
210  |     Periodontology 2000. 2021;85:210–236.wileyonlinelibrary.com/journal/prd

 

DOI: 10.1111/prd.12359  

R E V I E W  A R T I C L E

Optimizing the quality of clinical studies on oral microbiome: A 
practical guide for planning, performing, and reporting

Egija Zaura |   Vincent Y. Pappalardo |   Mark J. Buijs |   Catherine M. C. Volgenant |    
Bernd W. Brandt

Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, 
Amsterdam, the Netherlands

Correspondence
Egija Zaura, Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of 
Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, the Netherlands.
Email: e.zaura@acta.nl

1  | INTRODUC TION

About a decade ago, when the first publications on the oral micro-
biome using high throughput 16S ribosomal RNA gene amplicon 
sequencing appeared,1-4 the methodologies of sample processing, 
sequencing, and the downstream bioinformatic analyses still had 
to evolve. Today, sequencing costs per megabase have dropped by 
at least 100-fold and anyone can send the samples to a sequenc-
ing facility and, depending on the services provided, receive fully or 
partially analyzed data. In the last decade, hundreds of original re-
search articles addressing the oral microbiome have been published, 
providing an immense volume of information and knowledge on this 
topic.

However, the problem we are currently facing is that a vast 
amount of this microbiome data seems to have been created simply 
because it was both convenient and possible to do so. Frequently 
this has been done without collecting any oral health-related infor-
mation. The data are explored for potential associations and cor-
relations, which are commonly mixed up with causality, leading to 
overestimation of the clinical relevance and impact of the microbi-
ome on the etiology and pathogenesis of various conditions. Reading 
such papers raises the question if microbiome sequencing was really 
necessary. Was this the best methodology for answering the original 
research question?

With this review, we aim to increase the quality standards for 
clinical studies with microbiome as an output parameter. To this end, 
we have critically assessed the current evidence for the best qual-
ity practices in oral microbiome studies. This evidence regards the 
entire process of the clinical study, including the research question, 

study design, required subject and sample information (metadata), 
sample type and collection, storage, and processing. We provide a 
brief overview of the options in the fast-growing field of sequencing 
itself and the downstream analyses for novices in the field of 16S 
rRNA gene amplicon sequencing. Finally, we list open questions that 
remain to be addressed to further increase the quality of the studies 
on oral microbiome.

2  | RESE ARCH QUESTION

The first studies on the human microbiome could be categorized 
as “the phone book” or as “the fishing expedition” studies, as they 
described the immense and previously unseen bacterial diversity 
in and on humans. The data from such descriptive studies provided 
evidence that the attempts of characterizing the human microbiome 
before the next generation sequencing era were far from complete. 
New members of the microbiota, never isolated in the laboratory, 
became “visible” and could be linked to different intra-oral habitats 
or pathologic conditions. This has even led to the shift in paradigms 
on the exclusivity of specific, easily cultivable bacteria in the etiol-
ogy of oral diseases.

After the first generation of explorative studies, as well as meth-
odological studies focusing on comparing and improving methods 
in various steps of the fast-evolving field of microbiomics, we have 
reached the stage of performing studies driven by research hypoth-
eses. For instance, a recent study very elegantly assessed how a co-
py-number variation of the gene encoding for salivary amylase (the 
AMY1 gene) relates to oral microbiome composition and showed 
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that individuals with a high copy-number of this gene had a distinct 
microbiome composition.5

After posing the research question, one should investigate the 
available methodology and carefully judge if obtaining the data 
on oral microbiome under the circumstances of the planned study 
will be the best way to provide answers to the question at hand. 
Perhaps there are other more direct and more economic ways of 
addressing the same research question. A recent study on the signs 
of acculturation of Mexican-American women in the USA6 could 
be used to exemplify this issue. The authors collected detailed ac-
culturation questionnaires regarding language, diet, alcohol con-
sumption, and more. A mouthwash sample, originally collected 
for genetic analyses, was used for microbiome sequencing. None 
of the questions in the questionnaires regarded oral health care 
habits, visits to a dental care professional, or oral complaints. The 
authors concluded that immigration and adaptation to life in the 
USA were associated with differences in oral microbial profiles in 
these women. The more they were accultured, the higher the rela-
tive abundance of the genus Streptococcus and the lower bacterial 
diversity they had. However, since streptococci are one of the pri-
mary colonizers of teeth, their higher abundance and lower bacte-
rial diversity in general might indicate a higher oral hygiene level, 
a plausible effect of acculturation. A simple oral hygiene index or 
at least a question about toothbrushing habits would have been 
more informative than the wealth of data provided by microbiome 
analysis.

3  | CONSIDER ATIONS FOR STUDY DESIGN

There are two broad categories of studies for biomedical research, 
observational and interventional (experimental), each with their own 
advantages and limitations. In oral microbiome research, the most 
commonly used designs of observational studies are case-control 
studies, cross-sectional studies, and cohort studies, while interven-
tional studies are usually randomized clinical trials.

3.1 | Cross-sectional and case-control studies

In microbiome studies with a cross-sectional or case-control de-
sign, two or more groups are compared. These are relatively low-
cost studies generating results quickly, thereby explaining their 
popularity in the microbiome field. In cross-sectional studies, the 
subjects are selected (randomly) from a population, based on a dif-
ferent exposure, for instance, current smokers vs never smokers, 
measured at one moment in time. The case-control design involves 
cases or outcomes of interest, for example, patients with a certain 
disease, and selected controls. These controls should be compara-
ble (matched) with the cases as much as possible, with the exception 
of the disease or the condition of interest. A cross-sectional study 
is by definition limited to a single measurement of the oral microbi-
ome and cannot assess temporality or causality. The same applies to 

case-control studies, but this study design can also be longitudinal. 
It should be noted that both types are vulnerable to several types 
of bias.7

The high risk of bias in cross-sectional and case-control studies is 
partly related to the complexity and dynamic nature of the host-mi-
crobiome interactions, as well as insufficient matching between 
the cases and controls. The results of such studies are difficult to 
reproduce and sometimes results even contradict other studies ad-
dressing the same disease or condition. For instance, a recent re-
view identified studies on the oral microbiome of oral squamous cell 
carcinoma patients in comparison with healthy controls and high-
lighted large heterogeneity and contradictions in the microbial taxa 
associated with disease or health among the included studies.8 The 
findings of some of these studies could be biased by poorly matched 
control groups. Even although the oral squamous cell carcinoma pa-
tients and controls in one of the reviewed studies were matched by 
age and gender,9 they were not matched by lifestyle factors known 
to affect the oral microbiome, namely, tobacco smoking and betel 
quid chewing (Asian plant compounds with stimulatory substances). 
The control group consisted of 50% smokers and 28% betel-chew-
ers, while in the oral squamous cell carcinoma group these were 83% 
and 90%, respectively.

Another example of poor matching, which biased the study 
outcomes, ignored the differences in oral health between children 
with autism and healthy controls.10 The authors found significant 
differences in salivary and plaque microbiome between the two 
groups, but also reported that children with autism had significantly 
higher decayed, missing, filled surfaces and gingival bleeding than 
the controls. The observed differences in microbiome could merely 
reflect the differences in oral health, and may have nothing to do 
with autism.

Besides various lifestyle factors and differences in oral health 
status, numerous other factors are known to affect the oral micro-
biome. These are summarized in the section on subject and sample 
metadata (section 3.5) and in Table 1. Because these can potentially 
influence study outcomes, they should not be ignored when select-
ing study subjects.

3.2 | Cohort studies

Cohort studies are considered the gold standard for observational 
research and can be performed both retrospectively and prospec-
tively. In retrospective cohort studies, the oral samples, stored in a 
biobank, have usually been collected for purposes other than oral 
microbiome analyses, for instance, for genetic assessment as in the 
acculturation study mentioned above.6 These studies frequently did 
not collect any information regarding the oral health of individuals, 
as the purpose for storing the sample in the biobank was related to 
general health.

Prospective cohort studies follow a specific outcome that has 
been planned upfront and the study subjects are examined and 
their microbiomes assessed as they get older, at several time points. 
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Consequently, prospective cohort studies usually create high qual-
ity data accompanied by the appropriate metadata, allowing both 
assessment of the role of the oral microbiome in etiology of the dis-
ease and potential for disease risk prediction. For instance, a recent 
publication on an Australian cohort of 134 children was followed 
from 2 months until 4 years of age demonstrated the potential of 
salivary microbiome in predicting the development of early child-
hood caries.11

3.3 | Interventional studies

Interventional or experimental studies aim to assess the therapeu-
tic or preventive effects of specific interventions by the investiga-
tor. The most common and strongest interventional study design 
is a randomized controlled trial, which is preferably triple blinded, 
for study subjects, clinical investigators, and (bio)statisticians. A 
traditional randomized controlled trial involves study subjects ran-
domly allocated into two or more groups, where the intervention 
(the test) is compared with a control (positive or negative), or to 
no intervention at all. The strengths of this design are allocation 
concealment, the possibility to measure compliance and dropout, 
to analyze results by intention to treat, and to assess each treat-
ment arm in the same manner, preferably using good clinical prac-
tice guidelines. A crossover randomized controlled trial design is a 
variant of a randomized controlled trial where the same individual 
is allocated randomly to start with one intervention, followed by 
a sufficiently long washout period, and completing with the other 
intervention. There are several aspects to consider when planning 
an intervention study.

3.3.1 | The observer effect

In oral health research, the study subjects may change their usual 
behavior, for instance, by temporarily improving their oral hygiene 
practices just because they are being meticulously observed by 
dental professionals. This is evidenced by an improved oral health 
status, such as lowered gingival bleeding and plaque scores in the 
first week of the study on healthy Dutch young adults (the au-
thors' unpublished findings). As the study proceeds, the clinical 
outcomes (eg, bleeding, plaque indices) tend to increase, suggest-
ing that the individuals get used to being observed and their be-
havior returns to what was normal for them. Because the clinical 
changes are related to changes in the microbial composition of 
dental plaque,12 this implies that the composition of the samples 
collected at the start of the study may differ from those collected 
later, even without an active intervention. A solution to circum-
vent this issue could be introducing a “false” start of the study, 
followed by a “real” start, such as a second baseline visit, once 
the study subjects adapt to being observed. To date, there is no 
evidence available for the optimal number of visits or duration of 
such an adaptation period.

