repre-
sents the total predicted number of instances in semantic
class i. |IG(sem =1i)| represents the number of instances of
the ground truth in semantic class i.

3. Experiments and Results

3.1. Data Preparation and Training Details. The plant point
cloud data used in this work originates from a laser-scanned
point cloud dataset in [85, 86]. The dataset recorded three
kinds of crops including tomato, tobacco, and sorghum
growing in several different environments. Each crop was
scanned multiple times during 30 days. We show the three
crops of different growth periods in Figure 4. The scanning
error of the dataset is controlled within +25um. The dataset
contains a total of 546 individual point clouds including 312
tomato point clouds, 105 tobacco point clouds, and 129 sor-
ghum point clouds. The largest point cloud contains more
than 100000 points, and the smallest has about 10000 points.
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F1GURrk 5: The changes of losses in the training of PSegNet. From (a-d) are the total loss L, the DHL Lpy; imposed on the midlevel feature

layer after DGFMM, the semantic loss L, and the instance loss L;

mns

. The x-axis of all plots means the number of trained samples, and the

y-axis is the loss value. Given 3640 training samples and the training batch size at 8, we have 455 samples to be trained in each epoch. When
the training stops at 190 epochs, the x-axis ends at 455 % 190 = 86450.

We applied Semantic Segmentation Editor (SSE) [87] to
annotate leaf and stem for semantic labels and the instance
label for each single leaf. To be more specific, for semantic
annotation, we classify the stem system and leaves of differ-
ent species as different semantic categories. Therefore, in our
dataset, there are six semantic categories with C =6.

In order to prepare the data for network training and
testing, the dataset should be divided and extended. Firstly,
we divide the original dataset into the training set and test
set under the ratio 2:1. The original dataset contains 546

point clouds, and for each point cloud, we used the VFPS
method introduced in Section 2.1 to downsample it to a
point cloud of N = 4096, and we repeated the downsampling
for 10 times with randomly selected initial point in the last
step of VEPS to augment the dataset. The randomness of
data augmentation comes from the difference on the initial
iteration point of FPS after voxelization in VEPS. Therefore,
each point cloud in the dataset contains 4096 points after
augmentation, and for the augmented 10 clouds generated
from the same original point cloud, despite their similarity
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FIGURE 6: Qualitative demonstration of our PSegNet for semantic segmentation. (a) Semantic segmentation results of four different tobacco
individuals, respectively. (b) Semantic segmentation results of four different tomato plants, respectively. (c) Semantic segmentation results of
four different sorghum plants, respectively. Each segmented crop point cloud from PSegNet is compared with its corresponding ground
truth (Sem.GT). The meanings of different rendered colors are shown at the bottom of the figure. Some of the areas are enlarged to give

more details.

on appearance, the distributions of local points are quite dif-
ferent. Finally, we form the training set with 3640 point
clouds and the test set with 1820 point clouds.

All the annotation work, training, testing, and the com-
parative experiments were conducted on a server under the
Ubuntu 20.4 operating system. Our hardware platform con-
tains an AMD RYZEN 2950x CPU that has 16 cores and 32
threads, a memory of 128 GB, and a GPU of NVIDIA RTX
2080Ti. The deep learning framework is TensorFlow
1.13.1. During training, batch size is fixed to 8, and the initial
learning rate is set to 0.002; afterwards, the learning rate is
reduced by 30% after 10 epochs per iteration. Adam solver
is used to optimize our network, and Momentum is set to
0.9. For PSegNet and other methods compared, we end
training at 190 epochs and record the model that has the
minimum loss in testing as the selected model. In the
encoder part of PSegNet, we set k=16 in the first two
DNFEBs and k =8 for the last two DNFEBs for the KNN
search range. The reasons of the KNN configuration are
twofold. First, a large K brings a high calculation burden;
therefore, K should not be a large number. Second, the num-
ber of features shrinks in the encoder part of PSegNet (from
4096 to 128) for encoding point cloud information effi-
ciently. Thereby, the search range of the local KNN should
also be declining with the shrinking features to keep the
receptive field of the network stable. When building L, and

TaBLE 3: The quantitative measures of PSegNet on semantic
segmentation.

