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Abstract

Decoding brain cognitive states from neuroimaging signals is an important topic in

neuroscience. In recent years, deep neural networks (DNNs) have been recruited for

multiple brain state decoding and achieved good performance. However, the open

question of how to interpret the DNN black box remains unanswered. Capitalizing

on advances in machine learning, we integrated attention modules into brain

decoders to facilitate an in-depth interpretation of DNN channels. A four-

dimensional (4D) convolution operation was also included to extract temporo-spatial

interaction within the fMRI signal. The experiments showed that the proposed model

obtains a very high accuracy (97.4%) and outperforms previous researches on the

seven different task benchmarks from the Human Connectome Project (HCP)

dataset. The visualization analysis further illustrated the hierarchical emergence of

task-specific masks with depth. Finally, the model was retrained to regress individual

traits within the HCP and to classify viewing images from the BOLD5000 dataset,

respectively. Transfer learning also achieves good performance. Further visualization

analysis shows that, after transfer learning, low-level attention masks remained simi-

lar to the source domain, whereas high-level attention masks changed adaptively. In

conclusion, the proposed 4D model with attention module performed well and facili-

tated interpretation of DNNs, which is helpful for subsequent research.
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1 | INTRODUCTION

For many years, decoding the brain's activities has been one of the

major topics in neuroscience. Inferring brain states consists of

predicting the tasks subjects performed and identifying brain regions

related to specific cognitive functions (Friston et al., 1994; Lv

et al., 2015; McKeown et al., 1998; Norman, Polyn, Detre, &

Haxby, 2006). Deep learning (DL) methods based on a variety of artifi-

cial neural networks have gained considerable attention in the scien-

tific community for more than a decade, breaking benchmark records

Received: 14 October 2021 Revised: 29 January 2022 Accepted: 9 February 2022

DOI: 10.1002/hbm.25813

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2022;43:2683–2692. wileyonlinelibrary.com/journal/hbm 2683

https://orcid.org/0000-0002-8498-7388
https://orcid.org/0000-0003-2987-7378
mailto:wang506@ustc.edu.cn
mailto:bqiu@ustc.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm


in several domains, including vision, speech, and natural language

processing (Krizhevsky, Sutskever, & Hinton, 2017; LeCun, Bengio, &

Hinton, 2015). In this context, deep neural networks (DNNs), espe-

cially convolutional neural networks (CNNs), have been recruited for

brain decoding (Huang et al., 2018; Li & Fan, 2018; H. Wang

et al., 2019; Yin, Li, & Wu, 2020; Zhang, Tetrel, Thirion, &

Bellec, 2021), and achieved high accuracy (>90%) in brain multiple

state decoding (Nguyen, Ng, Kaplan, & Ray, 2020; X. Wang

et al., 2020). It is important to note, however, several open challenges

still need to be addressed while using deep learning to investigate

functional magnetic resonance imaging (fMRI) data.

The first challenge is the abstraction of complex temporo-spatial

features within the fMRI time series. A fMRI time series is a four-

dimensional (4D) data that consists of three-dimensional (3D) spatial

and one-dimensional (1D) temporal information, which means brain

regions engage and disengage in time during coherent cognitive activ-

ity (Chen, Kreutz-Delgado, Sereno, & Huang, 2019; Shine et al., 2016).

Inspired by this, Mao et al. (2019) developed a model of 3D CNN sta-

cks and a long short-term memory (LSTM) for spatial and temporal

feature abstraction, respectively. A bit more reasonable approach

would be to jointly leverage the inherent spatial–temporal information

in fMRI data (Ismail Fawaz, Forestier, Weber, Idoumghar, &

Muller, 2019). However, designing and optimizing architectures for

4D fMRI decoding is difficult due to the lack of systematic compari-

sons of various spatiotemporal processing and the substantial explo-

sion of computational and memory requirements.

The second challenge is the researchers' requirement for a higher

degree of accountability of the model, which is the core of the feasi-

bility and reproducibility of brain decoding (Lindsay, 2020). Deep

learning is regarded as a black-box model, and recent efforts have

been made to develop an interpretable brain decoding model through

feature ranking (Li & Fan, 2019), visualizing the convolutional kernels

(Vu, Kim, Jung, & Lee, 2020), guided back-propagation (X. Wang

et al., 2020), and so on. Improved DNN interpretability in fMRI analy-

sis could lead to more accountable usage, better algorithm mainte-

nance and improvement, and more open science (Tjoa & Guan, 2021).