TA B L E  1   Sample metadata proposed for recording in oral 
microbiome studies

Metadata for samples in oral microbiome studies

Date, time of day, study aims, inclusion and exclusion criteria for 
study population, instructions before collection (eg, duration for 
abstaining from toothbrushing, food or drink intake, chewing gum 
and mouthwash use), methods of sample collection, processing

Demographic factors:

- Age27,28

- Gender32,196

- Socioeconomic status29,32

- Education level32

- Ethnicity32,36,37,197,198

General health factors:

- Recent history of exposure to antibiotics39

- Medication use41

- Systemic diseases72,199,200

- Pregnancy44

- Menstrual cycle196

- BMI28

- Birth mode39

Oral health factors:

- Toothbrushing habits, interdental cleaning habits (frequency, 
time since last brushing)32,100

- Tongue brushing61

- Type of toothpaste57

- Presence and number of own teeth, dentures, dental implants28,49,51

- Bleeding gums while brushing, GI (BOP)15,47

- Presence of tooth decay, caries indices (DMFS, ICDAS)11,28,104,201,202

- Oral hygiene level (plaque index)54

- Diagnosis of periodontal disease, periodontal pocket status (PPD, 
BOP, CAL)47

- Dry mouth complaints, salivary flow rate52

- Tongue and lip piercings62

- Fixed orthodontic appliances64,100

- Presence of intra-oral lesions203

Lifestyle factors:

- Cigarette smoking, smokeless tobacco use68,69,71-75,78,204,205

- Alcohol consumption80,206

- Betel or khat chewing81,83

- Diet, sugar intake frequency, time since last food intake, 
breastfeeding32,84,85,87-89,91-93

Other factors:

- Climate, season, time of day97,98

- Tap water quality and composition100

Abbreviations: BMI, body mass index; BOP, bleeding on probing; 
CAL, clinical attachment loss; DMFS, decayed, missing, filled 
surfaces; ICDAS, International Caries Detection and Assessment 
System; PPD, periodontal probing depth; GI, gingival inflammation; 
ICDAS, International Caries Detection and Assessment System; PPD, 
periodontal probing depth.
In bold – the minimum information that should be recorded and 
reported for reliable data interpretation.
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3.3.2 | Temporal stability

Although the oral microbiome is shown to be the most stable niche 
among different niches of the human body,13 natural temporal vari-
ability can still introduce noise in measurements while assessing the 
effects of interventions. When the tongue dorsum of 85 adults was 
sampled weekly for 3 months, the microbiome variability appeared 
to be highly individualized.14 Replicated samples could be collected 
for the assessment of natural temporal variability of each individual 
before entering the intervention phase. This enables assessment 
of the normal variability and the changes in microbial composition 
introduced by the intervention. Each individual becomes their own 
control in the measurement of the effect of the intervention, which 
allows a reduction in sample size (see the section 3.4.1).

3.3.3 | Population normalization at the 
start of the study

Another issue, relevant for interventional studies, regards oral 
prophylaxis prior to abstaining from the oral hygiene measures 
within an experimental gingivitis protocol. Some of these studies 
perform professional tooth cleaning at the start of the study in order 
to normalize their population to the same plaque level before enter-
ing the nonbrushing phase,15,16 while others do not.17,18 The mag-
nitude and duration of the changes introduced by the prophylaxis 
step to the natural oral ecosystem will be highly individual and might 
introduce additional noise to the microbiome data, potentially lead-
ing to an underestimation of the effects of the intervention being 
studied or to clinically less relevant findings.

3.3.4 | Intervention

Additionally, the duration and the dosage of an intervention is fre-
quently either arbitrarily chosen or based on the estimated clinical ef-
fects or even preliminary findings from in vitro experiments. However, 
in cases where subtle ecological changes are expected, for example, 
as a result of food supplements containing pre- or probiotics, the eco-
system might need a substantial time to remodel from one state to 
another. This would mean that longer intervention periods are required 
before any changes in composition can be measured. Therefore, when 
assessing novel ecological interventions, researchers might prefer to 
evaluate the minimum exposure required in a pilot experiment before 
setting up a much more costly and elaborate full-scale randomized con-
trolled trial.19 The data obtained from such a pilot would also provide 
the basic information needed for power estimation of the main study.

3.4 | Sample size determination

Running a clinical study, especially a randomized controlled trial, is 
one of the most expensive forms of biomedical research. Besides 

the high costs involved, clinical research can only be performed 
if the rights, safety, and well-being of the research subjects are 
protected in agreement with the declaration of Helsinki.20 From 
the perspective of costs, as well as from the point of ethics, stud-
ies which are too large are undesirable. However, by including too 
few subjects, the effects of the intervention or the differences 
between the cases and controls may be missed, biasing the con-
clusions of the study. Proper sample size determination before 
planning the study would avoid these issues. However, assess-
ment of the power in studies with microbiome as the main out-
put parameter is not straightforward. Difficulty lies in the high 
inter-individual variance and multidimensionality of the data. 
Each individual has a slightly different set of taxa (eg, operational 
taxonomic units), resulting in a data set (eg, an operational taxo-
nomic unit table) with a high number of zero counts per opera-
tional taxonomic unit (high sparsity of data) within an individual 
sample. Additionally, functional redundancy (different taxa per-
forming similar biologic functions within an ecological niche) 
among the members of the oral microbial community will lead to 
different taxa in different individuals that respond to the same 
intervention.

3.4.1 | Power analysis tools for microbiome studies

To date, reporting of power analyses in the methods sections of 
studies with microbiome as the main output parameter is scarce 
and is mainly limited to methodology papers, describing various 
tools for sample size calculations using microbiome data.21-24 
Some of these tools use frequency distributions of individual taxa, 
for example, operational taxonomic units, for sample size calcu-
lation.21,24 Others are based on the measurement of the change 
in the community structure, for example, on pairwise distances 
between samples instead of changes in the relative abundances 
of individual taxa.21-23 A tool developed by Mattiello et al21 allows 
stratification of samples into subgroups, for example, by gender, 
age, or any other parameter, thus increasing the statistical power 
considerably. To avoid excessive false-positive findings that could 
arise because of a poorly chosen pairwise distance method, an-
other distance-based power analysis tool—PERMANOVA-S—was 
developed that allows combination of multiple distances from 
various distance-based methods.22

An alternative solution for estimating an effect size for micro-
biome studies involves subsampling the data,25 as in the Evident 
software package (https://github.com/bioco re/Evident), which uses 
Monte Carlo simulations to estimate the variance and to explore 
both sampling depth and the number of samples needed for visual 
separation between groups.

A recent study addressed the effects of intrinsic temporal vari-
ation on sample size in longitudinal microbiome studies.26 The au-
thors estimated intraclass correlation coefficients between various 
metrics such as most abundant taxa, alpha (within-sample), and beta 
(between-samples) diversity from microbiome data from different 

https://github.com/biocore/Evident
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studies. To calculate intraclass correlation coefficients, temporal 
replicates and also preferably technical replicates are required. The 
authors showed that a higher intraclass correlation coefficient im-
plies larger statistical power and smaller bias in estimating the effect 
of an intervention.

While the list of power tools based on microbiome data is 
growing and several user-friendly web-based interfaces have be-
come available, there is, however, no consensus yet on the optimal 
methodology for sample size determination for oral microbiome 
studies.

3.5 | Subject and sample metadata

The data created by sequencing of any microbial communities, 
including those of oral origin, remain just plain data without sci-
entifically reliable interpretation if they lack accompanying in-
formation—the metadata—of the samples and study population 
(Table 1). In this section, we provide a summary of the current 
evidence for the measurable effects of demographic factors, 
general and oral health, as well as behavior of the individual 
on the oral microbiome (Figure 1). Based on this evidence, we 
have listed the optimal and the minimum required information 
(Table 1, minimum information in bold) that should be recorded 
when performing a clinical study with oral microbiome as one of 
the study outcomes.

3.5.1 | Basic information

On all occasions, basic information about the study should be 
provided. This includes the sample collection date, a description 
of the study aim(s), inclusion and exclusion criteria of the study 
population, and the instructions given to the study subjects be-
fore the sample collection, such as duration of abstaining from 
toothbrushing, food or drink intake, chewing gum and mouth-
wash use.

3.5.2 | Demographic factors that have been shown 
to affect oral microbiome

Age
Age is one of the standard parameters that is always recorded. This, 
of course, is highly relevant information, especially in case-control 
studies where groups should be matched by age. The oral micro-
biome has been shown to vary according to the age of the study 
subjects, especially when infants, children at various dentition 
stages (deciduous, mixed, or permanent dentition), adolescents, and 
younger and older adults are compared.27 A large population-based 
study on 2343 Japanese adults aged 40 years and older showed that 
even in this relatively homogeneous group salivary microbiome dif-
fered significantly by age.28

Gender
Most of the studies either do not assess if there is a relation be-
tween the gender and oral microbiome composition, or do not find 
any considerable differences.29,30 A recent study on 268 young, 
orally and systemically healthy Dutch adults found no difference in 
alpha diversity in unstimulated saliva by gender, but did identify 65 
operational taxonomic units that differentiated between males and 
females.31 Another recent study, investigating oral microbiome of 
282 US subjects, confirmed that there were no differences in alpha 
diversity, while some taxa differentiated males from females.32

Socioeconomic status and education level
A demographic factor known to be indirectly related to general and 
oral health involves both the socioeconomic status and education 
level of the individual.33-35 Several studies report a relation between 
income or education level and oral microbial composition: a microar-
ray study on stimulated saliva of 292 Danish adults with low levels 
of caries and periodontitis found that socioeconomic status ex-
plained 20% of the overall variance in salivary microbiome.29 A more 
recent study, using amplicon sequencing, also found differences in 
oral microbiome related to income and education level of the study 
subjects.32

F I G U R E  1   Schematic representation 
of the main factors that are known to 
influence the oral microbiome. In blue, 
factors associated with the individual and, 
in orange, technical factors introduced 
during the study. SES, socioeconomic 
status. A detailed list of subject-related 
factors is presented in Table 1
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Race or ethnicity
Race or ethnicity of the individual is a demographic factor with 
relatively strong evidence for the relationship with oral microbial 
composition. The Human Microbiome Project found differentially 
abundant taxa at every habitat of the body, including different oral 
niches, when comparing non-Hispanic white (Caucasian), non-His-
panic black (African American), Asian, Mexican, and Puerto Rican 
ethnicities.30 A study on supragingival and subgingival plaque and sa-
liva from 192 subjects belonging to four major ethnicities in the USA 
also found taxonomic differences by ethnicity.36 Interestingly, even 
genetically closely related populations, such as Japanese and South 
Korean orally healthy adults, differ in their salivary microbiome.37

3.5.3 | General health factors known to affect oral 
health and oral microbiome

Any clinical study should have clearly predefined inclusion and exclu-
sion criteria regarding general health of the study subjects, because of a 
strong relation between the oral and general health of the individual.38 
Previous exposure to antibiotics39 and current medication use should 
be recorded. The effects of medication have been shown on the fecal 
microbiome,40 while reports of medication use on the oral microbiome 
are still scarce. A recent interventional study on oral microbiome found 
that daily use of esomeprazole, a proton pump inhibitor, for 4 weeks, 
led to an increase in Streptococcus and a decrease in Veillonella and 
Neisseria, while the bacterial diversity was significantly reduced.41

Exposure to antibiotics
Regarding antibiotic exposure, there is no consensus on the mini-
mum duration between exposure and enrollment in studies on oral 
microbiome. In studies on the gut microbiome, an arbitrary period of 
6 months since the antibiotic exposure is frequently used, although 
shorter periods have also been applied.19 In a randomized controlled 
trial, healthy individuals were exposed to either clindamycin, cipro-
floxacin, amoxicillin, minocycline, or placebo, and their fecal and sali-
vary microbiota were assessed during 1 year.42 Antibiotics had very 
limited impact on the salivary microbiome, with effects on bacterial 
diversity and community structure being measurable right after the 
exposure, but already becoming undiscernible after 1 month, while 
the gut microbiota needed up to 1 year to recover from the expo-
sure to some of the antibiotics. The response to antibiotics is highly 
individual and might also be influenced by the underlying infection 
when antibiotics are clinically prescribed instead of being tested on 
healthy individuals. Currently, most studies on the oral microbiome 
use a minimum of 2 or 3 months since the end of the antibiotic ther-
apy as inclusion criterium.

