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Abstract: Deep knowledge of how radio waves behave in a practical wireless channel is required
for the effective planning and deployment of radio access networks in outdoor-to-indoor (O2I)
environments. Using more than 400 non-line-of-sight (NLOS) radio measurements at 3.5 GHz, this
study analyzes and validates a novel O2I measurement-based path loss prediction narrowband model
that characterizes and estimates shadowing through Kriging techniques. The prediction results of
the developed model are compared with those of the most traditional assumption of slow fading as a
random variable: COST231, WINNER+, ITU-R, 3GPP urban microcell O2I models and field measured
data. The results showed and guaranteed that the predicted path loss accuracy, expressed in terms of
the mean error, standard deviation and root mean square error (RMSE) was significantly better with
the proposed model; it considerably decreased the average error for both scenarios under evaluation.

Keywords: Kriging; outdoor-to-indoor (O2I); path loss; radio propagation; shadowing

1. Introduction

In recent years, there is a clear need to supply a sufficiently high data rate for areas
with elevated user volume such as venues, hotels, and conference centers, etc., where a
lack of signal is evident. Usually, in these situations the deployment of a new indoor radio
cell is unnecessary considering outdoor radio cell availability. Under these conditions,
outdoor-to-indoor (O2I) models become very relevant. These models characterize signal
propagation inside buildings coming from external mobile radio base stations (BSs), which
are mounted across a network of outdoor sites, occupying towers on hilltops, rooftops in
built-up areas, and other promising outdoor structures. O2I radio propagation has become
a challenging work, according to Small Cell Forum [1] some reasons for this are:

• Due to the lower operating frequencies becoming exhausted, higher frequencies are
being deployed. However, they are not as effective for range and building penetration.

• O2I signal propagation is affected because the building fabric is more eco-friendly
and noise-free, using low-emissivity glass which reflects the radiation from cellular
antennas, and soundproof materials which attenuate radio waves.

• There are large increases in demand for mobile cellular services which densify avail-
able networks with more sites and an increase in the size of the spectrum that mobile
network operators (MNOs) can deploy on those sites. This produces localized conges-
tion; the service may be available, but it may not always be satisfactory.

Therefore, the scientific community is encouraged to understand O2I radio wave
propagation [2–5] to help radio network engineers to achieve efficient radio coverage
estimation, determine the optimal BS location, and perform interference feasibility studies.
In seeking to understand those links, the applicability of standard urban microcell O2I path
loss models such as COST231, WINNER+, ITU-R, and 3GPP are empirically tested [6].
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The COST 231 project is based on adjusted models such as the one-slope model (1SM),
the multi-wall model (MWM) and the linear attenuation model (LAM), that are based on
propagation measurements [7]. The final O2I model proposed by the COST231 project
is based on empirical data acquired for NLOS links, where the model relates the loss
inside a room to the loss measured outside of it on the side nearest to the wall of interest,
i.e., multi-floor propagation. The WINNER+ channel model followed a geometry-based
stochastic channel modeling approach [8]. The channel parameters were determined
stochastically, based on statistical distributions extracted from channel measurements. The
ITU-R model [9] provided guidelines for both the procedure and the criteria (technical,
spectrum and service) to be used in evaluating the proposed IMT-Advanced radio interface
technologies (RITs) or sets of RITs (SRITs) for a number of test environments and deploy-
ment scenarios for the evaluation of the band of frequencies between 2 and 6 GHz. The
NLOS model proposed by the 3GPP is based on measurement campaigns, for O2I building
penetration loss. This model considered the material penetration losses for two types of
models: low loss and high loss. The composition of low and high loss is dependent on the
use of metal-coated glass in buildings and the deployment scenario characteristics. The
study reported for the 3GPP project considered not only O2I building penetration losses
but also O2I car penetration losses for the frequency range of 0.6 to 60 GHz [10].