Another challenge is the conflict between the DNNs' requirement

for large amounts of data and the relatively modest quantity of

datasets in typical cognitive research (Yotsutsuji, Lei, & Akama, 2021).

Most fMRI experiments comprise tens to hundreds of participants

due to experimental costs or participant selection. It is natural to use

transfer learning to alleviate the data scarcity problem in the target

domain (e.g., small sample datasets) by utilizing the knowledge

acquired in the source domain (e.g., large cohorts; Gao, Zhang, Wang,

Guo, & Zhang, 2019; Svanera et al., 2019; Thomas, Müller, &

Samek, 2019; X. Wang et al., 2020). The fMRI data vary across

datasets (e.g., scanner, scanning parameters, task design, template

space), so it remains an open question how far the DNN can transfer-

learn in fMRI.

Inspired by these challenges, the main contributions to this article

are threefold. First, we extended the problem of temporal modeling

and spatial feature extraction to the 4D convolution module and com-

pared various approaches to fMRI data processing. Second, we

employed the mixed attention modules to improve the decoding

performance, which not only enhanced the ability to distinguish and

focus on specific features but also presented an in-depth interpreta-

tion of CNN. Third, we explored the benefits of transfer learning in

fMRI analysis under different problem definitions and task design,

demonstrating that the model that captures cognitive similarities can

extend to distinguish individual trait differences.

2 | MATERIALS AND METHODS

2.1 | Dataset

2.1.1 | Human Connectome Project dataset

The minimally preprocessed 3T data from the S1200 release of the

Human Connectome Project (HCP; Glasser et al., 2013) were used in

this research. The present study included task fMRI of 1,034 subjects

during seven tasks: emotion, gambling, language, motor, relational,

social, and working memory (WM). The seven tasks, which lasted for

about 20–30 frames under different conditions during each block,

provided a high degree of brain activation coverage (Barch

et al., 2013). Thus, the parameter estimates of the model trained on

this dataset contained similarities to multiple cognitive domains and

were utilized as the source domain in the transfer learning experi-

ment. The HCP S1200 dataset has been preprocessed with the HCP

functional pipeline and normalized to the Montreal Neurological Insti-

tute's (MNI) 152 space. According to the previous studies (Nguyen

et al., 2020; X. Wang et al., 2020), only one condition was selected for

each task (Table 1) and resulted in 14,821 fMRI 4D instances across

all subjects and tasks. To save computing memory, a bounding box

with the size of [80, 96, 88] voxels was applied to each fMRI volume,

and the blank parts that did not contain brain tissues were

cropped out.

2.1.2 | BOLD5000 dataset

The BOLD5000 (Chang et al., 2019) dataset was also used for transfer

learning of the proposed model. The dataset selected event-related

design paradigms to investigate visual perception, which collected the

fMRI data of four participants while viewing 5,000 real-world images.

TABLE 1 Details of the selected HCP time series

Task

Selected

condition

Frames of the

block

Emotion Fear 26

Gambling Loss 39

Language Present story 29

Motor Right hand 17

Relational Relational 23

Social Mental 32

Working memory (WM) 2-Back places 39
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Each image was presented for 1 s and followed by a 9 s blank screen

with a fixation cross. Thus, a single trial lasted five frames (repetition

time, TR = 2 s). Two conditions of stimulus images were employed in

this study: Scene containing whole scenes and ImageNet focusing on

a single object. Implicit image attributes can provide category selectiv-

ity in high-level visual regions. Using fMRIPrep (Esteban et al., 2017),

the preprocessing including motion correction, distortion correction,

and co-registration to the corresponding T1w of the fMRI data was

applied. Then each volume was also cropped to the size of [80,

96, 88] voxels, and each segmented fMRI input covered the entire

trial and included two extra TRs extended forward and backward.

Thus, the size of the input data was [80, 96, 88, 7].

2.2 | The proposed neural network

The proposed model consists of a 4D convolution layer and four 3D

attention modules, followed by a fully-connected layer (Figure 1a).