Systemic diseases
A history of systemic diseases, such as diabetes, rheumatoid ar-
thritis, and cardiovascular disease, that have implications for oral 
health,38 should be recorded. A general characteristic of well-being 
such as frailty has also been shown to relate to differences in oral 

microbiome.43 The oral microbiome was shown to differ by the body 
mass index of the study subjects.28 Pregnancy is a typical exclu-
sion criterion, as changes induced by pregnancy hormones on the 
entire body, including the oral microbial ecosystem,44 will seriously 
bias the study outcomes. Additionally, if the study population in-
volves infants and young children, information regarding the mode 
of birth39,45,46 and predelivery antibiotic prophylaxis as a result of a 
Cesarian section might be relevant to record.

3.5.4 | Oral health-related factors known to 
affect oral microbiome

Oral health status
One of the most important factors with the strongest evidence 
for an impact on the oral ecosystem and its microbiome is the oral 
health status of the individual. Gingival and periodontal health,15,47 
dental caries,28,48 presence of intra-oral implants49 and the health 
status of the peri-implant sulcus,50 number of teeth present, edentu-
lism, and dentures,28,51 have all been shown to have a strong impact 
on the oral microbiome. Another obvious factor influencing the oral 
ecosystem is the salivary flow rate. To date, evidence for its effect 
on oral microbiome is inconclusive. One study reported that salivary 
flow rate does indeed affect salivary microbiome,52 while another 
study failed to find any differences.53

Oral hygiene habits
Daily oral hygiene practices (eg, frequency of toothbrushing, ef-
ficacy of plaque removal) affect the oral health of the individual. 
Therefore, it is not surprising that the salivary microbiome has 
been shown to reflect the oral hygiene level of the individual, both 
in children and in adults.28,54 Nevertheless, numerous published 
studies fail to record metadata on oral health or oral hygiene 
behavior of the subjects. For instance, no oral health-related in-
formation was collected in a recent study comparing the salivary 
microbial composition of chronic fatigue syndrome patients with 
that of age-, gender-, and body mass index-matched healthy con-
trols.55 Because chronic fatigue syndrome is a neurological dis-
order, differences in the attitude and level of self-performed oral 
care could be the most likely explanation for the observed differ-
ences in salivary microbiome between the cases and controls, and 
should have been assessed at least additionally to the microbiome 
analyses. Similarly, the oral microbiome from mouthrinse samples 
of diabetics was compared with those of obese and nonobese 
nondiabetics without any oral status assessment.56

Prolonged use of a particular oral health care product with addi-
tives aiming at ecological modification of the oral ecosystem has also 
been shown to affect oral microbial composition. For example, use 
of a toothpaste containing enzymes and proteins57 or a toothpaste 
containing arginine has been shown to affect supragingival plaque 
composition,58,59 while twice-daily mouthrinse with amine fluoride 
and stannous fluoride for 2 weeks resulted in microbial shifts in 
tongue and saliva.60
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Frequency of tongue brushing was recently shown as not only 
able to affect tongue microbiome composition, but was also related 
to the effects of chlorhexidine mouthwash on the microbial com-
position.61 Besides recording tongue cleaning habits, the presence 
of tongue piercings should also be noted and preferably used as 
exclusion criterion, as these could be potential reservoirs of taxa 
associated with periodontitis.62 In addition to piercings, wearing ap-
pliances such as fixed braces during orthodontic treatment should 
be considered as exclusion criterion, as these increase plaque reten-
tion and affect the oral microbial ecosystem.63,64

Self-reported oral health status
There is no doubt that oral health and oral hygiene behavior have a 
direct impact on the oral microbiome and vice versa. However, it is not 
always possible to conduct a clinical intra-oral examination. In such 
cases, at least the minimum information on oral care habits and oral 
health status should be obtained through questionnaires that have 
been validated for self-assessment of oral health, for example, for the 
periodontal status65,66 and dental caries experience.67 To date, we are 
not aware of a single validated questionnaire that could be used for 
all oral health-related factors, as shown in Table 1, and therefore a 
composite of questions from different questionnaires should be used.

3.5.5 | Lifestyle factors that have been shown to 
affect oral microbiome

Smoking
Currently, there is ample evidence that smoking tobacco not only has 
devastating effects on general health, but also on the oral health and 
oral microbiome.68-76 Because smoking cessation also leads to meas-
urable changes in oral microbiota,77 it should be noted how long ago 
it was since an individual stopped smoking.

Modern alternatives to tobacco smoking, such as electronic cig-
arette smoking, have not yet been investigated in any great detail, 
although a pilot study on this topic did not find any difference be-
tween electronic cigarette smokers (N = 10) and nonsmoking con-
trols (N = 10).69 Besides conventional tobacco cigarette smoking, 
smoking of dokha (an Arabic tobacco product) was also shown to 
affect oral microbiome and lead to dysbiosis, while microbiota of shi-
sha (a water pipe) smokers did not differ from nonsmokers in a study 
with 330 subjects from the United Arab Emirates.78

Alcohol consumption
Another lifestyle factor with prominent health effects is alcohol con-
sumption. In the oral cavity, alcohol is metabolized by oral bacteria 
into acetaldehyde, which is a known carcinogen.79 A study of 1044 
US adults found that heavy and moderate drinkers had higher alpha 
diversity and that their oral microbiome differed from nondrinkers.80 
It should be noted, though, that this study lacked any information 
regarding the oral health status or oral care habits of the individuals 
and therefore the differences observed could have been biased by 
these factors. To correct for these confounders the authors used 

surrogate oral health indicators: presence of Porphyromonas gingi-
valis and Aggregatibacter actinomycetemcomitans for periodontal dis-
ease and a high proportion of Streptococcus mutans for caries, which 
is a very simplified view of oral diseases.

Chewing psycho-stimulatory substances
In some cultures, but especially in south Asia, southeastern Asia, and 
the Pacific, areca nut or betel quid chewing is a widespread habit, 
and has become a leading cause of oral cancer in those areas of the 
world.81 Differences in the oral microbiome of betel chewers com-
pared with the control group were reported.81 Chewing of leaves 
and twigs of khat that provide amphetamine-like effects is another 
habit gaining popularity among certain cultures82 and is shown to 
affect the oral microbiome.83

Diet
Diet has been shown to explain a considerable part of the varia-
tion in gut microbiome composition.40 The strongest evidence of 
the effects of dietary components on the oral microbiome regard 
sugar intake.84-86 Differences have been found among the oral mi-
crobiomes obtained in the Philippines from hunter-gatherers, who 
rely on fishing, hunting, and gathering, compared with traditional 
farmers who rely on cultivated rice and vegetables in their diet, 
and those living on a Western diet.87 Differences in self-reported 
bovine milk intake were associated with oral microbial differ-
ences in Swedish adolescents.88 A study following African celiac 
children, who switched from an African-style, gluten-free diet, 
known to contain noncertified foods contaminated with gluten, to 
an Italian-style diet of certified gluten-free products for 60 days, 
reported changes in their salivary microbiome and metabolome 
composition.89

However, a study of Italian subjects following a habitual omni-
vore (N = 55), ovo-lacto-vegetarian (N = 55), or vegan (N = 51) diet 
for at least 1 year before the sample collection found no differences 
in their salivary microbiome.90 By contrast, a more recent study 
comparing healthy Danish vegans (N = 78) and omnivores (N = 82) 
did find differences in their salivary microbiomes.91 Furthermore, 
a study of 282 US subjects assessing the effects of the frequency 
of consumption of beverages containing sugar, meat, poultry, fish, 
vegetables, and fruits in the week prior to the sample collection 
found taxa that differentiated the dietary habits.32 Analysis of food 
frequency questionnaire data in comparison with oral microbiome 
found that saturated fatty acid and vitamin C intake correlated with 
differences in microbial composition in a study of 182 Americans.92

Breastfeeding has been shown to lead to different oral microbi-
ota compared with formula-fed infants.93 A recent study found that 
effects of partial vs no breastfeeding were still evidenced in the sal-
ivary microbiomes of 2- and 7-year-olds.39

A recent randomized controlled trial with Estonian school-
children assessed the long-term effects of candies containing 
different polyols—erythritol, xylitol, or sorbitol—on salivary mi-
crobiome composition.94 The group consuming erythritol-con-
taining candies for 3 years during school days had the microbiome 
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deviating the most from the rest and the lowest caries scores at 
the end of the intervention.

3.5.6 | Other factors potentially 
influencing oral microbiome

Climate, season of enrollment, and time of the day
It has been reported that populations living in different geographic 
and climatic environments (Alaska, Germany, or Africa) differ in their 
salivary microbiomes.95 This study, however, did not account for any 
oral health status-related confounders.

The composition of some human microbial habitats has been 
shown to depend on the season of enrollment into the study, for 
example, in the case of the nasal microbiome of infants.96 Currently, 
there is not enough evidence to conclude that the oral microbiome 
is similarly affected. However, higher bacterial DNA concentration 
was measured in the saliva of study subjects taken in February 
compared with other periods of the year during a sample collection 
occurring every 2 months for 1 year.97 This could be attributed to 
seasonal differences in immune fitness.

To date, one study has found effects of the time of the day on 
oral microbiome,98 while another study failed to replicate this.99

Tap water quality and composition
An interesting observation arose from a citizen science project in 
Spain involving 1555 adolescents (aged 13-15 years) and their teach-
ers from 40 Spanish schools.100 Their salivary microbiome varied not 
only by different lifestyle and oral hygiene habits, but also by certain 
parameters (eg, alkalinity, water hardness) of the tap water in the 
municipality they lived in. The authors concluded that drinking water 
may contribute to the shaping of the oral microbiota.

3.6 | Sample type choice

3.6.1 | Intra-oral niches

The oral cavity is a complex ecosystem, consisting of different niches 
with compositionally different communities, where shedding (mu-
cosal tissue) and nonshedding (dental hard tissue) surfaces form two 
major, compositionally distinct niches (Figure 2).101 Thus, a universal 
“oral microbiome” sample that would represent the entire ecosystem 
does not exist. Besides these tissue-related differences, there is a 
spatial gradient, shaped by salivary flow, from the front to the back 
of the mouth.102 The anatomic location (eg, upper buccal molar sur-
face vs lower lingual) has been shown to affect the composition of 
supragingival plaque within the same individual.103

To date, numerous types of samples have been used to study 
the oral microbiome, each with their own advantages and limitations 
(Table 2). Often, based on the research question and hypothesis, it is 
straightforward regarding which sample type to collect. For exam-
ple, to characterize biofilms on early and dentinal caries lesions, the 

best choice is to collect a site-specific plaque sample from the sur-
face of a white spot lesion and a dentin caries lesion, respectively.104 
Frequently, though, there are practical limitations related to the 
study setup, for example, home sampling by subjects, which would 
be decisive regarding which samples (not) to collect.