According to [11], through an accurate channel modeling: the in-building radio
propagation phenomena, complex by nature, can be characterized; the range of a wireless
communication system can be calculated by assessing the expected coverage inside a
building; signal strength/path loss can be predicted more accurately everywhere in a
building; and channel performance predictions can be made quickly.

There are essentially three approaches for propagation models: physical, empirical
and hybrid. The majority of physical models are simple to use but their assumptions are
based on many simplifications. Generally, for this reason, they are employed to describe the
phenomenon within a given error, whereas empirical models take valuable and building-
specific information into account. As a result of combining the previous approaches, hybrid
models include the accuracy of physical models and the suitability of measurement-based
tuning perform in empirical models. On this basis, measurement-based methods are
promising to achieve accurate and practical predictions, even in situations where there are
not enough samples to carry out a rigorous characterization. To address the shortcoming
of samples from measurement campaigns, linear geostatistics demonstrate their usefulness
to predict unknown data with few available samples for practical designs.

To quantify the reliability of coverage provided by any radio cell it is imperative to
understand and to characterize median path loss, shadow fading, and fast fading as the
main path loss components [12]. As is surveyed in [11], the estimation of median path loss
is deterministic, mathematical models describe it in terms of how path loss changes as a
function of some factors, such as frequency and specific distance, etc. Nevertheless, these
models need to account for the shadowing process, including it as an additional variable
which describes the dispersion with respect to the nominal value given by the path loss
models. Therefore, due to the normal distribution that shadowing produces in the signal
measured, the most traditional action is to characterize it by a zero-mean Gaussian random
variable, such as in [6]. Other wireless studies include nonconstant shadowing variance
and non-lognormal shadowing, and predict the variance by considering the correlation
between paths [13,14]. However, in [15] the authors validate a more accurate method to
estimate the spatial correlation of shadowing by including Kriging, a linear geostatistics
technique that is based on the regionalized theory, which states that there is a variance rate
between samples over space in a physical continuity context, i.e., the spatial dependence
stated by Tobler in [16]: spatial samples taken close to each other may be expected to have
more similar values than samples taken farther apart. There are different types of Kriging
techniques, ordinary Kriging is the most common method; however, if there is a spatial
trend then this technique is no longer the appropriate to model the spatial variability. There
are other alternatives of Kriging, for instance, universal Kriging and simple Kriging, among
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others. The properly selection of the Kriging technique is focused on the data characteristics.
To summarize, the aim of Kriging is to minimize the variance of estimation errors under the
constraint of unbiased estimation [17]. The spatial prediction of Kriging does not require
that data to be interpolated follow a normal distribution since Kriging describes the best
linear unbiased estimator in the sense of least variance. However, if the data follow a
normal distribution, then Kriging becomes the best unbiased spatial predictor. Therefore,
telecommunications studies include Kriging to realize a highly accurate radio environment
map (REM) [18–20] or to enrich the training dataset (to produce a large amount of data) for
channel modeling, as is reported in [21].

Additionally, in [15], Kriging was employed to estimate shadowing only in indoor
scenarios at 869.6 MHz, 1930.2 MHz, 2400 MHz and 2500 MHz without considering
O2I non-line-of-sight (NLOS) links. Unlike the links studied in [15], in [6], the authors
considered O2I NLOS; nevertheless, they only focused their study on comparing the
performance of standard model predictions. To the best of our knowledge, this is the
first time such novel modelling for estimating shadowing through Kriging in O2I links at
3.5 GHz for 5G communication systems has been presented.

The findings of this study engage students in wireless telecommunications, profes-
sionals in the industry, and readers with new Kriging-applied insights and help them to
effectively reduce the time and costs involved in measurements campaigns to achieve
efficient radio coverage estimations.

2. Methodology and Data Collection

As an optimum combination of carefully measurements, Kriging and simple path loss
models were employed to predict complete system coverage performance in two types of
O2I NLOS links. The methodology, measurement equipment, scenarios and procedure are
described as follows.