2.2.1 | 4D convolution

The 4D convolution kernel K �ℝkl�kh�kw�kd�kc was applied to the input

x�ℝl�h�w�d�c, where l is the temporal length, h is the height, w is the

width, d is the depth, and c is the length of the channels. The 4D con-

volution operation, Conv4D, was implemented by two loops of the

native 3D convolution operation, Conv3D, of the Pytorch (Paszke

et al., 2019):

K � xð Þ¼
Xkl

i

Xl�klð Þ=stþ1

j

Conv3Ds¼2 K ið Þ, x j � stþ ið Þð Þ ,

where st is the temporal strides (st = 1, 2, …) and Conv3D employed

3D convolution with a spatial stride of s = 2. A stride of >1 leads to a

down-sample in the designated dimension. After the 4D convolution,

the temporal dimension was squeezed and flattened to channel

dimension of the subsequent 3D attention module.

2.2.2 | The attention module

The attention mechanism in the DNN selects focused regions and

thus enhances the discriminative representation of objects (Vaswani

et al., 2017). The attention module is also beneficial for optimizing by

serving as a gradient update filter to prevent gradients from noisy

regions. Inspired by previous researches (F. Wang et al., 2017; Woo,

Park, Lee, & Kweon, 2018), we developed a 3D mixed attention mod-

ule (Figure 1b), where the processing flow was split into the main

branch and the attention branch. The main branch serves for feature

extraction and retains effective back-propagation. The feature

processing in the main branch may be any convolution network

F IGURE 1 The proposed neural network. (a) The model consists of a 4D convolution layer, four 3D attention modules, and a fully-connected
layer to provide labeled task classes. (b) The attention module, which includes the main branch and an attention branch composed of down-
sample and up-sample paths, was connected by a shortcut skip
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structure, and the ResNet block (K. He, Zhang, Ren, & Sun, 2016) was

used in the present work. Formally, the output of the main branch is

denoted as M(x) with an input feature map x. The attention branch is a

U-shaped architecture (Ronneberger, Fischer, & Brox, 2015) to mimic

the feedforward and feedback attention processes. The down-sample

path is built by several stacks of a 3D MaxPoll and a ResBlock to cap-

ture valuable context at multiple scales. The symmetric up-sample

path consists of the same amount of trilinear interpolation and

ResBlock (Figure 1b). Finally, the output was normalized by a Sigmoid

function to obtain the A(x).

Naive dot production of two branches degrades the value of fea-

tures. Attention residual learning is used to ease this problem by con-

structing the attention branch as an identical mapping. Formally, the

output of attention module xiþ1 serving as the input of the next layer

is modified as:

xiþ1 ¼M xið Þ� 1þA xið Þð Þ:

What's more, the attention mask branch can be viewed as an iden-

tical mapping that changes adaptively as layers go deeper. What the

neural network learns at each level can be demonstrated by the distri-

bution of attention. The attention masks of each channel were visual-

ized to present an in-depth interpretation of the network by up-

sampling the feature map corresponding to A(x) and mapping it to T1w.

2.3 | Training and evaluation

The implementation of the different model variants is based on the

PyTorch framework. Training was performed on an NVIDIA GTX

1080Ti graphic card. To conduct a fair comparison, the batch size was

set to 16 and each model was trained for 60 epochs using the Adam

algorithm with the standard parameters (β1 = 0.9 and β2 = 0.999). The

learning rate was initialized at 0.0001 and decayed by a factor of

5 when the validation loss plateaued after 15 epochs. The loss con-

verged well and overfitting was not observed during validation experi-

ments. Our validation strategy employed a fivefold cross-validation

across subjects and the dataset was categorized into subsets as follows:

training set (70%), validating set (10%), and testing set (20%). Control

experiments were conducted on various model variants (Table 2) to

verify whether the 4D convolution and attention modules brought a

substantial improvement. We also analyzed a set of 4DResNet con-

sisting of different sizes of 4D kernels and presented comparison

results using different frames as input. A segment of k continuous

frames, which was randomly split from each instance, was used as input

for training. During the testing stages, the predictions for all segmenta-

tions of one instance are summed up, and the task label with the major-

ity vote is predicted to represent the final class of the instance.

2.4 | Transfer learning

Transfer learning describes a process in which a network is trained on

a source dataset and subsequently reuses the parameters of the

pretrained network that contained knowledge about the source

domain on the target dataset. Transferability is an important advan-

tage of deep learning methods compared with traditional methods in

fMRI decoding. To this end, the transfer learning strategy was applied

to evaluate the general use representation of the trained model.