3.6.2 | Saliva and oral rinse samples

Two of the sample types especially gaining interest in large cohort 
studies are saliva and its surrogate, an oral rinse. Both are relatively 
easy to collect, also by the study subjects themselves. For saliva, all-
in-one saliva collection and DNA stabilization kits are commercially 
available, allowing shipment of the samples in ambient temperature, 
such as OMNIgene Oral OM-501 kit for unstimulated saliva collec-
tion (DNA Genotek, Ottawa, ON, Canada). Both methods are dis-
cussed below.

Stimulated and unstimulated saliva
It should be realized that saliva itself is not a niche. It is a con-
tinuously produced bodily fluid, with microbial and host cells that 
are dislodged from the oral surfaces and collected together with 
salivary components. Both its volume and biochemical composi-
tion will be different if salivary secretion is passive or stimulated, 
for example, by a masticatory or gustatory stimulus.105 To date, 
reports regarding the effects of activated secretion by chewing on 
microbial composition are contradictory: Belstrøm et al106 com-
pared paraffin chewing-stimulated saliva with unstimulated saliva, 
collected by passive drooling in 20 healthy adults, and found no 
difference between the two types of samples. By contrast, Gomar-
Vercher et al107 reported highly significant differences between 
the two types of samples collected from 10 12-year-old children. 
These differences might be a result of the way the unstimulated 

F I G U R E  2   Significant cross-niche correlations among bacterial 
composition in nine different oro-pharyngeal sample types 
collected within the Human Microbiome Project. Green: significant 
co-occurrence; red: co-exclusion of different bacterial taxa (part of 
Figure 5 from Faust et al)
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TA B L E  2   Advantages and disadvantages of major sample types used in oral microbiome studies with an example reference per sample 
type

Sample Advantages Disadvantages

Unstimulated saliva106 A proxy for oral microbiome; noninvasive; self (home) 
sampling and repeated sampling possible

Does not represent a specific niche; relatively 
time-consuming and drooling might feel 
uncomfortable (5 min)

Stimulated saliva106 A proxy for oral microbiome; noninvasive; self (home) 
sampling and repeated sampling possible; faster 
collection and less discomfort than unstimulated saliva

Does not represent a specific niche; requires 
a gum base or parafilm; more diluted than 
unstimulated sample; chewing activity might 
affect sample content

Oral rinse/mouthwash108 A proxy for oral microbiome; noninvasive; self (home) 
sampling and repeated sampling possible; fast (30-60 s)

Does not represent a specific niche; requires 
a mouth rinse, constituents of which might 
affect the composition; more diluted than 
saliva sample

Pooled supragingival plaque118 Represents an intra-oral niche, relevant for oral health; 
contains low human DNA proportion

Sample composition depends on time since 
toothbrushing and brushing efficiency; 
self-sampling possible but less reliable than 
by trained researcher; sampling all surfaces 
time-consuming; repeated sampling possible 
only after regrowth of dental plaque

Site-specific supragingival dental 
plaque104

Represents a specific dental site; allows discrimination 
between caries lesions and intact surfaces

Sampling requires a trained researcher and a 
clinical setting; surfaces need to be cleaned 
and diagnosed in a different appointment; 
time since cleaning needs to be standardized; 
low sample biomass; repeated sampling 
possible only after regrowth of dental plaque

Subgingival plaque13 Represents an intra-oral niche, relevant for oral health; 
possible to sample specific sites repeatedly if using 
paperpoints

Sampling requires removal of supragingival 
plaque by a trained researcher in a clinical 
setting; low sample biomass in cases without 
periodontal pockets; use of paperpoints – 
risk of DNA contaminants; use of curettes 
– risk of damage to periodontium and not 
suitable for frequent resampling

Interproximal plaque207 Represents an intra-oral niche, relevant for oral health; 
possible to sample specific interdental area and assess 
effectiveness of anti-biofilm measures on plaque 
stagnation sites; high bacterial diversity

Interdental hygiene habits affect sample 
composition; not possible to sample with 
deficient restorations; low sample biomass; 
highly trained researcher required; repeated 
sampling limited – requires accumulation of 
mature biofilm; for replicates within 1 wk 
– comparable but different sites should be 
sampled

Tongue swab13 Represents an intra-oral niche; easy to sample; self-
sampling and repeated sampling possible; most stable 
intra-oral niche in general; sufficient material to sample

Tongue brushing habit affects the 
composition; low similarity with dental 
plaque composition; high compositional 
stability might limit the applicability in 
intervention studies; high human DNA 
proportion

Buccal swab13 Represents an intra-oral niche; relatively easy to sample; 
self-sampling and repeated sampling possible

Low bacterial diversity; potential 
contamination with other surfaces (eg, teeth) 
and saliva will affect composition; high 
human DNA proportion

Tonsillar swab13 Represents an intra-oral niche, relevant for oral and 
general health; microbial community not disturbed by 
toothbrushing

Requires trained researcher to sample; 
uncomfortable and uneasy sample collection 
procedure; repeated sampling only possible 
after considerable time

Palatal swab13 Represents an oral niche, specifically relevant for oral 
health of full upper denture wearers; relatively easy to 
sample; repeated sampling possible

Low bacterial diversity; contamination with 
other surfaces (eg, tongue) possible; contains 
high human DNA proportion

(Continues)
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sample was collected in the latter study: instead of a passive drool-
ing for 5 minutes, the samples were collected by depositing three 
sterile paperpoints for 30 seconds on the floor of the mouth.

Oral rinse sample
In some cases, however, saliva collection is either too time-consum-
ing or the study subjects suffer from painful mucosal lesions or dry 
mouth, precluding conventional saliva sample collection. An alterna-
tive way of collecting salivary microbes is to use an oral rinse with a 
predetermined volume of fluid.108

Oral rinse samples have been collected in several large cohort 
studies, originally to collect human genetic material and not to 
analyze the salivary microbiome. For instance, in 50 000 subjects 
from a cohort initiated in 1992 by the American Cancer Society, 
human cells were collected using an oral rinse with a commercially 
available mouthwash, Scope (Procter & Gamble), which contains 
15 wt% alcohol and cetylpiridine chloride.109 The antimicrobial ac-
tivity of the mouthwash allowed home-sampling and shipment of 
the samples in ambient temperature without damaging the sample 
material. Decades later, Fan et al110 assessed the applicability of 
the samples for oral microbiome analyses by comparing unstim-
ulated saliva with the mouthwash sample, obtained by vigorous 
swishing with 10 mL Scope for 30 seconds from 10 individuals. 
The authors found no difference between the two sample types 
and concluded that the frozen mouthwash samples are suitable 
for oral bacterial microbiome analysis.

Another recent study, though, comparing Scope mouthwash 
samples with unstimulated saliva, did report differences in micro-
bial composition between these two sample types.111 Yu et al112 
compared Scope mouthwash samples with saliva and seven other 
intra-oral niches collected according to Human Microbiome Project 
sample collection protocol in 41 healthy individuals. The authors 
concluded that the oral rinse sample had a higher alpha diversity 
than the other samples and mainly resembled the saliva sample, fol-
lowed by the hard palate and buccal mucosa samples.

Another study compared saliva collected by passive drooling, ac-
tive spitting, and 10 mL saline rinse for 1 minute.113 Higher amounts 

of total and bacterial DNA were obtained from the oral rinse sam-
ples, followed by spit and drool samples. The alpha diversity tended 
to be higher in the oral rinse samples than the others, while microbial 
composition was driven by individual subject and did not differ by 
sample type.

In summary, unstimulated saliva and the sample collected by oral 
rinse seem to differ, especially in the DNA yield and bacterial diver-
sity, but compositional differences are minor.

3.6.3 | Niche-specific oral samples

As stated above, saliva or oral rinse samples do not represent a cer-
tain intra-oral niche, but compositionally they do resemble samples 
from the mucosal surfaces.101,112 Oral diseases involve specific sur-
faces and are often biofilm-initiated, therefore site-specific sam-
ples are frequently preferred to salivary or rinse samples (Table 2). 
Some studies using saliva have failed to discriminate differences 
that were clinically discernable, for example, in the cases with and 
without caries, and conclude that saliva is not the best sample for 
that purpose.114 Again, depending on the aims and hypotheses of 
the study, the most appropriate sample type(s) should be selected. 
If the aim is to assess overall microbiome diversity, then collecting 
multiple samples from different niches will be the most appropriate 
approach. One specific niche or sample type might be more dis-
criminative than another when comparisons of healthy vs diseased 
populations are performed or following the effects of an interven-
tion on the oral microbiome. To facilitate the selection of such a 
niche, the comparison of multiple niches has been performed by 
several studies, discussed below, both in health and disease, in 
adults and children.

Niche-specificity in children
The oral microbiome in children undergoes various developmental 
stages, following the anatomic changes occurring because of teeth 
eruption and growth, and changes in feeding habits.115 Older stud-
ies using the DNA-DNA checkerboard technique have addressed 

Sample Advantages Disadvantages

Dental calculus123 Represents calcified dental supra- or subgingival biofilm; 
allows comparisons with ancient calculus in molecular 
anthropology and archeology studies

Sample collection requires removal of plaque 
and calculus by trained researcher in a clinical 
setting; repeated sampling from the same 
site not possible; requires extensive sample 
processing compared to other samples

Denture surface swab51 Represents a niche in (partially) edentate individuals; 
relevant for oral and general health; relatively easy to 
sample

Denture hygiene affects sample composition; 
standardization of sample collection 
procedure required

Mucosal citobrush208 Captures host-microbe interactions; relatively easy to 
sample; allows sampling a specific mucosal area

Low bacterial diversity; low bacterial and high 
human DNA proportion

Sub-mucosal biopsy209 Captures host-microbe interactions; targets specific 
mucosal area of interest

Invasive method; disrupts mucosal tissue; 
contains low bacterial and high human DNA 
proportion

TA B L E  2   (Continued)
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issues of niche-specificity in this population. For instance, un-
stimulated saliva, supragingival and subgingival plaque, tongue 
dorsum, and a mucosal swab over cheeks, lips, and palate were 
collected from 93 children aged 3-12 years and assessed using 
DNA-DNA checkerboard.116,117 The highest bacterial DNA yield 
was obtained from supragingival plaque, followed by tongue dor-
sum samples, while the mucosal swab sample yielded the lowest 
yield. Compositionally, the mucosal swab sample differed the most 
from the rest, while the two plaque samples (>80% similarity) and 
saliva and tongue sample (>90% similarity) formed two distinct 
subclusters. Interestingly, the red-complex species (Tannerella for-
sythia, P. gingivalis, and Treponema denticola) increased with age, 
irrespective of the sample type.116 Cariogenic bacteria (S. mutans, 
Streptococcus sobrinus) were not limited to the dental surfaces and 
also increased with age.117 The lowest proportion of these mi-
croorganisms was found in subgingival plaque, while the mucosal 
swab sample contained the highest proportions of S. sobrinus and 
S. mutans.