Tobacco Tomato Sorghum
Stem Leaf Stem Leaf Stem Leaf
Prec (%) 92.71 96.76 96.36 97.98 89.54 98.04
Rec (%) 87.42 97.73 95.02 98.59 85.69 98.63
F1 (%) 89.99 97.24 95.68 98.29 87.57 98.33
IoU (%) 81.79 94.63 91.73 96.63 77.89 96.72

Ly, we set §,=0.5, and §,;=1.5. We also fixed a==1
and y=0.001 throughout this study. We recoded the
changes of losses of PSegNet during training; the values of
the total loss and the three sublosses are displayed in
Figure 5. All losses have shown an evident decline at first
and a quick convergence.

3.2. Semantic Segmentation Results. Figure 6 presents quali-
tative semantic results of PSegNet on three crop species. In
order to reveal the real performance, we especially show test
samples from different growth environments and stages.
From Figure 6, we can see good segmentation results on all
three crops. PSegNet seems to be good at determining the
boundary between the stem and the leaves, because only rare
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Ficure 7: The qualitative demonstration of the instance segmentation by PSegNet. (a) Instance segmentation results of four different
tobacco individuals, respectively. (b) Instance segmentation results of four different tomato individuals, respectively. (c) Instance
segmentation results of four different sorghum individuals, respectively. Each segmented crop point cloud from PSegNet is compared
with its corresponding ground truth (Ins.GT). Note that the different rendered colors in this figure are just for better visual separation of
different instances, and it has no connection with the instance labels. Therefore, despite successful segmentation, the same leaf instance
in the ground truth and the network result may be rendered with two different colors. Some of the areas are enlarged to give more details.

false segmentations can be observed around the boundary
between the two semantic classes.

Table 3 presents the quantitative semantic segmentation
results of PSegNet for the total test set, on which most mea-
sures have reached above 85.0%, showing satisfactory
semantic segmentation performance. From the measures
listed in Table 3, it is not hard to observe that the leaf seg-
mentation results of PSegNet are better than the stem
results, and this is because the point number of stems is
much fewer than leaves in the training data. Across the three
species, tomato has the best semantic segmentation result,
and the possible reason is that the tomato point clouds
account for the largest proportion in the total training data-
set. This imbalance training can be improved by adding
more data from the two other species.

3.3. Instance Segmentation Results. Figure 7 shows the qual-
itative evaluation of the instance results of three crops by
PSegNet, and 12 representative point clouds from multiple
growth stages are shown in Figure 7, respectively. Satisfac-
tory segmentation of leaf instances can be observed on all

TaBLE 4: The quantitative measures of PSegNet on instance
segmentation.

Tobacco leaf ~ Tomato leaf  Sorghum leaf

mPrec (%) 87.80 89.92 86.68
mRec (%) 77.09 78.62 82.13
mCov (%) 80.88 84.89 84.27
mWCov (%) 90.72 90.45 87.46

three species in Figure 7. The three species differ heavily in
leaf structure. Tobacco has big and broad leaves, and tomato
plant has a compound leaf structure which contains at least
one big leaflet and two small leaflets, while sorghum has long
and slender leaves. PSegNet shows good leaf instance seg-
mentation performance on all three types of leaves.

Table 4 lists the quantitative measures of leaf instance
segmentation by PSegNet for the test set. Most of measures
are above 80.0%, representing satisfactory instance segmen-
tation performance.
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TaBLE 5: Quantitative comparison of semantic segmentation performances of six networks including PSegNet.
Tobacco Tomato Sorghum
Methods Stem Leaf Stem Leaf Stem ’ Leaf Mean
PointNet 77.15 94.02 93.99 96.71 77.87 95.37 89.19
PointNet++ 87.78 95.62 93.65 96.80 78.01 98.33 91.70
ASIS 91.65 91.94 93.55 97.14 85.47 95.17 92.49
Prec (%)
PlantNet 89.45 96.80 95.90 96.30 89.07 97.43 94.16
DGCNN 90.55 96.42 95.24 97.86 83.95 97.37 93.57
PSegNet (ours) 92.71 96.76 96.36 97.98 89.54 98.04 95.23
PointNet 79.20 93.31 91.85 97.61 61.45 97.85 86.88
PointNet++ 90.83 94.05 92.45 97.33 78.66 98.27 91.93
Rec (%) ASIS 83.85 96.11 92.87 95.51 81.65 97.88 91.31
PlantNet 86.12 92.97 95.24 98.23 86.06 98.07 92.78
DGCNN 85.55 97.76 94.15 98.27 78.05 98.20 92.00
PSegNet (ours) 87.42 97.73 95.02 98.59 85.69 98.63 93.85
PointNet 78.16 93.66 9291 97.16 68.69 96.59 87.86
PointNet++ 89.28 94.83 93.05 97.07 78.33 98.30 91.81
F1 (%) ASIS 87.58 93.98 93.21 96.32 83.52 96.51 91.85
PlantNet 87.75 94.85 95.56 97.26 87.54 97.75 93.45
DGCNN 87.98 97.09 94.69 98.07 80.89 97.78 92.75
PSegNet (ours) 89.99 97.24 95.68 98.29 87.57 98.33 94.52
PointNet 64.15 88.08 86.76 94.48 52.31 93.41 79.87
PointNet++ 80.63 90.17 87.00 94.30 64.38 96.65 85.52
ToU (%) ASIS 77.91 88.64 87.29 92.90 71.70 93.25 85.28
PlantNet 78.17 90.20 91.51 94.66 77.84 95.59 88.00
DGCNN 78.54 94.34 89.92 96.20 76.92 95.65 88.60
PSegNet (ours) 81.79 94.63 91.73 96.63 77.89 96.72 89.90