2.4.1 | Inter-task (same dataset, different task)
transfers

Since fluid intelligence (gF) measures the intelligence-related score

which reflects inherent cognitive ability, there is great interest in

inferring gF from fMRI data (Greene, Gao, Scheinost, &

Constable, 2018; T. He et al., 2018, 2020). In the HCP data set, gF

was quantified using a 24-item version of the Penn Progressive Matri-

ces test. Here, we used the WM-trans-set, which is a subset of the

HCP dataset and only contains 2-back condition of WM task data for

inferring gF. The parameters of the low-level layers were adapted

from the pretrained model on HCP seven tasks, and the fully con-

nected layers were redefined and initialized. Besides, the loss function

was changed to MSE Loss. To avoid leakage of individual information,

the subjects which were split to pretrain/validate/test the model on

the pretraining on HCP dataset were also split to the same train/vali-

dation/test partition for transfer learning on the WM-trans-set. In

other words, the regression of gF should be validated and tested on

new, unseen subjects that could not belong to train partitions both of

pretrain and transfer learning. We evaluate the performance of trans-

ferability by comparing Spearman's correlation coefficient between

the predicted gF and the observed gF of the initial model, the trans-

ferred model, and the previous work (Greene et al., 2018).

2.4.2 | Inter-datasets (different dataset, different
task) transfers

BOLD5000 that selected event-related design paradigms is another

small sample target dataset including with four participants. The

source and target datasets are different in data statistics and distribu-

tions. The key idea of this workflow is similar to that mentioned

above. We fine-tuned the model to decode binary types of stimulus

images (scene vs. object) seen by subjects and employed the leave-

one-subject-out (LOSO) cross-validation, which means that the data

from three subjects was used to train and one to test.

3 | RESULTS

3.1 | Performance evaluation on HCP dataset

The performance of various models was compared by the mean and

SD of accuracy (Table 2). All of the proposed models effectively distin-

guished seven tasks, with the 4DResNet-Att outperforming the others

with an accuracy of 97.4% ± 0.4% (mean ± SD). Figure 2a shows the

decoding performance of 4DResNet-Att on seven cognitive tasks, and

2686 JIANG ET AL.



the confusion matrix shows a nice block diagonal architecture. The

cognitive tasks were accurately identified with the accuracy of: Emo-

tion (96.2 ± 0.2%), gambling (99.4 ± 0.3%), language (98.7 ± 0.4%),

motor (96.0 ± 0.4%), relational (93.6 ± 0.9%), social (99.4 ± 0.3%), and

WM (98.9 ± 0.4%). Furthermore, the confusion matrix showed mis-

classifications of the relational and the gambling, the emotion and the

gambling, the motor and the gambling, and the relational and the WM.

The superior performance of the 4DResNet-Att model in compar-

ison to the 3DResNet (X. Wang et al., 2020) and other recent

researchers (Nguyen et al., 2020) is possibly due to the capability to

handle complex spatiotemporal dynamics in fMRI series via 4D convo-

lution operations and the use of the attention mechanism to adap-

tively select a focused location.

Specifically, the 4DResNet is able to capture dynamic changes in

hemodynamic response on temporal dimension and to integrate these

representations from interconnected brain regions on spatial dimen-

sion. To evaluate whether 4DCNN brings a substantial improvement

over 3DCNN, the 4DResNet-Att model was compared with the

3DResNet-Att model on the same brain decoding tasks using different

lengths of frames as input (Figure 2b). Overall, the 4DResNet substan-

tially enhanced classification performance compared to the

3DResNet, except for the 7-frame condition. The low performance at

shorter fMRI input could be caused by two factors: (1) few informa-

tion in short input, especially in series shorter than a hemodynamic

response; (2) the 4DResNet tends to measure the relative dynamic

change over a long range. Besides, we also evaluated a set of

4DResNet consisting of different sizes of 4D kernels to decode brain

activity. Our results revealed that decoders with a short 4D-kernel

size achieved lower decoding performance than decoders using a rela-

tively longer 4D-kernel (Figure 2c).