Recently, findings that saliva and supragingival plaque in young 
children harbor very different microbial communities have been con-
firmed by 16S rDNA amplicon sequencing.48,118 Plaque was shown 
to have a higher alpha diversity than saliva. A longitudinal study on 
maturation of the oral microbiome in 119 caries-free children showed 
that both saliva and plaque undergo distinct compositional changes 
in the period from 1 to 4 years of age.118 At the level of the overall 
composition of the two sample types, plaque and saliva shared be-
tween 72% (1-year-olds) and 83% (4-year-olds) of the taxa. However, 
when individually paired plaque and saliva samples were compared, 
a large inter-individual variation was observed, ranging between 0% 
and 65% in the proportion of shared taxa. In other words, a large 
proportion of taxa in supragingival plaque can be found in saliva, 
but this does not occur in every child. The factors influencing this 
variation still need to be determined.

Sampling young children, especially infants, is not always easy. 
Additionally, collecting samples in large cohort studies requires 
a vast amount of resources. Home-sampling in a familiar setting 
by an instructed caretaker could provide an alternative. A recent 
study addressed the feasibility of home-sampling by mothers in 2- 
to 15-month-old infants in comparison with sampling by a trained 
researcher (submitted). For this study, the mothers of 30 infants 
first received video instructions for collecting plaque, saliva, buccal, 
and tongue swab samples, after which they collected the samples, 
followed by repeated sampling by the researcher. Comparisons of 
the DNA yield/sample and the microbial composition showed that 
samples collected by mothers resembled those collected by the re-
searcher, with the tongue sample being the most similar, and saliva 
the least.

Niche stability and comparability in adults
As stated in the sections above, different intra-oral niches will result 
in different microbiome outcomes. The choice of the sample could 
also be based on the robustness or temporal stability of the niche. 
Once established, oral microbial communities remain relatively 

stable, with tongue dorsum being the least variable in time, and sub-
gingival plaque being the most (Figure 3).13 Intra-individual tempo-
ral stability and inter-individual differences were recently assessed 
in a study comparing tongue, saliva, and supragingival plaque in 10 
individuals sampled at daily, weekly, and monthly intervals for up 
to 1 year.119 The authors found that plaque was significantly more 
variable than tongue or saliva. Additionally, they demonstrated that 
machine-learning approaches could assign the samples to the right 
individual with 88%, 96%, and 97% accuracy, when using tongue, 
supragingival plaque, and salivary microbiome data, respectively. 
This suggests that tongue, although less variable, harbors a micro-
biome that is less discriminatory among adult individuals than saliva 
or plaque.

A relevant question regarding sample choice in periodontitis pa-
tients is if one has to collect subgingival plaque in order to assess 
the effects of interventions. Perhaps other samples such as saliva 
or tongue swab, both of which are less invasive and less time-con-
suming, but known to differ significantly from dental plaque, are suf-
ficient for observing differences over time or among study groups 
and could lead to conclusions comparable with those based on sub-
gingival plaque samples. A recent study compared microbial profiles 
of 14 periodontitis patients before and after periodontal therapy, 
obtained from supragingival and subgingival plaque, chewing-stimu-
lated saliva, and tongue swab samples.120 The authors found that the 
relative abundances of 12 with periodontitis-associated taxa, based 
on the red and orange complexes,121 were considerably higher in 
subgingival plaque than in any other niche. Nevertheless, the pro-
portions of these taxa in subgingival plaque, saliva, and tongue cor-
related significantly. This was not the case for supragingival plaque, 
though. After periodontal therapy, the changes in the subgingival 

F I G U R E  3   Microbial community stability over approximately 
7 months. The higher the correlation coefficient, the more similar 
the temporal replicate samples collected within the Human 
Microbiome Project. In red, oro-pharyngeal samples. Figure from13
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microbial composition (again, focusing on the same 12 selected taxa) 
were reflected in saliva, and correlated with the periodontal health 
status. These findings suggest that saliva could function as an alter-
native to subgingival plaque sampling in periodontitis patients.

Wei et al122 compared the microbial composition of subgingival 
plaque and buccal mucosa from healthy (N = 9) and periodontitis 
(N = 11 chronic, N = 12 aggressive periodontitis) patients. Their 
results discriminated between healthy and periodontitis patients 
based on the bacterial diversity of both buccal and subgingival mi-
crobiomes, with samples from healthy individuals having a lower 
bacterial diversity. Interestingly, microbial profile data ordination 
in principal coordinate analysis plots, as well as in individual oper-
ational taxonomic unit analyses, showed more distinct separation 
between healthy and periodontitis subjects based on their buccal 
samples than on their subgingival plaque. Larger studies should be 
performed to confirm these findings.

Dental calculus
Supragingival plaque data from healthy individuals (the Human 
Microbiome Project data set) were recently compared with data 
from modern and ancient dental calculus samples, where the mod-
ern calculus samples originated from both healthy subjects and peri-
odontitis patients.123 There was a distinct separation in microbial 
profiles between plaque and calculus, with calculus samples having 
a higher proportion of periodontal disease-associated species, irre-
spective of oral health status.

In summary, the choice of sample type(s) for a study on oral micro-
biome is not always straightforward and simple, and should be per-
formed after evaluating relevance with regard to the study purpose 
and the feasibility in relation to the costs and logistics of the study.

3.7 | Controls for microbiome studies

Another important aspect in the design of a microbiome study is 
planning and including both negative and positive controls to pro-
cess alongside the biologic samples with each sample batch (Table 3).

3.7.1 | Negative controls

Inclusion of negative or blank controls allows assessing and cor-
recting for potential contamination. Contamination with bacterial 
DNA from nonsample sources was never an issue in the studies 

targeting specific taxa or assessing microbial composition by culture. 
However, with an open-end approach, as in amplicon sequencing 
of 16S rDNA, any bacterial DNA fragments can be amplified. For 
instance, the presence of bacterial DNA in selected batches of ster-
ile paperpoints had a profound effect on the microbiome of peri-
implant sulcus samples.124 The samples collected from periodontally 
healthy sites without pockets presented with the lowest amount of 
bacterial DNA and were also the samples that had the highest pro-
portion of the microbial sequences originating from DNA present in 
the paperpoints. This inverse relation between the sample template 
DNA and contaminant DNA has also been demonstrated on critically 
low-biomass samples, such as placenta.125

In a recent review, a large number of genera included in the 
list of the common contaminant taxa belonged to a normal human 
(oral) microbiome, originating from the laboratory personnel.126 
The sources of DNA contaminants range from the sampling mate-
rials and laboratory environment, researchers, and consumables, to 
DNA extraction kits and laboratory reagents.126 For example, infant 
nasopharyngeal samples clustered by the lot number of the DNA 
extraction kit used in the study.127 Besides the effects of the pro-
duction lot, the DNA extraction blank controls across multiple stud-
ies have been shown to share several taxa,127 leading to the new 
term in this field, a “kitome”.128

Three types of negative controls should be included with each 
sample batch for microbiome analysis (Table 3): (a) the sampling 
blanks (eg, unused materials for sample collection such as paper-
points, swabs, brushes, and unused sample transport fluids) for 
assessment of contamination during the sample collection or trans-
portation process; (b) the DNA extraction blanks for the assessment 
of contaminant DNA from the extraction kits; and (c) the no-tem-
plate amplification blanks for assessment of the contamination from 
the PCR reagents.

3.7.2 | Positive controls

In addition to the negative controls, two types of positive con-
trols should be included and processed together with each batch 
of samples (Table 3). The first type is the DNA extraction positive 
control. For this, a mock community—known dilutions of known 
bacterial cells—or a standard sample (eg, a large volume of pooled 
saliva, aliquoted and stored at −80°C) are used. The second type 
is the DNA amplification positive control, which can be obtained 
by creating a DNA stock from either the mock community or from 

TA B L E  3   Negative and positive controls that should be included in microbiome studies

Negative controls Positive controls

- Sampling blanks (eg, unused paperpoints, brushes, tubes with transport 
fluid)

- DNA extraction blanks
- Amplification blanks

- Known dilutions of known bacterial cells (mock community) or a 
standard sample as DNA extraction controls
- Known dilutions of known bacterial DNA (mock community) or a 

standard sample as amplification controls
- A standard sample or a mock community in studies with multiple 

sequencing runs to assess potential batch effects
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the standard sample. Positive controls allow assessment of ex-
perimental bias in sample processing. Additionally, in studies with 
more than one sequencing run, positive controls should be used 
to assess the variability among the different runs (batch effects).

4  | SAMPLE PROCESSING

4.1 | Sample collection methodology

Depending on the sample type, different sample collection methods 
are used; most of these were discussed in section 3.6 (Sample type 
choice). Irrespective of the sample type, the sampling method should 
have a low risk of introducing contamination to the sample. For in-
stance, for subgingival plaque sampling, sterile curettes should be 
chosen over paperpoints if these cannot be claimed to be bacterial 
DNA-free.124 Additionally, the sampling method should be feasible 
to perform under the conditions of the given study, considering the 
skills of the operator (eg, self-sampling at home, sampling by a medi-
cal nurse or a trained dental professional).

4.2 | Sample transport and storage

In the ideal situation, clinical samples are collected, placed in an 
empty, DNA-free, sterile, and prelabeled tube, put on ice immedi-
ately, transported to the laboratory while on ice and stored at −80°C 
within 2 hours. Instant (snap) freezing, for example, by submerging 
the sample tube in liquid nitrogen is the best prerequisite to avoid 
changes in the sample, highly relevant for studies on microbial activ-
ity and not only taxonomic composition.

However, such ideal conditions are not always feasible, for exam-
ple, as a result of sampling at home or in the clinic without a labora-
tory in the vicinity. Several studies have compared different sample 
preservation protocols for transportation and storage at an ambient 
temperature or in freezers at −20°C instead of −80°C (Table 4). There 
are expensive, commercially available products specifically aimed at 
bacterial DNA or RNA preservation, such as RNAProtect solution 
(Qiagen Inc.) that can be prefilled in the sample tubes, or previously 
mentioned specific sampling kits, such as OMNIgene saliva kit (DNA 
Genotek). To lower the study costs, alternative fluids, such as ex-
isting microbiologic sample transport media (eg, viable transport 
medium Gothenburg II, liquid dental transport medium) and anti-
septic mouthwashes (eg, Scope), are used for sample preservation. 
Tris(hydrocymethyl)aminomethane-ethylenediaminetetraacetic acid 
(TRIS-EDTA) buffer combined with 0.5 M sodium hydroxide has 
been used for samples collected for DNA-DNA checkerboard anal-
yses.129,130 The presence of ethylenediaminetetraacetic acid influ-
ences the magnesium concentration necessary for Taq polymerase 
activity,131 while the high pH will affect the optimum pH for the 
polymerase. Therefore, sample storage in TRIS-EDTA buffer in 0.5 M 
sodium hydroxide is not a suitable approach for PCR-based methods 
such as amplicon sequencing.