The best values are in boldface.

3.4. Comparison with Other Methods. In this subsection, sev-
eral mainstream point cloud segmentation networks are
compared with our PSegNet on the same plant dataset.
Among them, PointNet [64], PointNet++ [65], and DGCNN
[74] are only capable of semantic segmentation. Like our
network, ASIS [76] and PlantNet [77] can conduct the
semantic segmentation and instance segmentation task
simultaneously, and we use the same set of semantic and
instance labels for training on the three dual-function net-
works. We used recommended parameter configurations
for the comparative networks from their original papers,
respectively.

Table 5 shows the quantitative comparison across six
networks including PSegNet on the semantic segmentation
task. PSegNet achieved the best in most cases and was
superior to the others on all four averaged quantitative
measures. Table 6 shows the quantitative performance
comparison of PSegNet with two dual-function segmenta-
tion networks (ASIS and PlantNet) on instance segmenta-
tion. Except for the mPrec, mRec, and mCov of sorghum
leaves, our PSegNet has achieved the best performance at
all cases including all the four averaged measures.

We also compared PSegNet with state of the art quali-
tatively on both semantic segmentation and instance seg-
mentation tasks. The qualitative semantic segmentation

comparison on the three species is shown in Figure 8,
and the instance segmentation comparison is shown in
Figure 9. The samples in the two figures exhibit that PSeg-
Net is superior to the networks that are specially designed
for semantic segmentation, and PSegNet is also superior
to the dual-function segmentation networks—ASIS and
PlantNet for instance segmentation.

3.5. Ablation Study. In this section, we designed several
independent ablation experiments to verify the effective-
ness of the proposed modules in PSegNet, including VEPS,
DNFEB, and DGFEM, as well as the SA and CA in the
AM. The ablation experiments on semantic segmentation
are shown in Table 7, and the ablation experiments on
instance segmentation are shown in Table 8. In the two
tables, the “Ver” column gives the version names of the
ablated networks, respectively. Each version is formed by
removing an existing module or some parts of a module
from the original PSegNet. We compared seven versions
of PSegNet named “A1” to “A7” with the complete PSeg-
Net (named with “C”). In order to ensure the fairness of
the experiments, ablating VFPS (A6) means using the
basic FPS for downsampling and augmentation of the
point cloud data. After ablating a module with convolu-
tions, we will add MLPs with the same depth at the
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TaBLE 6: Quantitative comparison of instance segmentation performances of six networks including PSegNet.

Methods Tobacco leaf Tomato leaf Sorghum leaf Mean

ASIS 78.54 80.21 79.04 79.26

mPrec (%) PlantNet 87.74 85.50 79.39 84.21
PSegNet (ours) 87.80 89.92 86.68 88.13

ASIS 56.27 64.84 72.08 64.40

mRec (%) PlantNet 69.36 76.63 81.83 75.94
PSegNet (ours) 77.09 78.62 82.13 79.28

ASIS 62.88 76.61 74.26 71.25

mCov (%) PlantNet 71.98 83.34 82.63 79.32
PSegNet (ours) 80.88 84.89 84.27 83.35

ASIS 73.95 82.73 77.31 78.00

mWCov (%) PlantNet 84.83 89.48 85.68 86.66
PSegNet (ours) 90.72 90.45 87.46 89.54

The best values are in boldface.