Furthermore, to establish whether the use of attention mecha-

nisms could enhance fMRI decoding, we compared the 4DResNet

with attention modules and the naive 4DResNet. Figure 2c shows the

results. The 4DResNet-Att outperformed the naive 4DResNet on the

HCP dataset under different sizes of 4D kernel. In addition, the

4DResNet-Att network (about 12 hr) reduced nearly 1/3 of the train-

ing time compared with the naive 4DResNet (about 19 hr) while

achieving 90% accuracy. As expected, the capability of the attention

mechanism to adaptively learn the focused location brings increased

performance while reducing training time.

F IGURE 2 Performance evaluation on the HCP dataset. (a) The average confusion matrix showed a nice block diagonal architecture. (b) The
3DCNN and 4DCNN comparisons used different frames as input (frames = 7, 11, and 15). In terms of dynamic change over a long range, 4DCNN
outperformed. (c) The classification performance with or without the attention module (frame = 15). Decoders with attention and a relatively
longer 4D-kernel performed better

TABLE 2 Comparisons with previous methods on the HCP
dataset

Authors Model Accuracy ± SD

X. Wang et al. (2020) 3DResNet 93.7 ± 1.9%

Nguyen et al. (2020) 3DResNet-TF 95.1 ± 0.6%

3DResNet-LSTM++ 97.0 ± 0.4%

3DResNet-TF++ 97.2 ± 0.6%

Ours 3DResNet-Att 96.3 ± 1.1%

4DResNet 96.1 ± 0.8%

4DResNet-Att 97.4 ± 0.4%

The bolded values indicate the highest accuracy of different models.
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3.2 | Visualization of attention mask on the HCP
dataset

Previous studies have employed some visualizations to build an inter-

pretable brain decoding model in fMRI analysis (Vu et al., 2020;

X. Wang et al., 2020; Yin et al., 2020). Here, we visualized the focused

regions of the attention module in each convolution layer to present

an in-depth interpretation of the DNN. Each channel obtained seven

attention masks for different tasks, which were averaged across all of

the input samples from all of the subjects.

Overall, the resulting attention masks at the low-level (first and

second stages) have excellent coverage of the brain and prefer to

highlight the areas containing the useful BOLD signal, such as the

whole brain structure (Figure 3a), and diminish the noise areas like the

brainstem or cerebrospinal fluid areas (Figure S1b,c). The masks also

focused on some functional networks and cerebral cortex related to

different cognitive functions (Figure S1), such as the default mode

network, sensorimotor network, temporal lobe, and occipital lobe. The

enhancement of gray matter areas helped to preserve the important

features that could be further refined to distinguish between different

cognitive states at high-level.

The attention masks at the high-level (third and fourth stages) are

getting more focused to cover task-specific brain areas (Figure 3c). It

is notable, however, the focused layouts of the attention masks varied

across different tasks and were remarkably task-specific. A channel

could generate specific focused regions for different tasks, such as

the left motor cortex areas in motor task, the ventral lateral prefrontal

cortex and both superior and inferior temporal cortex in language

task, the prefrontal cortex in relational task, and the temporal parietal

junction and superior temporal cortex regions in social task (Figures S2

and S3). At the fourth stage, the attention masks become more

abstract due to the stride in the convolution operation (Figure 3d),

and the weights of attention have a narrower range, which could be

due to the fact that the masks also serve as gradient update filters. A

small range of attention weights in the high-level feature map could

prevent some gradient problems.

3.3 | Transfer learning

Two different approaches were used to explore the benefits of trans-

fer learning in fMRI analysis under different problem definitions or

task design.

First, we evaluated the general use of representation of the

trained model between different problems, from cognitive similarities

of group to individual trait differences in subjects. Recent research has

demonstrated that connectome-based predictive modeling built from

task-based fMRI data improve prediction of individual traits (Greene

et al., 2018). Here, the knowledge about similarities and differences

between intrinsic and task-induced brain states contained in a

F IGURE 3 Visualization of attention masks on the HCP dataset. (a)–(d) Examples show the average focused regions on four attention stages
(from low-level to high-level) of different tasks (language, motor, and relational). Each of the attention masks was color-coded with a color
gradient indicating the enhancement (positive with red) or diminishment (negative with blue) of the feature maps. [Correction added on March
11, 2022, after first online publication: Figure 3 has been updated to correct the task labels in 3c.]
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pretrained model was transferred to the WM-trans-set, which is a

dataset including the WM task, to predict individual trait differences.