The studies above are small-scale studies, highly heterogeneous 
in sample types, collection methods, storage conditions, and in ap-
proaches to assessing compositional differences. Additionally, it is 
not clear if, besides the sample stabilization, the additives influence 
microbial composition directly. This precludes a selection of the 
most optimal method for oral sample transportation and storage. 
For this, a systematic study comparing the available protocols still 
needs to be performed.

4.3 | Bacterial DNA isolation

Only when the entire sample collection process is finished can the 
next step in sample processing—the isolation of bacterial DNA—start. 
It should be noted that it is advisable to wait with isolating DNA if it is 
not going to be processed further right away. DNA deteriorates and 
loses its quality during prolonged storage. Another reason for waiting 
with DNA isolation and processing all samples in one go is to reduce 
the risk of batch bias. Importantly, the samples belonging to different 
treatments should be randomized to avoid sample differences because 
of a batch effect, while time series (samples collected from the same 
individual at numerous time points) should preferably be processed to-
gether, in one batch, to reduce the inter-sample variability.

TA B L E  4   Comparison of different oral sample transportation 
and storage methods

Preservation 
method

Microbial composition in comparison with 
other methods

OMNIgene saliva 
kit

Did not differ from samples without any 
additives if both directly stored at −80°C113

Storage for days at RT – no difference in alpha 
diversity from direct storage at −80°C210

Storage at RT for 14 d – different from storage 
directly at −80°C210

Reduced proportion of Firmicutes after 
storage at RT for 5 or 7 d compared with 
direct storage in LDTM medium at −80°C210

LDTM medium Storage at RT for 2 d – no difference with 
direct storage at −20°C210

RNAProtect 
solution

Different composition after 2 wk at RT 
compared with direct storage in VMGII 
medium at −20°C211

VMGII medium Storage for 2 wk at RT – no difference with 
direct storage in VMGII medium at −20°C211

Scope 
mouthwash

Storage at RT for 4 d – no difference with 
direct storage at −80°C111

TRIS-EDTA/0.5 M 
NaOH (TE)

Storage at −20°C for 6 or 12 mo – different 
from direct processing (DNA-DNA 
checkerboard) or storage for 6 wk at 4°C130

Storage for 12 mo – different from short-term 
storage at different temperatures by DNA-
DNA checkerboard129

aAbbreviations: EDTA, ethylenediaminetetraacetic acid; LDTM, liquid 
dental transport medium; TRIS, tris(hydrocymethyl)aminomethane; 
VMGII, viable transport medium Gothenburg II. 
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Different sample types (eg, saliva, plaque, and mucosal tissue bi-
opsy) will require different first steps in their processing. If the sam-
ples are stored in a transport fluid, this usually needs to be removed 
first. Thereafter, the obtained sample pellet should be subjected to 
cell lysis. This can be done either chemically (eg, with phenol/chlo-
roform, TRIS-EDTA buffer), enzymatically (eg, using lysozyme, pro-
teinase K, achromopeptidase) or mechanically (eg, by bead beating in 
the presence of high-density beads), but preferably by a combination 
of these methods. Cells of the Gram-positive bacteria are generally 
more difficult to lyse and will require a mechanical lysis step.132

After cell lysis, the DNA needs to be separated from the lysate 
and purified. This is typically done using one of the commercially 
available DNA isolation kits developed for specific sample types 
and purposes (Table 5). In gut microbiome research, recent exten-
sive study systematically compared 21 protocols for DNA isolation 
methods from fecal samples, and reported a large variation in DNA 
yield and quality between the protocols used.133 The protocols that 
performed best resulted in higher alpha diversity and included steps 
of mechanical lysis with zirconia beads and shaking.

A similar study has not yet been performed on oral samples. 
Instead, there are numerous highly heterogeneous small-scale stud-
ies, typically comparing a few DNA isolation protocols in different 
types of oral samples stored using different storage conditions, all 
introducing bias in the sample composition (Table 5). This makes 
advising regarding the best methodology difficult based on current 
literature. Therefore, studies like those conducted by Costea et al,133 
but on oral samples, would be welcomed.

After DNA isolation, the DNA yield and quality have to be de-
termined. For this, spectrophotometric DNA measurements by 
nanodrop (ThermoFisher Scientific) or agarose gel electrophoresis 
are frequently used. However, these methods are not particularly 
sensitive, and low biomass samples will result in unreliable measure-
ments. To increase the sensitivity and accuracy, quantitative PCR on 
conserved regions of 16S rRNA gene can be used for bacterial DNA 
quantification.134

It is important for researchers performing more than one mi-
crobiome study and aiming to compare their findings with those 
from their own future studies that the same laboratory facilities and 
equipment are used, as well as the same sample processing proto-
cols, while insuring that all procedures are performed under aseptic 
conditions.126

5  | AMPLICON PREPAR ATION AND 
SEQUENCING

The steps after the sample DNA isolation, purification, and quantifi-
cation are: (a) the amplification (preparation of individual amplicons or 
PCR products) of a specific part of the 16S rRNA gene of each sample 
together with a barcode that allows unique indexing of each amplicon; 
(b) preparation of the amplicon mix (pooling of individually barcoded 
amplicons into an equimolar mix); and (c) sequencing (reading the 

order of nucleotides) of individual sequences (reads) in this amplicon 
pool using one of the next generation sequencing technologies. There 
are some crucial decisions that should be made upfront.

5.1 | Hypervariable region choice

The component of the small ribosomal subunit gene, the 16S rRNA 
gene, is approximately 1500 base pairs long and contains nine highly 
conserved parts, which are nearly identical in most bacteria, and nine 
hypervariable regions, parts of which have slowly evolved and can 
be used for discriminating different bacterial taxa. Unfortunately, 
different hypervariable regions evolved differently and there is 
no single region that would be able to distinguish all bacterial line-
ages.135,136 The most optimal would be sequencing the entire gene, 
thus about 1500 bases. To date, this is possible with few sequencing 
technologies (Table 6). However, most studies currently use tech-
nologies that are high throughput and deliver shorter but high qual-
ity sequencing reads. For this, one should choose which region(s) or 
combinations of regions to target.

The importance of the 16S rRNA gene hypervariable region 
choice was clearly illustrated in the early days of the next genera-
tion sequencing era using 454 pyrosequencing technology: results 
obtained from sequencing different hypervariable regions (V1-V3, 
V4-V6, V7-V9) of subgingival plaque bacterial DNA differed signifi-
cantly.137 For example, the genus Fusobacterium accounted for 18% 
of the sequences in the data set from V1-V3, for 4% in the V4-V6 
data set, but was not detected at all in the data set from V7-V9. 
Thus, the latter region was not discriminatory enough for this spe-
cific taxon, and the respective sequences were classified at a higher 
taxonomic level (eg, class, order, or phylum) instead.

To assist in the choice of region, especially if there is no previ-
ously published comparison available on the particular sample type 
targeted by different regions, there are tools available which allow 
in silico assessment of the taxa that could at least theoretically be 
distinguished by specific primers aimed to amplify specific hyper-
variable regions.138,139

Since the introduction of the V4-based Illumina MiSeq proto-
col,140 the V4 hypervariable region has been frequently chosen 
ahead of others. This is mainly because this region is entirely covered 
by the two 250 nucleotide paired-end reads (thus, sequenced from 
both ends, creating a complete overlap), thereby reducing the error 
rate to a minimum.141

Besides the taxonomic differences introduced by the use of dif-
ferent hypervariable region(s), each primer pair will have their own 
primer bias: some taxa will be amplified more efficiently than oth-
ers. Although most prokaryotes share the conserved regions of the 
16S rRNA gene, there are no universal primers which will amplify all 
bacterial taxa. Some primer sets include degenerate bases (a mix of 
a number of possible bases instead of a single base) to reduce mis-
matches with bases of the 16S rRNA region and improve amplification 
of taxa that otherwise would not amplify or amplify less efficiently.
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In summary, differences in universal primers and in hypervari-
able regions will affect the data obtained from the sequencing run. 
Again, as with sample processing, one should choose the method-
ology carefully and be consistent, as the results will not be directly 
comparable with studies using different methods.

5.2 | Sequencing platform choice

Yet another design option is the choice of sequencing platform. The 
first sequencing method was developed in 1977 by Sanger et al142 
and was revolutionary for that time, maintaining a monopoly until 

TA B L E  5   Studies of different DNA isolation methods from various samples of oral and nonoral origin

Sample type and 
reference

DNA extraction method/study design/
samples per method/output Lysis step Main results

Fecal samples: 
Costea 
et al (2017)133

Part 1: compared variability introduced by 
21 different DNA extraction methods and 
nonkit-based protocols; N = 4

Illumina HiSeq WGS
Part 2: three best performing protocols tested 

in four different labs. Next to this samples 
spiked with mock of 10 nonstool bacterial 
species; N = 6

Illumina HiSeq WGS

Chemical, enzymatic, and 
mechanical lysis by shaking 
or BB

Mechanical lysis

Mechanical lysis, ZB, and shaking 
positively associated with diversity

For both parts Qiagen QIAamp stool 
kit seems to perform best

Oral swabs, 
fecal, skin, 
marine, matrass 
samples: Marotz 
et al (2017)212

MoBio PowerMag Soil DNA isolation kit, 
adapted for three robotic systems vs column-
based method; sample size not reported

Roche 454

Not mentioned Magnetic method as good as column-
based method

Saliva spit, drool, 
and oral rinse 
samples: Lim 
et al (2017) 113

Part 1: spit directly stored at −80°C in 
OMNIgene or PBS. Three DNA isolation kits 
vs phenol chloroform; N = 20

Part 2: three saliva fractions, one DNA 
extraction method; N = 30

Illumina MiSeq

BB in lysis buffer followed 
by incubation at 70°C, then 
proteinase K

Part 1: Maxwell Kit performs best 
with spit samples in PBS.