2.1. Measurements and Data Collection Procedure

In order to represent typical O2I links, received signal-strength measurements were
carried out in two universities in Chile with similar scenarios: the engineering campus
of Universidad Diego Portales (UDP) in Santiago, and the main campus of Universidad
Técnica Federico Santa María (USM) in Valparaíso. This measurement campaign was
employed in [6] to research a completely different objective than the one addressed in this
study; here we only employ the NLOS O2I samples. In seeking to analyze NLOS links, the
samples collected in the measurement campaigns described two types of links reported
in Table 1. Table 2 details the scenarios for measurement campaigns and the NLOS O2I
samples collected.

Table 1. Measurement Campaign non-line-of-sight (NLOS) Links.

NLOS Link Description

Same side (SS) The transmitter and receiver system share the same street
Opposite side (OS) The transmitter and receiver system are placed on opposing sides of the street

Table 2. Measurement Campaign Scenarios.

Scenario
Outdoor 1 Indoor

Street
Width

Street
Length Surroundings No.

Rooms
Rooms
Width

UDP 21 m 89 m
Concrete buildings with different
floor heights and a few trees with

≈6 m in height
2 6 m

USM 8.5 m 70 m Three-story concrete buildings of
uniform shape with 6 m2 windows 5 6 m

1 There is an empty space on the opposite side of the university buildings.
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In Figure 1, a basic layout of both scenarios is illustrated; for same side (SS) links,
the transmitter system was always placed on the sidewalk 0.7 m away from the building
wall, and for opposite side (OS) links, it was moved directly across the street from its
previous location. Throughout the different transmitter system settings, it was located at a
5 m height with a 60◦ depression angle to the wall. The transmitter power of the system
was 17.8 dBm (Ptx) at a 3.5 GHz continuous wave (CW) and it consisted of a vertically
polarized directional patch antenna with 10.2 dB gain (Gtx), 60◦ azimuth and elevation
half-power beamwidths. The received power was recorded by a narrowband receiver
connected to a vertically polarized half-wavelength dipole with a 2.4 dB gain (Grx). The
receiver bandwidth of 200 KHz allowed it to capture any frequency dispersion affecting the
CW transmission. In all field measurements the received power was at least 20 dB above
the receiver noise floor of −123 dB.
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Figure 1. An example of the measurement layout.

For the sampling process the receiver antenna was placed on a computer-controlled
rotating arm involving measurements of 6◦ (or 0.105 rad) angular increments on circles of
radius 0.4 m at each receiver placement. For each angular position 25 consecutive power
samples were collected, in order to verify consistency and averaging, and to remove resid-
ual temporal fades, which did not fluctuate by more than ±0.5 dB due to the narrowband
static environment. Then, these consecutive samples were averaged to account for the first
power sample value and to continue to the next angular position until 60 possible angular
positions were completed in a 360◦ circle. Finally, 60 received signal power samples were
collected at each receive location, as illustrated in Figure 2. Regarding receiver locations,
a total of 308 and 108 sample locations were reported for the O2I NLOS USM and UDP
scenarios, respectively.

Considering the angular increments as θ and the circle radius as r in Figure 3 the
resulting separation distance is illustrated. In each location, this method yields a circle with
λ/2 separation distance between successive antenna positions because 0.04 m ≡ λ/2.
According to [22], the spatial average of λ/2 is in accordance with the shadow-fade
correlation distance.
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Thus, to average out the small-scale fades, the resulting average power (Prx) at specific
locations corresponded to the mean of the 60 samples recorded, which was calculated
as follows:

Prx = 10 log
(

1
60 ∑60

i=1 10Prxi /10
)

, (1)

where Prxi is the received power measured in dBm and i is the number of the sample
recorded. An overview of the measurement conditions is presented in Table 3.

Table 3. Measurement Parameters.