PSegNet
(ours)

Sem.GT PointNet++

DGCNN

[l Sorghum leaf [l Tomato leaf  [] Tobacco leaf
[ Sorghum stem [] Tomato stem [l Tobacco stem

FiGgure 8: The qualitative semantic segmentation comparison on
the three species. DGCNN and PointNet++ are compared with
our PSegNet. The parts with segmentation errors are highlighted
by red dotted circles, respectively. DGCNN and PointNet++ both
have multiple prediction errors around the boundary between two
different point classes.

ablated position to ensure that the network depth (or the
number of parameters) remains unchanged. For example,
when ablating DNFEB, we replace it with a 6-layer MLP
to form the A5 network. When ablating SA, we replace
it with a 1-layer MLP to form the A2 network. When
ablating DGFFM (A4), only the decoder branch that
extracts fine-grained features is left to keep the depth of
the network unchanged. In the A7 network, we only keep
the stage 1 for all DNFEBs in PSegNet to validate the
effectiveness of the 3-stage structure of DNFEB in feature
extraction. In Table 7, the complete version of PSegNet
has the best semantic segmentation performance in aver-
age, which proves the ablation of any proposed submodule
will lead to the decline on the average segmentation per-

Ins.GT PSegNet PlantNet ASIS
(ours)

FIGURE 9: The qualitative instance segmentation comparison on the
three species. (a) The tobacco plant and (b) the tomato plant; (c)
the sorghum plant. PlantNet and ASIS are compared with our
PSegNet. Note that the different rendered colors in this figure are
just for better visual effect, and the colors are not associated with
the instance labels. The parts with segmentation errors are
highlighted by red dotted circles, respectively. PlantNet and ASIS
both have multiple prediction errors around the boundaries of
leaf instances.

formance and also indirectly verifies the effectiveness of
all proposed submodules and the sampling strategy in
the paper. In the ablation analysis experiments shown in
Table 8, the complete PSegNet network has the best
average instance segmentation performance. Ablating any
proposed submodule will also lead to the decline of the
average network segmentation performance, which again
verifies the effectiveness of all proposed submodules.

4. Discussion

4.1. Generalization Ability of PSegNet. In this subsection, we
prove that the proposed PSegNet is versatile enough to be
applied to other types of point cloud data, not only restricted
to 3D datasets for plant phenotyping. We trained and tested
our PSegNet on the Stanford Large-Scale 3D Indoor Spaces
(S3DIS) [88] to validate its applicability on point clouds of
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TaBLE 7: The ablation analysis of PSegNet on semantic segmentation. The check mark stands for the use of a module. The best quantitative
values are shown in bold. The sign “O” means the partial ablation of DNFEB.

Ver VEPS DNFEB DGFFM SA MACA SteI;FlObaccgeaf Stenzomat(ieaf Stelsli) rghurllileaf Mean

Al v N v N 92.47 97.09 95.82 96.78 86.38 97.56 94.35

A2 v N v v 91.01 95.68 96.12 97.80 87.63 96.89 94.19

A3 v N N 91.39 96.65 95.90 96.89 90.31 96.77 94.65

. A4 v N v 8948 9729 9595 9754 8663 9579 9378
A5 v v v 4 5958 7659 8463 9035 6295 8487  76.50

A6 N N v v 8946 9712 9617 9582 8582 9649  93.48

A7 N (@] v N N 86.43 97.07 94.65 97.47 88.44 97.18 93.54

C N N; N N Vv 9271 9676 9636 97.98 8954  98.04 9523

Al v i v VA 88.00 94.46 95.41 98.24 87.59 97.58 93.55

A2 N i N v 86.68 96.24 94.79 98.04 84.26 98.28 93.05

A3 N i N 87.54 92.69 95.20 98.11 87.36 98.90 93.30

Rec (%) A4 N, V v N, 85.88 94.23 94.49 98.60 85.22 97.90 92.72
A5 v v N v 59.18 77.13 81.02 90.59 52.10 88.49 74.75