Part 2: different sample types lead to 
different DNA quality and quantity

Serially diluted 
saliva, upper 
airway 
communities: 
Biesbroek 
et al (2012)134

Four DNA extraction protocols; N = 32
Roche 454

Chemical/enzymatic 
lysis, BB, and BB/phenol 
protocols

At low DNA concentrations the 
microbial profiles deviated from 
the origin. DNA yield depends on 
isolation method. Results of BB/
phenol with Agowa kit the best

Mock community, 
subgingival 
plaque: Abusleme 
et al (2014)213

Part 1: Mock community from 7 species: 4 lysis 
and 2 DNA isolation methods; N = 4

Part 2: Subgingival samples: 2 lysis and DNA 
isolation methods; N = 2

Roche 454

Crude chemical enzymatic 
lysis (C), C + DNeasy kit 
(Q), C and boiling + Q, 
BB + FastDNA Spin Kit (BB)

The method containing BB is the only 
one able to detect all species in the 
mock community

Saliva: Lazarevic 
et al (2013)214

Two lysis protocols; N = 3
Roche 454

Proteinase K with lysis buffer 
vs mechanical disruption in 
lysis buffer

Mechanical lysis results in higher 
abundance for certain species and a 
higher OTU richness

Oral mouthwash 
samples: Sohrabi 
et al (2016)132

Part 1: eight lysis methods; N = 4
Part 2: reproducibility of 3 consecutive DNA 

extractions; N = 3
DNA yield, DNA quality, qPCR on total 

bacteria, Firmicutes and human DNA

M1: lysozyme (L); M2: 
L + GB; M3: L + ZB; M4: 
Achromopeptidase (A), 
Tris-EDTA & GB; M5: A, 
Tris-EDTA and ZB; M6: L & 
A; M7: GB; M8: ZB

Cell lysis with ZB and L more effective 
than other methods

Saliva and dental 
plaque: Vesty 
et al (2017)215

Four DNA extraction methods; N = 3
DNA yield, Microbiome 16S V3V4 and 

Mycobiome ITS1.
Illumina MiSeq

Mechanical, enzymatic, 
phenol/chloroform

Plaque: not affected by DNA isolation 
method. Saliva: three out of four 
DNA methods did not fully result in 
ITS (mycobiome) sequences

Oral mouthwash 
samples: 
Rosenbaum 
et al (2019)216

Eight DNA isolation protocols; N = 6
16S V6 and ITS1 region sequencing
Illumina MiSeq

Methods including additional 
enzymatic and mechanical 
(BB) cell disruption steps

DNA yield differed between kits, 
microbiome results did not

aAbbreviations: BB, bead beating; GB, glass beads; TRIS-EDTA, tris(hydrocymethyl)aminomethane-ethylenediaminetetraacetic acid; ZB, zirconia 
beads. 
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first of the next-generation sequencing technologies, namely, py-
rosequencing by 454 Life Sciences, became available in 2005. The 
advantage of next-generation sequencing compared with traditional 
Sanger et al sequencing was the ability to sequence hundreds of 
thousands of sequences simultaneously (compared with a single se-
quence by Sanger et al sequencing) without the need of a cloning 
step before the sequencing step. The largest disadvantages were the 
short reads (only 50 base pairs in the earliest editions), high costs, 
and extremely high error rates. Since then this field has evolved at 
an immense speed.

Second generation sequencing (454, Illumina, Ion Torrent, 
SOLiD) has been followed by third generation (Pacific Biosciences 
of California, Oxford Nanopore Technologies). Currently, there 
are multiple platforms available to choose from, each using differ-
ent technologies, with large variation in their costs, read length, 
and quality (Table 6). Third-generation sequencing such as Pacific 
Biosciences single molecule, real-time sequencing and nanopore se-
quencing do not require an amplification step before the sequencing 
and the signal is captured in real time.143 To date, however, these 
methods suffer from low accuracy and require either a production 
of consensus sequences (circular consensus sequencing PacBio) or 
application of extensive sequence correction tools.144

Currently, because of the high quality, broad availability, and 
relatively low sequencing costs, the Illumina MiSeq platform is 
most frequently chosen in published studies on the oral micro-
biome, followed by Illumina HiSeq2000. Comparison of the per-
formance of these two platforms led to a conclusion that the 
results are consistent across the platforms.145 Sporadically, other 
platforms, for example in a study on saliva samples using the Ion 
Torrent PGM platform,146 or on saliva and dental plaque using 
Pacific Biosciences’ single molecule, real-time platform,147 are 
used. Most likely, third-generation sequencing platforms will gain 
in popularity in the future.

Because the cost of sequencing is no longer a limiting factor 
and next generation sequencing platforms have an extremely high 
throughput, the number of samples per sequencing run can be 
increased to support many more indices: 1536 or even 147 456 
(384 × 384) unique combinations and thus number of samples per 
run.141,148 Sequencing microbial communities such as human mi-
crobiome at a higher depth does not provide more information if 
sequenced at about 40 thousand reads per sample on MiSeq com-
pared with about 1.2 million reads per sample on HiSeq platform.145 
Increase in sequencing depth per sample (thus less samples with 
more reads per sample) would only be relevant if the “rare bio-
sphere” is targeted.

6  | BIOINFORMATIC S

The sequences obtained using one of the next generation sequencing 
technologies need to be processed into a data set that can be used 
for testing the study hypothesis. In the early days of microbiome 
research, researchers had to rely on separate, custom-made scripts, 

using a command line and requiring long computing times.4,149 In the 
past decade, this field has evolved from numerous web-interfaces 
and software packages that combine several tools to complete self-
contained data-processing and analysis pipelines such as QIIME 
and mothur (Table 7). For the advantages and shortcomings of the 
majority of these tools, refer to systematic comparisons published 
elsewhere.150,151

Below, we briefly summarize the data-processing steps and is-
sues that are of importance in generation of valid study outcomes.

6.1 | Data quality-filtering

First, the sequences have to be quality-filtered: the bases or reads 
with low quality scores (assigned to each read during the sequenc-
ing run) have to be removed. There is no default way to filter low 
quality regions or reads. The filtering depends on the sequencing 
platform, pipeline, and specific filtering method used. Therefore, 
these details should be reported in manuscripts. Each read is as-
signed to its sample of origin based on the barcode or index se-
quence. If the barcode and the primer were part of the sequence, 
these are trimmed off. Paired-end reads are merged. Reads not as-
signed to any samples, reads of insufficient length, or reads with 
ambiguous bases, are generally removed.152 Next, chimeras or 
sequences that result from chimeric amplification during the PCR 
process need to be identified and removed.153 One can choose a 
specific software for identification of chimeric sequences or rely 
on tools provided by the respective complete data-processing 
pipeline.150 In QIIME the default method is ChimeraSlayer,154 while 
in mothur it is UCHIME.155

6.2 | Sequence clustering in operational taxonomic 
units or single nucleotide resolution

6.2.1 | Operational taxonomic units 

After quality-filtering, sequences are usually grouped (clustered) 
in operational taxonomic units, typically at a 97% similarity level, 
which was proposed in the 1990s as an approximation of bacterial 
species.156 This threshold leads to a reduced contribution of po-
tential errors introduced both by PCR and sequencing in the final 
data set, called an operational taxonomic unit table. There are three 
approaches for operational taxonomic unit clustering: a de novo 
approach (without external reference sequences),157 or reference-
based approaches which can be either closed (entirely reference-
based) or open. In closed reference-based clustering, all sequences 
that do not match with a sequence in the reference database are 
discarded. The open reference-based method is a combination of a 
closed-reference method followed by de novo clustering of previ-
ously unmatched sequences. It has been shown that these different 
clustering approaches result in a different number and composi-
tion of operational taxonomic units.158-160 Also, a single operational 
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taxonomic unit can contain groups of sequences that each could 
individually be assigned to a different, related taxon. Additionally, 
clustering the 16S rRNA gene fragment at a 97% similarity will un-
derestimate bacterial diversity in the sample, especially in the oral 
microbiome, where several closely related taxa will be clustered in 
one operational taxonomic unit. A recent study on comparison of 
97% threshold with clustering at higher similarity found that at a full 
length of the 16S rRNA gene 99% similarity was the most accurate in 
taxonomic assignment of the sequence, while for the V4 hypervari-
able region 100% similarity was the most optimal.161

6.2.2 | Single nucleotide resolution

To reduce the dependency from sequencing errors and to obtain 
a data set at a single nucleotide resolution, thus at 100% instead 
of 97% sequence similarity, different error-correction or denoising 
approaches have become available (Table 7). Instead of operational 
taxonomic units, the data table will contain features at a 100% se-
quence identity or single nucleotide resolution, such as zero-radius 
operational taxonomic units,162 oligotypes, or minimum entropy 
decomposition nodes,163 amplicon sequence variants,164 or sub-
operational taxonomic units.165 Sequences from soil samples, when 
processed into amplicon sequence variants, sub-operational taxo-
nomic units, zero-radius operational taxonomic units, or operational 
taxonomic units at 97% similarity, resulted in slightly different final 
data tables and the results were similar at the community level but 
were not the same if alpha diversity was considered.166 This would 

become an issue if one aims to identify rare taxa from the back-
ground noise.

6.2.3 | Taxonomy assignment

Each feature (eg, operational taxonomic unit, zero-radius opera-
tional taxonomic unit, or minimum entropy decomposition) in the 
data table needs to be assigned a taxonomy. This is done by com-
paring the sequences from the data set with the sequences in a 
16S rRNA gene reference database. There are large databases, 
such as SILVA,167 Greengenes,168 and the Ribosomal Database 
Project,169 containing bacterial sequences from all areas of micro-
biology, and specific databases limited to a single bacterial habitat, 
such as HOMD170 and CORE,171both of which are limited to se-
quences of microbiota previously associated with the oral cavity. 
The advantage of using databases tailored for the oral microbes is 
their higher taxonomic resolution than the broad databases. On 
the other hand, oral samples, especially if originating from immu-
nocompromised individuals or very young children, may contain 
sequences that are not normally found in the oral cavity but are 
common in other environments such as water or soil. Depending 
on the sample, a larger or smaller proportion of the sequences in 
the data set will not be assigned taxonomy using the oral database 
alone or will be classified at a very low resolution such as phylum 
or even domain level. Therefore, a taxonomy assignment with one 
of the broad-range databases should be performed in parallel to 
the oral database.

TA B L E  7   An overview of 16S rRNA gene amplicon data-processing software

Process Tool Description

Quality control FastQC217 Quality control of raw sequencing data

Self-contained analysis 
pipelines (including 
quality-filtering, chimera 
removal, the construction 
of OTU tables, 
assignment of taxonomy, 
with or without data 
analyses)

QIIME218 Quantitative Insights Into Microbial Ecology. Software pipeline from raw sequencing data 
until data interpretation (visualization, statistical tests)

QIIME 2192 Redesigned QIIME. Supports processing the sequence data as well as downstream 
analyses

Mothur219 A single software package for the analysis of amplicon sequencing data

MG-RAST220 MetaGenome Rapid Annotation using Subsystem Technology, a web-based pipeline, also 
used for the analysis of shotgun metagenomics data

USEARCH 
(UPARSE)221,222

Software that supports all steps necessary to produce an OTU table and some downstream 
analyses

VSEARCH223 A free open-source alternative to USEARCH that supports most but not all algorithms of 
USEARCH

Creation of single-
nucleotide resolution of 
sequences

Minimum Entropy 
Decomposition163

An information theory-based clustering algorithm for sensitive partitioning of sequences. 
Provides single-nucleotide resolution (oligotypes or MED nodes)

UNOISE162,224 An algorithm within USEARCH for error-correction of the amplicons. Creates high 
resolution OTUs referred to as zOTUs

DADA2164 Corrects Illumina-sequenced amplicon errors, providing single-nucleotide resolution as 
ASVs

Deblur165 Produces sOTU with single-nucleotide resolution (putative error-free sequences); 
processes each sample independently

Abbreviations: ASVs, amplicon sequence variants; MED, minimum entropy decomposition; OTU, operational taxonomic unit; sOTU, sub-operational 
taxonomic unit; zOTU, zero-radius operational taxonomic unit
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6.3 | Data analyses

6.3.1 | Assessment of study controls

One crucial step before addressing the research question and look-
ing at the study outcomes is a critical assessment of the study con-
trols (Table 3). Negative controls are contaminated if they present 
high DNA yield relative to the samples and a high number of se-
quencing reads per control, at or above the detection limit of the 
positive controls (if these were included at various dilutions). In 
such a case, the data from the samples which had low DNA yield, 
resulted in a low number of reads, or both, should be discarded. 
Next, the sequences dominating in the controls should be com-
pared with those in the samples. After identification of the con-
taminants, these should be subtracted from the final data set and 
reported as such. One may use a very conservative approach by re-
moving all taxa present in the controls, but this may lead to removal 
of taxa that are truly present in the samples. There are filtering ap-
proaches available that would avoid the aforementioned issue.172-

174 Also, one can use predictive modeling provided by tools such as 
SourceTracker175 to identify putative contaminants in the data set.