Parameter Description

Type of O2I links OS NLOS and SS NLOS
Frequency, f 3.5 GHz

Transmit power, Ptx 17.8 dBm
Transmit gain, Gtx 10.2 dB
Receive gain, Grx 2.4 dB

Receive distance range, d 5–40 m
Receiver noise floor −123 dBm

Number of spatial positions at each receive location 60
Number of O2I NLOS links at USM 308
Number of O2I NLOS links at UDP 108
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2.2. Kriging-Based Channel Model Development

The overall methodology for both SS and OS channel modelling links is illustrated in
Figure 4 and described as follows. As a first step, from the resulting O2I measurements, SS
and OS NLOS links, the path loss L is extracted in dB as a classical link budget:

L = Ptx + Gtx + Grx − Prx. (2)
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To properly choose tuning samples that accurately reflected the characteristics of the
larger measurement campaign, the selections suggested by the authors in [15] about the
method and dataset size for tuning selection were considered: first, four classification
methods were addressed and compared in terms of the mean absolute error (MAE); the
results showed the first method as the most accurate with the lowest MAE of 2.16 dB. This
method divided the target area of each scenario into representative zones bounded by
concentric circles every 5 m from the position of the BS; and second, five approaches were
addressed in order to select the least amount of tuning dataset, obtaining the best goodness
of fit. The conclusion for this test was to recommend the rate of 60/40 to extract tuning
and testing datasets. Considering both suggestions, the measurements were divided into
areas defined by rings with radius r = 5k in m (where k = 1, 2, . . . , n, and n depends
on the maximum separation distance between transmitter and receiver) centered at the
position of the BS. Then, a 60/40 rate was extracted from each zone: 60% exclusively used
for driving the measurement-based prediction process using Kriging (tuning dataset), and
40% to perform the validation of the estimated path loss at those testing placements (testing
dataset). For the model tuning process, the path loss extracted in (2) was defined by two
components [22]: median path loss L50 and shadowing Ls in dB:

L = L50 + Ls. (3)

The median path loss described how the transmitted signal was attenuated during the
path, in terms of the free space path loss Lfs = 20 log10(d0) + 20 log10( f [MHz])− 28 [23],
the distance-dependent relation, and specific sources from wall attenuations. In this channel
modeling proposal, the median path loss was calculated as:

L50 = Lfs + 10n log10

(
d
d0

)
+ e, (4)

where L f s = 42.9 dB, d0 is the reference distance of 1 m, n denotes the path loss exponent,
d is the Euclidean distance in a three-dimensional space in m, and e is strictly related to
attenuation sources such as floor and walls attenuations. The variables n and e are found
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by fitting a linear equation to the path loss extracted in (2); the linear regression results are
shown in Table 4.

Table 4. Median Path Loss.

O2I Link n e

SS 1.93 24.73
OS 2.41 15.64

In Figure 5 the path loss extracted from (2) is illustrated in blue circles markers for the
SS links and in red cross markers for the OS links (where the marker points are already
averaged over all 60 samples per received position) along with the median path loss
calculated by (4) with the values presented in Table 4 for the SS and OS NLOS O2I links.
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For shadowing extraction and continuing with the second component for path loss,
the shadowing is extracted from (3) as follows:

Ls = L− L50. (5)

The shadowing generation process employs the shadow values previously obtained
in (5) to interpolate the known data Ls(ci) in unknown locations c0, achieving the accurate
shadowing values through the Kriging-aided channel. In other words, from the N shad-
owing tuning samples at the coordinates ci, the dataset vector defined by (6) is extracted,
leading Kriging to estimate an unknown shadowing value Ls(c0) at a random location c0
from the known samples Ls(ci):

Ls(ci) = (Ls(c1), Ls(c2), . . . , Ls(cN))
T . (6)

To provide these predictions, Kriging employs the variography to understand and
find a pertinent threshold of neighboring samples to the interpolation. In order to sum-
marize the central shadowing tendency, an exponential model function is fitted to the
variogram estimator to further visualize the shadowing spatial process. The selection
of the exponential function is focused on both theoretical reasons, which highlight the
properties that a function selected as a variogram model must fulfil, and practical reasons,
for which evidence from multiple studies [15,24,25] demonstrates that the exponential
function provides the best fits.