A6 v v v v 87.49 90.02 94.95 98.59 84.56 97.69 92.22

A7 N O N v v 82.86 95.26 94.21 98.47 85.48 97.98 92.38

C N N N v Vv 8742 9773 9502 9859 8569 9863  93.85

Al N v N v 90.18 9575 9561 9751 8698 9757  93.93

A2 N v N Vv 8879 9596 9545 9792 8591 9758  93.60

A3 N v N 89.42 94.63 95.55 97.50 88.81 97.82 93.96

F1 (%) A4 N N v N 87.64 95.74 95.22 98.07 85.92 96.84 93.24
A5 N N v v 59.38 76.86 82.79 90.47 57.01 86.64 75.53

A6 N v v+ 8846 9344 9555 9718 8519  97.09  92.82

A7 N o) N N Vv 8461 9616 9443 9797 8694 9758 9295

C v N V N Vv 8999 9724 9568 9829 8757 9833  94.52

Al v v v v 82.11 91.85 91.60 95.13 76.96 95.25 88.82

A2 v N v V7984 9223 9130 9592 7530 9527 8831

A3 N N N 80.87 89.81 91.47 95.12 79.87 95.74 88.81

ToU (%) A4 N N N N 78.01 91.82 90.87 96.21 75.32 93.87 87.68
A5 N N N N 42.22 62.42 70.63 82.60 39.87 76.43 62.36

A6 v v N v 79.31 87.68 91.48 94.52 74.20 94.34 86.92

A7 v O v N v 73.32 92.60 89.44 96.02 76.89 95.27 87.26

C N v N v+ 8179 9463 9173 9663 7789 9672  89.90

indoor scenes, which are very different from crops in 3D. The
S3DIS dataset has 6 large indoor areas scanned by Lidars,
including 271 rooms functioning as conference rooms, offices,
and hallways. All points in the dataset are divided into 13
semantic classes such as floor, table, window, and so on. In
addition, all points in each semantic class are labeled with
instance indices. In training and testing, we cut each room into
many 1 x 1 x he blocks measured in meter that do not overlap
each other, and he means the height of each room. Each block
was downsampled to 4096 points as a single point cloud input.
The point clouds in Area 5 of S3DIS were used for testing, and
the rest of the S3DIS areas were used for training. During train-
ing, we set all hyperparameters of PSegNet to be the same as the
way the plant dataset was trained. Figure 10 shows the qualita-
tive semantic segmentation results of several S3DIS rooms,

respectively. The majority of points were correctly classified
by PSegNet comparing to the GT, and our network seems to
be especially good at recognizing furniture such as tables and
chairs with varied shapes and orientations. Instance
segmentation on S3DIS is regarded as a challenging task; how-
ever, our PSegNet shows satisfactory instance segmentation on
the four different rooms in Figure 11. PSegNet seems to have
better instance segmentation on small objects than large
objects; e.g., in the third room, PSegNet almost correctly
labeled all single chairs.

4.2. Discussion of the Effectiveness. In this subsection, we
would like to explain more about how this work handles
the three challenges faced by current deep learning models
for point cloud segmentation.
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TaBLE 8: The ablation analysis of PSegNet on instance segmentation. The check mark stands for the use of a module. The best quantitative
values are shown in bold. The sign “O” means the partial ablation of DNFEB.

Ver VEPS DNFEB DGFFM SA MA CA Tobacco leaf ~ Tomato leaf ~ Sorghum leaf ~ Mean
Al N N N N 86.98 88.60 77.53 84.37
A2 N N V N 86.44 90.50 82.28 86.41
A3 N N V 90.00 88.07 79.98 86.02
A4 N N N; v 87.93 89.02 77.78 84.91
mPrec (%)
A5 N v N N 64.19 76.23 38.73 59.72
A6 N v N N 89.54 89.08 79.72 86.11
A7 N o) N N N 87.83 88.19 83.64 86.55
C N N V N v 87.80 89.92 86.68 88.13
Al N N N N 73.65 79.23 81.29 78.06
A2 N N v N 74.57 77.44 79.31 77.11
A3 N N V 73.09 79.41 80.30 77.60
A4 N N N N 73.12 77.72 77.13 75.99
mRec (%)
A5 N N N N 43.16 41.18 36.73 40.36
A6 N N N N 70.50 74.88 78.42 74.60
A7 N o) N N N 75.46 77.83 80.00 77.76
C N N v N N 77.09 78.62 82.13 79.28
Al N N v N 76.73 85.06 82.49 81.43
A2 N N v v 78.87 84.34 81.80 81.67
A3 N N v 75.38 85.34 83.11 81.28
A4 N N N V 77.27 84.20 81.75 81.07
mCov (%)
A5 N v N V 44.50 58.10 42.09 48.23
A6 N v N v 74.83 82.51 81.61 79.65
A7 N o v N N 77.51 84.57 81.21 81.10
C N N v N v 80.88 84.89 84.27 83.35
Al N N v N 87.72 90.24 86.31 88.09
A2 N N v v 89.77 89.78 86.00 88.52
A3 N N v 86.85 90.06 86.48 87.80
WCov (%) A4 N N N V 87.92 89.60 85.32 87.61
A5 N v N V 64.04 71.86 49.17 61.69
A6 v/ v/ v v/ 84.29 88.64 85.67 86.20
A7 N o v N N 87.67 89.52 84.47 87.22
C N N v N v 90.72 90.45 87.46 89.54