Figure 4a shows that the transferred regression model yielded signifi-

cant predictions of gF. The average performance of 4DResNet-Att

after transfer learning (rs = .354, p < .001) evaluated by the average

Spearman's correlation coefficient is better than the previous study

that used the same dataset (Greene et al., 2018; rs = .325, p = .001).

What's more, the initial model, which used the same architecture

and was trained from scratch by initializing random weights achieved

a lower correlation coefficient in prediction (rs = .306, p < .001).

The comparisons of predictions between different models were

shown in Table 3. Furthermore, the visualization analysis shows that

low-level attention masks remained distributed similarly to the source

domain, whereas high-level attention masks changed adaptively as

knowledge transferred from group similarities to individual differences

(Figure 4b).

Second, the pretrained model from the HCP dataset was fine-

tuned to decode different types of stimulus images on BOLD5000.

The knowledge learned from the source domain is highly applicable

to the target domain, and the transferred model achieved 77.6

± 3.4% (4DResNet-Att), 73.5 ± 2.1% (4DResNet), and 64.3 ± 3.8%

(3DResNet-Att) accuracy. However, all initial models trained from

scratch failed to converge to satisfactory accuracy (<60%) across a

wide range of choices of hyper-parameters. Furthermore, the visuali-

zations demonstrated that the attention masks changed adaptively to

fit individual subjects' brain structures, despite the fact that the fMRI

data were registered to the corresponding T1w space rather than the

standard MNI152 space (Figure 5). As the model was fine-tuned to

decode visual tasks, the attention masks from the high-levels also

changed adaptively to reweight task-related brain regions.

4 | DISCUSSION

4.1 | 4D convolution

Brain decoding has been a popular topic in neuroscience for decades.

Recently, DNNs have gained considerable attention in the scientific

community and shown promising performance in brain decoding. The

fMRI data are a 4D data consisting of a time series of 3D brain vol-

umes. 4D CNN has shown the feasibility of 4D medical applications,

such as 4D computed tomography (CT; Clark & Badea, 2019) and

OCT-based force estimation (Gessert, Bengs, Schluter, &

Schlaefer, 2020). However, the fMRI data are big and a full 4D DNN is

too large to be applied and efficiently trained. Thus, (X. Wang

et al., 2020) proposed a model of 1D convolution in the first layer for

the abstraction of temporal features, followed by stacks of 3D CNNs

for spatial features. Mao et al. (2019) developed a network architec-

ture that extracted spatial features out of each fMRI frame using 3D

CNNs and passed these latent features to an LSTM network to take

into account the temporal dependencies within task-evoked brain

activity. The model we proposed includes a 4D convolution layer to

detect temporo-spatial features, and puts the features into the channel

dimension of the following 3D layers to reduce memory consumption.

The above results suggest that the proposed model has a good balance

TABLE 3 Prediction of individual traits between different model

Model Initial training Transfer learning

3DResNet-Att rs < .3, p < .001 rs = .329, p < .001

4DResNet rs < .3, p < .001 rs = .335, p < .001

4DResNet-Att rs = .306, p < .001 rs = .354, p < .001

F IGURE 4 Prediction of individual traits. (a) An example showing that the transfer learning model yielded significant predictions of gF. (b) The
attention masks from low-level to high-level after transfer learning. The focused regions of high-level change adaptively
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of accuracy and efficiency. Our model could achieve better perfor-

mance while taking less time than the previous state-of-art works.

4.2 | Attention module and interpretation of
networks

The attention mechanism helps humans to mainly focus on the most

useful information in the human perception process. Inspired by this,

attention mechanisms have been studied extensively in many deep

learning fields (Vaswani et al., 2017; F. Wang et al., 2017; Woo

et al., 2018). In this research, the proposed 3D mixed attention mod-

ule consisted of a main branch and an attention branch and consid-

ered both channel and spatial features. The experimental results

demonstrate that attention modules have many advantages. For

example, the architecture with attention modules was trained to con-

verge faster and more easily and achieve better performance, which

could be due to the attention mechanism reweighting the focused

areas to enhance discriminative features. The attention module is also

beneficial for optimizing during back-propagation, which serves as a

gradient update filter to prevent noisy gradients and enhance gradi-

ents from important regions.