In Figure 6, it is possible to observe that the parametric curve (exponential function,
Exp) fits reasonably well over the first three 5 m lags for both SS and OS NLOS links.
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According to geostatistics [26], this is appropriate for Kriging due to near points, such
as shadowing neighboring samples, carry more weight than more distant ones to the
unknown shadowing values. Thereby, considering the characteristics of the data, ordinary
Kriging is employed to interpolate and then predict shadowing at each grid location in
the scenario area. Ordinary Kriging uses a weighted average of the neighboring points to
estimate the value of an unobserved point. To guarantee that the estimates are unbiased
this Kriging determines the weights under the constraint described below in Algorithm 1.
As is illustrated in Figure 4, at the end of the methodology proposed, the estimated path
loss is assessed by (3) at the testing locations in order to proceed with the validation of the
shadowing measured at those points.
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All the supporting information for the Kriging-aided method was analyzed and de-
scribed in greater depth in [15]; however, an overview is presented in the algorithm below.

Algorithm 1. Kriging-aided process.

Designing the path loss:
1: Tune the parameters n and e in (4) from the tuning dataset.
2: Extract shadowing from (5).
3: Generate shadowing trough the Kriging-aided process: variogram and interpolation.
Modeling the variogram:
4: Calculate the experimental variogram.
5: Summarize the experimental variogram.
6: Fit a parametric curve.
7: if variogram fits to the first 3 lags then
Kriging interpolation:
8: Create the scenario through a grid.
9: Ordinary Kriging constraint: ∑N

i=1 wi = 1
10: Calculate the weights wi and the Lagrange multiplier.
11: Estimate Ls trough the weighted average of the neighboring points.
Estimating the path loss:
12: L = Lfs + 10n log10

(
d
d0

)
+ e + Ls

3. Results

The developed model described in Section 2.2 is labeled as K with L = L50 + Ls where
Ls is extracted from the shadowing grid generated by Kriging. In order to validate the
performance and the accuracy of the prediction results of the model, it is evaluated based
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on the mean error, standard deviation and root mean square error (RMSE) of the predicted
path loss values, L̂i, at the testing measured locations, tN, relative to the corresponding
testing measured path loss values, Li. The mean error (ME), the standard deviation of the
error (S) and the RMSE are given by:

ME =
1

tN
∑tN

i=1

(
Li − L̂i

)
, (7)

S =

√
1

tN − 1 ∑tN
i=1

∣∣(Li − L̂i
)
−ME

∣∣2, (8)

RMSE =

√
1

tN
∑tN

i=1

(
Li − L̂i

)2. (9)

Furthermore, these results are compared with those of the most traditional assumption
of L = L50 + Ls, where the shadowing, Ls, is a random variable with a zero mean and a
standard deviation σ extracted from the tuning dataset behavior, labeled as R.

Based on the approach that a typical O2I path loss prediction model considers: the
main large-scale propagation loss in line-of-sight (LOS) or NLOS up to the building wall,
is a penetration factor that adds wall losses and an indoor path loss term, and that this
structure is shared by the most widely used standard models for O2I: COST231 Building
Penetration LOS model [7], WINNER+ O2Ia/LOS model [8], ITU-R O2I model [9] and
3GPP 3D-UMi O2I model [10]. The K model predictions are also compared with those of
the standard models. The path loss estimated trough the standard models is calculated
using (7), where each component is in dB and is described in Table 5:

Lsm = L1 + L2 + L3, (10)

The path loss components, described in Table 5, were extracted from the setup and
results of the O2I NLOS measurement campaign, i.e., the distances of the x, y, and z axes
were given by the location of each measurement, the frequency f in Hz (3.5× 109 Hz) and
the room depth w in m by the measurement setup. In each room where the measurements
were performed the receiver antenna was placed at three different room depths: around
1 m from the exterior university wall, in the center of the room, and around 1 m from the
interior university wall.