4.2.1. Why the proposed VEPS strategy prevails? To better
understand this, we constructed a simple 2D lattice with
only 18 points to simulate a flat leaf in space and compared
the difference between FPS and VFPS on the lattice. The 2D
lattice, shown in Figure 12, was intentionally set to be sparse
at the upper part while dense at the lower part. The aim of
sampling for both FPS and VEPS is the same, to reduce the
number of points to only 7. We fixed the number of voxels
in VFPS as 8, which was slightly larger than the aim of
downsampling (N = 7) according to the instruction of VEPS.
Figure 12(a) shows the whole process of FPS starting from
the center point of the lattice, and in the sampled 7 points,
only one of them is from the interior part, and the other 6
are edge points. Figure 12(c) shows FPS starting from the

leftmost point, and all 7 sampled points are located on the
edge of lattice. Figures 12(a) and 12(c) reflect a common
phenomenon of FPS that when n > N, the sampling may
concentrate on edges and easily create cavities on point
clouds. And when 7 > N, FPS also deviates from the com-
mon intuition that the low-density area gets points easier
than the high-density area because the upper part of lattice
of Figure 12(c) is not getting more points. Figures 12(b)
and 12(d) show two different processes of VEPS on the
voxelized lattice initialized with the center point and the
leftmost point, respectively. The two downsampled VFPS
results are smoother than the counterparts of FPS and have
smaller cavities inside. In a real point cloud of crop, the
leaves are usually flat and thin, presenting a similar
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F1Gure 10: Demonstration of the semantic segmentation results of PSegNet on four different rooms in Area 5 of S3DIS. (a) The semantc
prediction results from PSegNet and (b) the semantic ground truth. Different semantic classes are rendered with different colors at the
bottom, respectively. The first two rooms are visualized from top, and the third and the fourth rooms are visualized with side views.

Each room is composed of several 1 x 1 x he blocks.

FiGurEe 11: Demonstration of the instance segmentation results of PSegNet on four different rooms in Area 5 of S3DIS. (a) The instance
prediction results from PSegNet and (b) the instance GT. Different instance classes are rendered with different colors, respectively. Note
that the different rendered colors in this figure are just for better visual effect, and the colors are not associated with the instance labels.
The first two rooms are visualized from top, and the third and the fourth rooms are visualized with side views. Each room is composed

of several 1 x 1 x he blocks.

structure as Figure 12 lattice in the 3D space. Moreover, we
are frequently challenged with the sampling requirement of
n> N in 3D plant phenotyping, on which VPFES can gener-
ate smooth results with smaller cavities.

4.2.2. How PSegNet strikes the balance between semantic
segmentation and instance segmentation? The network
design for multifunctional point cloud segmentation is diffi-
cult. The reasons are twofold. First, each single segmentation
task needs a specially designed network branch controlled by
a unique loss function. Take PSegNet as the example, the
semantic segmentation pathway and the instance segmenta-
tion pathway are restricted by L., and L, , respectively. To
better reconcile the training on the main network, we also
added the point-level loss Lyy; to the feature map Fpgp.

Therefore, the total network of PSegNet is restricted by a
combination of three losses. The second difficulty in design
is that when adjusting the weight of a branch’s loss in the
total loss, the other branch will also be effected. For example,
when increasing the proportion of the semantic loss in the
PSegNet, the instance performance will likely drop. Thus,
the balance between the semantic segmentation and the
instance segmentation can be reached by controlling the
assigned weights to their losses, respectively. Fortunately,
after several tests, we found that the proportion of 1:1 for
L., and L, was a choice good enough to outcompete state

of the art.