In large-scale studies involving several sequencing runs and pro-
cessing batches, the data from the positive controls should be used 
to assess the run-to-run variability and a potential batch effect.

6.3.2 | Data normalization issue

Although sequencing is performed with an equimolar amplicon mix of 
the samples, there are always inaccuracies in library standardization 
and amplicon pool mixing and thus library size standardization, as well 
as in the sequencing process itself. These inaccuracies may lead to a 
10- or even a 100-fold range in the number of reads per individual 
sample, which in turn will influence the study results: the samples se-
quenced at a higher depth will have higher species richness (number 
of taxa) than those at a lower sequencing depth, without any biologic 
reason behind these differences. Therefore, the data need to be nor-
malized before the downstream analyses can be performed.

Currently, the most commonly applied normalization is rarefac-
tion of samples to an equal depth (random subsampling without 
replacement), which results in discarding the remaining reads as 
well as samples with a depth below the chosen threshold from the 
data set. Rarefying samples for library size normalization is pres-
ent in all major data-processing and analysis pipelines. This method 
is not ideal, as it may reduce statistical power because of the loss 
of information, especially if too many samples are removed as a 
result of not reaching the rarefaction threshold. Additionally, this 
method does not address the compositional nature of the data (see 
the next section). Rarefaction has received criticism when compared 
with other normalization methods based on statistical mixture 
models.176 However, other researchers have shown that random 
subsampling to an equal depth may actually outperform other 
methods177: for sample groups with large (10-fold) differences in 

the mean sequencing depth, rarefying was shown to lower the false 
discovery rate compared with a normalization by distribution used 
in DESeq2.178 Another study addressing the normalization issue 
concluded that the best method will depend on the exact structure 
of the data.179 To date, there is no consensus on the best method for 
normalization, but one should be aware that the method used may 
impact the study results.177,179

6.3.3 | Data compositionality issue

The compositionality of the data is an issue that is frequently un-
derestimated or ignored in microbiome studies. Compositional data 
consist of relative abundances or proportions of various features 
(taxa), and the total (reads/sample) of it is arbitrarily imposed by the 
sequencing instrument.180,181 Gloor et al180 clearly illustrated the im-
portance of acknowledging that microbiome data should be treated 
as compositional (Figure 4). The compositional nature of microbiome 
data has large consequences on correlation analyses, as it is vulner-
able to negative correlation bias and instability of correlation.180

To deal with compositional data, it is advised to perform logarith-
mic ratio transformation (eg, log-ratio, centered log-ratio, isometric 
log-ratio, additive log-ratio transformations).180 These transforma-
tions, however, suffer from the sparsity of the data (a high count 

F I G U R E  4   Illustration of the compositionality of the microbiome 
data, from Gloor et al180 (A) showing that the data obtained after 
sequencing cannot provide information on the absolute abundance 
of bacteria. The number of counts (reads) in the data set reflects 
the proportion of counts per feature (eg, operational taxonomic 
unit, gene) per sample, multiplied by the sequencing depth, thus 
the relative abundances. The bar charts in (B) show the difference 
between the bacterial count and the proportion of bacteria for two 
features, A (red) and B (gray) in three samples. Features A and B in 
samples 2 and 3 appear with the same relative abundance, although 
the absolute counts in the environment were different. The table in 
(C) shows real and perceived changes for each sample in transition 
from one sample to another
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of zeros in the data table; logarithm of zero is undefined). For that, 
specific methods can be applied such as implemented in the zCom-
positions R package180,182 or pseudo-counts can be used, although 
there is no consensus on the pseudo-count value.177

In their work, Gloor et al180 provide a list of methods and down-
stream analyses that account for data compositionality. It is import-
ant to realize that ignoring the compositional nature of the data may 
lead to erroneous conclusions not based on true biologic differences.

6.3.4 | Downstream analysis tools

Finally, what remains is to make sense out of the data. Already in the 
planning stage of the study, one is advised to become acquainted with 
the amplitude of the downstream tools which can be used for analyz-
ing the data, depending on the study design and hypothesis. For this, 
reading tutorials and user manuals of one of the major pipelines such 
as mothur or QIIME may be useful. These will include, but will not 
be limited to the alpha (within-sample) and beta (between-samples) 
diversity assessment, data visualization by ordination techniques 
such as principal component analysis or principal coordinate analysis, 
and the use of appropriate statistics. Some of these approaches have 
been clearly explained and illustrated by Goodrich et al.19

Beyond the tools implemented in the above-mentioned data 
analysis pipelines, several software tools are available for compari-
son of two or more groups of microbial communities or for identify-
ing differential taxa between the groups (Table 8).

Only recently, specific tools for longitudinal microbiome data sets 
have become available.183 The QIIME2 pipeline now supports analyses 
of time-series data using q2-longitudinal software plugin,184 while new 
dynamic models have been reconstructed from time series data.185

6.4 | Reporting of the study, data 
deposition, and reuse

As already stated in the section on study metadata (section 3.5), 
each study should be reported in a way that study methods can 

be reproduced. A detailed description of the study population with 
the necessary metadata, detailed and properly referenced methods 
on sample collection procedure, sample processing, as well as the 
steps involved in data creation and processing, should be reported.

Recently, FAIR guiding principles for scientific data management 
and stewardship have been proposed.186 FAIR stands for Findable, 
Accessible, Interoperable, and Reusable, and refers to improved in-
frastructure that will support the reuse of scientific data. The ma-
jority of current research data are obtained with public funding and 
should therefore be publicly available.

6.4.1 | Data depository

Most journals but also research funding organizations require authors 
to make their sequencing data available. This could be “available upon 
request”, but most often data deposition is required in publicly avail-
able databases, such as the Sequence Read Archive (often referred to 
as the Short Read Archive) of the National Center for Biotechnology 
Information187 and the European Nucleotide Archive.188 Together with 
the data, a minimum amount of information on the experiment has to 
be provided, including details on sequencing, such as the target gene 
or gene region, the sequencing method used, and a reference to the 
publication with details regarding the study.189,190 Both the Sequence 
Read Archive and European Nucleotide Archive deploy data stand-
ards and checks on data submission in collaboration with the Genomic 
Standards Consortium. However, it still remains the responsibility of 
authors to make the data and metadata publicly available.

6.4.2 | Data reuse

Usually an omics study, such as the microbiome, is published in 
a relatively condensed way, presenting the major findings of the 
study in the main and supplementary material. This, however, does 
not mean that the scientific value of the data is exhausted. For 
example, the data obtained in the aforementioned study on the ef-
fects of antibiotics 42 were reanalyzed by experts in data modeling 

Tool Description

MaAsLin225 Multivariate Association with Linear Models
Finds associations between clinical metadata and microbial community 

abundance or functions

LEfSe226 Linear discriminant analysis Effect Size
Is used for discovering “biomarkers” discriminating between groups

PICRUSt227 Predicts functional composition of microbial communities using 16S rDNA 
sequences and a database of reference genomesTax4Fun228

STAMP229 STatistical Analyses of Metagenomic Profiles
Tool for comparative metagenomics. This can be used on the results of 

PICRUSt or Tax4Fun. Provides statistical analyses and plots showing the 
different features (functions/taxa) between groups

Phyloseq230 Supports handling of microbiome data as well as analysis and visualization

TA B L E  8   Examples of downstream 
analysis tools for 16S rRNA gene amplicon 
data
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and provided additional insights.191 Although the possibility of 
combining different microbiome data sets from several studies into 
a single data set and performing a meta-analysis is currently still a 
challenge because of heterogeneity in study methodology, it will 
certainly become of high scientific value. This can only be possible 
if the data are findable (via an accession number in the publication) 
and well documented by all necessary metadata. Often, reanalysis 
of deposited data of a single study takes substantial effort and 
necessitates contacting the authors because of missing metadata, 
erroneous data accession numbers, or a lack of description in the 
processing steps, even in the accompanying publication.

In general, reproducing the study outcomes should always be 
possible if the methods used are provided in sufficient detail in the 
publication. To assist researchers, recent microbiome processing 
pipelines, for example, QIIME 2192 and DADA2/phyloseq,193 focus 
more on reproducible workflows.

7  | OPEN QUESTIONS REGARDING THE 
QUALIT Y OF OR AL MICROBIOME STUDIES

Currently, the body of scientific knowledge is not always large or 
robust enough to pose a meaningful hypothesis for every microbi-
ome-based study.194 It is also likely that other confounding factors 
besides those listed in Table 1 influence the oral microbiome. This 
implies that both hypothesis-driven studies as well as discovery-
based, exploratory studies should be performed. Both approaches 
are valuable, as long as the study aims and analysis methods are 
clearly determined beforehand. To ensure the robustness and ap-
plicability of the findings, the results need to be replicated, and this 
should be done using populations from geographically and cultur-
ally diverse populations. Studies that test and compare the validity 
and applicability of study power calculation methodologies are re-
quired, and user-friendly versions with simplified instruction manu-
als of these tools are welcomed. In order to better understand the 
limitations and the effects of different choices on the outcomes, 
there is an acute need for a systematic comparison of the methods 
for oral sample storage and processing, for protocols for DNA iso-
lation and primer choice for specific types of samples. Regarding 
study metadata acquisition, a questionnaire which could be used 
with all oral health-related factors should be developed and vali-
dated for use in oral microbiome studies. Finally, within the scien-
tific community, agreement on and adherence to minimum quality 
standards in the reporting and data deposition of (oral) microbiome 
studies is required.

To reach our ultimate aim—creation of knowledge that could be 
translated to clinical practice and personal oral care—we should take 
a lesson from the book Rigor Mortis by Richard Harris: “…to speed the 
development of medicine, biomedical science should actually slow 
down. This means taking on fewer projects and doing them more 
carefully. It means improving the quality of the scientific literature 
by publishing fewer, more careful papers.”195
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