Table 5. Standard Models.

Standard Model Path Loss Components 1

3GPP
L1 = 22 log

(√
x2 + y2 + z2

)
+ 28 + 20 log f

L2 = 20
L3 = w

2

ITU-R
L1 = 22

(
log
√

x2 + (y− w)2 + z2
)
+ 28 + 20 log f

L2 = 14 + 15·(1− θ)2

L3 = w
2

WINNER
L1 = 22.7 log

(√
x2 + (y− w)2 + z2

)
+ 27 + 20 log f

L2 = 17.64 + 14·(1− 1.8 log f ) + 15·(1− θ)2

L3 = w
2

COST231

L1 = 20 log
(√

x2 + (y− w)2 + z2 + w
)
+ 32.4 + 20 log f

L2 = 7 + 20·
(

1− y−w√
x2+(y−w)2+z2+w

)2

L3 = 0.6·(w− 2)·
(

1− y−w√
x2+(y−w)2+z2+w

)2

1 θ = tan−1
(√

x2 + z2/y− w
)

.
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To make a robust analysis to the choice of the 60/40 rate for tuning and testing
datasets, a uniform random sampling method was performed 2000 times to estimate the
corresponding path loss according to the Kriging-aided model proposed. The average of
the 2000 iterations for the mean error, the standard deviation of the error and the RMSE is
presented in Table 6 for each link described in Table 2.

Table 6. Path Loss Models Accuracy.

O2I Link Model Mean Error Standard Deviation RMSE

SS

R −0.04 4.73 4.73
K 0.30 2.82 2.85

3GPP 3.43 3.52 4.91
ITU-R 5.26 3.82 6.49

WINNER+ 1.29 3.91 4.11
COST231 −3.81 3.31 5.04

OS

R 0.00 4.81 4.81
K 0.47 2.78 2.84

3GPP 0.55 3.46 3.49
ITU-R 5.20 3.02 6.00

WINNER+ 1.16 3.03 3.23
COST231 1.14 3.02 3.21

In addition, after the 2000 iterations are performed to select a different 60/40 rate from
measurements to estimate the path loss, the model-based results are presented in terms of
the cumulative distribution function (CDF) of the mean error, the standard deviation of the
error and the RMSE in Figures 7–9, respectively.
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According to Table 6 and Figure 9, in both links, with an RMSE of 2.8 dB, the Kriging-
aided model estimates the path loss with a higher level of confidence than the other
approaches evaluated. Additionally, this novel technique provides the best fit to the
measured data with respect to the standard models presented by Castro et al. in [6].

Kriging, as a geostatistical technique, assumes that there is an implied connection
between the measured data value at a point and its location in space. Therefore, it was
possible to estimate shadowing from the best set of available sample points (tuning dataset)
yielding the K model as the most accurate of those exposed in Table 6, where the metrics
and the CDFs illustrated in Figures 7–9 suggest the efficiency of the proposed model, since,
unlike the others, it considers the characteristics of the selected link. Even though the
R model tunes the parameters n, e and Ls from the tuning dataset and is considered in
telecommunication society as the most traditional model, the WINNER+ is quite accurate
for the SS link with an RMSE of 4.11 dB, and the COST231, WINNER+ and 3GPP for the
OS case with an RMSE of no more than 3.4 dB.