What's more, the attention modules not only improve decoding

performance but also serve as a visualization tool to investigate how

neural networks work in fMRI decoding. Cognitive neuroscience

research requires a higher degree of accountability, while an end-to-end

trainable network has always been regarded as a black-box in neurosci-

ence. Presenting an in-depth interpretation of a method can demon-

strate the feasibility and reproducibility of fMRI studies (Li & Fan, 2019;

Vu et al., 2020). A good visual explanation should not only be treated as

a localization method but also allow researchers to investigate how the

neural network works. The analysis shows that the low-level masks pro-

vide excellent coverage of the brain to highlight useful structures while

pruning noisy areas. As the layers go deeper, the attention masks get

finer to cover various specific cortexes. The high-level attention masks

varied across different tasks, re-weighting more attention to the areas

related to the specific target task. What's more, the attention masks

adapted to fit different subjects' brain structures. This also suggests that

our architecture could be a suitable approach to avoid individual variabil-

ity across subjects in the raw and minimally preprocessed fMRI series

without spatial normalization. Besides, the attention areas that could

present biologically meaningful interpretations of cognitive neuroscience

demonstrated that the proposed CNN decoded states from task-related

activations but not from nuisance variables.

F IGURE 5 Visualization of attention masks on the BOLD5000 dataset. (a)–(d) Attention masks from low-level to high-level after transfer
learning. The examples show the attention masks of four participants, which employed LOSO cross-validation. The masks adaptively change to fit
different subjects' brain structures
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4.3 | Transfer learning

Transferability has been demonstrated to be a significant advantage of

DL methods over traditional methods in fMRI decoding (Gao

et al., 2019; X. Wang et al., 2020). To this end, we explored the benefits

of transfer learning under various conditions. The transferred regres-

sion model yielded significant predictions of individual trait differences

and achieved better Spearman's correlation coefficient than the previ-

ous study (Greene et al., 2018). This could be due that the previous

study relied on the discriminative power of feature selections, and not

all connectivity parameters are relevant for prediction, while the trans-

ferred model could automatically capture the full range of individual

trait differences. This also suggests that the group cognitive similarities

among intrinsic brain states could generally be reused to predict indi-

vidual differences, which is important for precision medicine in clinical

research. Furthermore, previous studies most commonly applied trans-

fer learning between the block-design dataset. On the BOLD5000, the

pretrained model from the HCP dataset was fine-tuned to decode dif-

ferent visual tasks and obtained 77.6%. Despite the fact that the model

was trained using the block-design dataset, the internal properties of

human hemodynamic responses contained in the parameters are con-

sistent and could be reused in the event-design dataset.

4.4 | Limitations and future applications

In this project, the proposed model outperformed other architectures.

Despite the 4D convolution processing dynamic changes more effi-

ciently, some limits remain, such as a substantial increase in computa-

tional and memory requirements. What's more, we only chose one

condition for each cognitive domain in order to be comparable to previ-

ous studies, while the BOLD signals might be a mixture of hemody-

namic responses evoked by different task events. A decoding model

with fine cognitive granularity would generalize similarities and differ-

ences among task-induced brain states from multiple cognitive

domains, which is important for transfer learning. The visualization

result demonstrated that the high decoding performance was driven by

the response of biologically meaningful brain regions. However, the sta-

tistical property of the attention mask remains unclear. We could have

the results of qualitative analysis and should be cautious until further

investigations into its reliability and statistical properties. The transfer

learning method, which successfully extended similarities in brain activ-

ity to individual differences, showed potential for research in psychiatry

and neurology. The pretrained model based on cognitive state can

serve as a brain information retrieval system to distinguish differences

in neurologic diseases and classify different psychiatric categories.

5 | CONCLUSION

In this study, we designed a 4DResNet with attention module for

brain decoding. After investigating the efficacy of some alternative

classifiers, the proposed 4DResNet-Att achieved 97.4% on the HCP

dataset. We further demonstrated the model's transferability to a

variety of tasks and datasets and presented an in-depth interpretation

of the network. The visualization analysis of attention distributions

illustrated the hierarchical emergence of task-specific masks with

depth. After transfer learning, the adaptively changed attention distri-

bution demonstrated the representation could be general extended

from cognitive similarities to individual differences.
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