
REGENERATION

Seeing is believing
A small transparent crustacean called Parhyale hawaiensis has become a

powerful model system for the study of limb and appendage

regeneration.
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T
here is little that fires the imagination like

the possibility of regrowing body parts

following an injury. Indeed the capacity

to regrow organs and limbs – and heads and

tails – is the stuff of myths and legends dating

back to antiquity. And as remarkable and magi-

cal as it may appear, the ability to regrow lost or

injured body parts is a reality for a significant

proportion of the animal and plant kingdoms.

Indeed, it is possible to regenerate an entire

plant from a small fragment of plant tissue or

even from a single cell (Ikeuchi et al., 2016).

And some animals – such as hydra, planarians

and colonial ascidians – are also able to repro-

duce by regenerating an entire organism from

part of its parent (Sánchez Alvarado, 2000).

Given that humans are not amongst those

animals that can regenerate a limb or other

body parts (never mind an entire organism) fol-

lowing an injury, there has been great interest in

understanding the mechanisms employed by

those animals that are capable of complex tissue

regeneration. The ultimate hope is that this

knowledge could lead to breakthroughs in

regenerative medicine, including the regenera-

tion of human tissues and organs (Brockes and

Kumar, 2005).

Studying the molecular and cellular mecha-

nisms of limb regeneration presents many chal-

lenges. First, limb regeneration takes a long

time to complete: for example, in urodele

amphibians (newts and salamanders) it typically

takes about a month for larval stages and almost

a year in some adult organisms (Young et al.,

1983). Second, the model systems that have

been used to study limb regeneration tend to

take a relatively long time to reproduce (with

generation times typically being 1–2 years) and

to be relatively recalcitrant to genetic manipula-

tion. Third, limb regeneration has largely been

studied in systems that are opaque to imaging,

so its dynamic nature has remained largely hid-

den behind closed doors. While new genomic

and genetic tools for amphibians have become

available in recent years (Hayashi et al., 2014;

Khattak et al., 2013; Flowers et al., 2014), the

long generation times and the opaque nature of

these organisms remain an obstacle. Now, in

eLife, Frederike Alwes, Camille Enjolras and

Michalis Averof of the École Normale Supérieure

de Lyon report how a small crustacean called

Parhyale hawaiensis offers a solution to all of

these problems (Alwes et al., 2016).

The arthropods represent the largest phylum

in the animal kingdom and representatives of

this phylum – notably the fruit fly, Drosophila

melanogaster – have long been used to study

development, genetics and evolution. Unfortu-

nately for researchers, fruit flies cannot regener-

ate their limbs. However, Parhyale hawaiensis

retains many of the advantages of Drosophila (a

relatively short generation time, the transpar-

ency of its embryos and adults, and the availabil-

ity of advanced transgenic tools) and it is also

able to regenerate its appendages (antennae,
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mouth parts and limbs) within a week as an adult

(Konstantinides and Averof, 2014; Grillo et al.,

2016). In particular, rapid advances in recent

years mean that it is now possible to manipulate

the genome of Parhyale hawaiensis, through

transgenesis and targeted gene modification

approaches, with relative ease (Stamataki and

Pavlopoulos, 2016).

The final challenge, as far as the study of limb

and appendage regeneration is concerned, is to

image the entire regeneration process at the sin-

gle cell level in adult animals. This is particularly

challenging as adult animals like to move. One

approach would be to anaesthetize the organ-

ism while imaging: however, it takes a number

of days to complete the regeneration processes,

and few animals can survive being anaesthetized

for this length of time. Alwes, Enjolras and

Averof overcame this problem in Parhyale hawai-

ensis by gluing one of its legs to a cover slip,

which allowed the rest of the animal to continue

to move and feed. Next they amputated the

immobilized leg, which then proceeded to

regenerate (without moving) inside the transpar-

ent exoskeleton of the leg. In the next molt, the

animal freed itself from the glued exoskeleton

(which remained behind) and emerged with a

new, fully functional, leg. This new approach

allowed Alwes et al. to follow the dynamic

nature of appendage regeneration at the single-

cell level over a period of 4–5 days (Figure 1).

Figure 1. Watching limb regeneration in Parhyale hawaiensis. Alwes et al. amputated a leg (called the T5 limb) in

the crustacean Parhyale hawaiensis, and then used a combination of different microscopy techniques to follow its

regeneration. This image, taken six days after amputation, shows the regenerated limb encapsulated within the

cuticle of the previously amputated limb (red); the image is 655 microns across. Image provided by Frederike

Alwes.
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This is the first time that this has been done in

any organism.

The ability to visualize record the dynamic

nature of limb regeneration at the cellular level,

combined with the availability of a number of

genetic approaches, means that many of the

secrets underlying appendage regeneration will

likely be finally revealed using this humble, but

beautiful, little crustacean.
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