In Figure 7 it is possible to validate the outstanding K model performance. From the
2000 tests that were carried out, it is possible to conclude that, when estimating the path
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loss with Kriging-aided shadowing, there is a 95% probability that the mean error of the
prediction is less than 1 dB and 1.3 dB for SS and OS links, respectively. Regarding Figure 9,
the stability and the confidence to predict the path loss more accurately is guaranteed when
the K model is used, with a 95% probability that the RMSE is less than 3.1 dB and 3.25 dB
for SS and OS links, respectively.

The applicability of the standard model results presented in Figures 7–9 is discussed
as follows: the COST231, 3GPP, and WINNER+ models are more accurate for the OS
than for SS links, with median errors less than or equal to 1.16 dB and RMSEs of no
more than 3.49 dB. The results presented in Table 6 demonstrate the WINNER+ model as
the most consistent and the ITU-R as the least accurate compared to the other standard
models for both types of links. Regarding SS results and considering the resulting scenario
geometry by locating the BS as low as 0.7 m from the building wall, the standard models
present higher standard deviations compared to the OS deviations. By taking into account
these results and the following two considerations: the standard models were based on
measurements at different frequencies: 850 MHz, 1.8 and 1.9 GHz for COST 231; 450 MHz
to 6 GHz for WINNER; 2 to 6 GHz for ITU-R; and 0.5 to 100 GHz for 3GPP. Additionally, the
formulation of each standard model was originally conceived for cells of up to 1 Km radius.
It is important to improve the accuracy of the standard models for a specific application,
in this case, for O2I NLOS links at the 3.5 GHz band, one of the candidate frequencies
considered for 5G communications.

In [15] it was validated through different indoor approaches that the path loss pre-
diction accuracy was significantly better when Kriging was included as part of the tuning
process for frequencies in the ultra-high-frequency (UHF) band. This study validated the
potential of this geostatistical technique for O2I scenarios at 3.5 GHz against standard
models. Therefore, it is an interesting future line of research to consider other setups
to validate and compare Kriging performance against the existing standard models at
difference frequencies.

4. Conclusions

It was validated that the methodology and the model proposed in this paper for O2I
applications such as 5G communications at 3.5 GHz, with a proposed accurate combined
path loss and shadowing-aided model, were more accurate and versatile compared to
both the conventional linear path loss plus log-normal shadowing model and the existing
standard models.

The results and the methodology proposed in this study will help students in wireless
telecommunications, professionals in the industry, and engineers to achieve efficient radio
coverage estimation; estimate measurements in situations where the possibility to collect
large amounts of data from measurement campaigns is very limited, reducing time and
costs in practical campaigns; and to encourage them to perform Kriging-aided channel
design, considering its accuracy to predict path loss in O2I NLOS links.
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WINNER: Delray Beach, FL, USA, 2010.
9. ITU. Report ITU-R M.2135-1: Guidelines for Evaluation of Radio Interface Technologies for IMT-Advanced; ITU: Geneva, Switzerland, 2009.
10. 3rd Generation Partnership Project 3GPP. Study on 3D Channel Model for LTE. Release 12; 3GPP: Valbonne, France, 2018.
11. Diago-Mosquera, M.E.; Aragon-Zavala, A.; Castanon, G.A. Bringing It Indoors: A Review of Narrowband Radio Propagation

Modeling for Enclosed Spaces. IEEE Access 2020, 8, 103875–103899. [CrossRef]
12. Aragon-Zavala, A. Radio Propagation. In Indoor Wireless Communications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017;

pp. 77–112.
13. Beaulieu, N.C.; Naseri, M. A Circuit Theory Model for Shadow Fading Autocorrelation in Wireless Radio Channels. IEEE Wirel.

Commun. Lett. 2019, 8, 161–164. [CrossRef]
14. Szyszkowicz, S.S.; Yanikomeroglu, H.; Thompson, J.S. On the Feasibility of Wireless Shadowing Correlation Models. IEEE Trans.