4.2.3. Why PSegNet has good generalization ability on plant
species? For a point cloud learning model, the bad
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FiGurg 12: Comparison of VFPS and FPS on a 2D lattice like a leaf. The original lattice contains 18 points, sparse on the upper part and
dense at the lower part. (a) The FPS (N =7) process starting from the center; (b) the FPS (N =7) process starting from the leftmost
point; (c) VEPS (N =7) process starting from the center point; (d) VFPS (N =7) process starting from the leftmost point.

generalization on species usually results in two undesirable
phenomena. The first is that one may observe parts of plant
species “A” on the point cloud of a plant species “B”; e.g.,
the model may falsely classify some points on the stem of
a tomato plant as “the stem of a tobacco” in semantic seg-
mentation. The second phenomenon is that one may see a
big gap on segmentation performance between the mono-
cotyledons (sorghum) and the dicotyledons (tomato and
tobacco) due to the huge differences in 3D structure. In
the qualitative and quantitative results of PSegNet, the two
undesirable phenomena were rarely seen, and PSegNet out-
performed popular networks on both semantic and instance
segmentation tasks. In addition, we also have found that
PSegNet has strong generalization ability on the object
types in point clouds. The test of PSegNet on indoor
S3DIS dataset (given in Section 4.1) proved that the net-
work has potential to be generalized to other fields such

as indoor SLAM (Simultaneous Localization and Mapping)
and Self-Driving Vehicles.

The good generalization ability of PSegNet is most likely
to come from the design of the network architecture in
Figure 2. The DNFEB separately extracts high-level and
low-level features from two local spaces and then aggregates
them to realize better learning. DGFFM first uses two paral-
lel decoders to construct feature layers with two different
learning granularities, respectively. Then, DGFFM fuses the
two feature granularities to create comprehensive feature
learning. The AM part of PSegNet uses two types of atten-
tions (spatial and channel) to lift the network training effi-
ciency on both segmentation tasks.

4.3. Limitations. Although PSegNet can perform two kinds
of segmentations well on three species with several growth
periods, this network still does not work well on seedlings.
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For many plant species, the seedling period takes a very
small and special 3D shape, which is different from all the
other growth stages. Hence, the distinctiveness of the seed-
ling period may cause problem in training and testing for
deep learning networks.

The segmentation performance of PSegNet will
decrease with the increasing complexity of the plant struc-
ture (e.g., trees), and unfortunately, this happens to all
such networks. The reasons are twofold. First, the current
dataset does not include plant samples with a lot of leaves;
therefore, the network cannot work directly on samples of
trees. Second, due to the restriction of hardware, the net-
work only accepts 4096 points as one sample input. For
a plant point cloud with dense foliage, the number of
points on each organ will be very few, which causes sparse
and bad feature learning and definitely outputs terrible
segmentation results.

5. Conclusion

In this paper, we first proposed a Voxelized Farthest Point
Sampling (VEPS) strategy. This new downsampling strategy
for point clouds inherits merits from both the traditional
FPS downsampling strategy and the VBS strategy. It can
not only fix the number of points after downsampling but
also able to augment the dataset with randomness, which
renders it especially suitable for the training and testing of
deep learning networks. Secondly, this paper designs a novel
dual-function segmentation network—PSegNet; it is suitable
for laser-scanned crop point clouds of multiple species. The
end-to-end PSegNet is mainly composed of three parts—the
front part has a typical encoder-like structure that is
frequently observed in deep neural networks; the middle
part is the Double-Granularity Feature Fusion Module
(DGFFM), which decodes and integrates two features with
different granularities. The third part of PSegNet has a
double-flow structure with Attention Modules (AMs), in
which the upper branch and the lower branch correspond
to the instance segmentation task and semantic segmenta-
tion task, respectively. In qualitative and quantitative com-
parisons, our PSegNet outcompeted several popular
networks including PointNet, PointNet++, ASIS, and
PlantNet on both organ semantic and leaf instance
segmentation tasks.

In the future, we will focus on two aspects. First, we will
collect more crop point cloud data with high-precision and
introduce more species (especially the monocotyledonous
plants with slender organs) into the dataset as well. Sec-
ondly, we will devise new deep learning architectures that
are more suitable for the understanding and processing of
3D plant structures and propose compressed networks with
high segmentation accuracies to serve the real-time need in
some scenarios of the agriculture industry.
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