Veh. Technol. 2010, 59, 4222–4236. [CrossRef]
15. Diago-Mosquera, M.E.; Aragón-Zavala, A.; Vargas-Rosales, C. The Performance of In-Building Measurement-Based Path Loss

Modelling Using Kriging. IET Microw. Antennas Propag. 2021, 15, 1564–1576. [CrossRef]
16. Negreiros, J.; Painho, M.; Aguilar, F.; Aguilar, M. Geographical Information Systems Principles of Ordinary Kriging Interpolator.

J. Appl. Sci. 2010, 10, 852–867. [CrossRef]
17. Sato, K.; Inage, K.; Fujii, T. On the Performance of Neural Network Residual Kriging in Radio Environment Mapping. IEEE Access

2019, 7, 94557–94568. [CrossRef]
18. Sato, K.; Inage, K.; Fujii, T. Modeling the Kriging-Aided Spatial Spectrum Sharing over Log-Normal Channels. IEEE Wirel.

Commun. Lett. 2019, 8, 749–752. [CrossRef]
19. Bi, J.; Wang, Y.; Li, Z.; Xu, S.; Zhou, J.; Sun, M.; Si, M. Fast Radio Map Construction by Using Adaptive Path Loss Model

Interpolation in Large-Scale Building. Sensors 2019, 19, 712. [CrossRef] [PubMed]
20. Sato, K.; Fujii, T. Kriging-Based Interference Power Constraint: Integrated Design of the Radio Environment Map and Transmission

Power. Trans. Cogn. Commun. Netw. 2017, 3, 13–25. [CrossRef]
21. Mezhoud, N.; Oussalah, M.; Zaatri, A.; Hammoudi, Z. Hybrid Kriging and Multilayer Perceptron Neural Network Technique for

Coverage Prediction in Cellular Networks. Int. J. Parallel Emergent Distrib. Syst. 2020, 35, 682–706. [CrossRef]
22. Aragón-Zavala, A. Indoor Wireless Communications: From Theory to Implementation, 1st ed.; Wiley: Chichester, UK, 2017;

ISBN 9780470741160.
23. ITU. Recomendación UIT-R P.525-4; Ginebra: Sharm El-Sheikh, Egypt, 2019.
24. Mutlu, T.M.; Canberk, B. A Spatial Estimation-Based Handover Management for Challenging Femtocell Deployments.

In Proceedings of the 2014 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2014,
Odessa, Ukraine, 27–30 May 2014; IEEE Computer Society: Piscataway, NJ, USA, 2014; pp. 144–148.

25. Konak, A. A Kriging Approach to Predicting Coverage in Wireless Networks. Int. J. Mob. Netw. Des. Innov. 2009, 3, 65–71.
[CrossRef]

26. Trauth, M.H. Spatial Data. In MATLAB Recipes for Earth Sciences, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–427.
ISBN 9783662462447.

http://doi.org/10.1109/TCOMM.2020.2973263
http://doi.org/10.1109/ACCESS.2019.2948938
http://doi.org/10.1109/LAWP.2019.2958691
http://doi.org/10.1007/s11432-019-2832-1
http://doi.org/10.1109/LWC.2017.2715169
http://doi.org/10.1109/ACCESS.2020.2999848
http://doi.org/10.1109/LWC.2018.2864966
http://doi.org/10.1109/TVT.2010.2082006
http://doi.org/10.1049/mia2.12163
http://doi.org/10.3923/jas.2010.852.867
http://doi.org/10.1109/ACCESS.2019.2928832
http://doi.org/10.1109/LWC.2018.2890644
http://doi.org/10.3390/s19030712
http://www.ncbi.nlm.nih.gov/pubmed/30744141
http://doi.org/10.1109/TCCN.2017.2653189
http://doi.org/10.1080/17445760.2020.1805609
http://doi.org/10.1504/IJMNDI.2009.030838

	Introduction 
	Methodology and Data Collection 
	Measurements and Data Collection Procedure 
	Kriging-Based Channel Model Development 

	Results 
	Conclusions 
	References

