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A poor diet is one of the leading causes for non-communicable diseases. Due to the

increasing prevalence of overweight and obesity, there is a strong focus on dietary

overconsumption and energy restriction. Many strategies focus on improving energy

balance to achieve successful weight loss. One of the strategies to lower energy intake

is refraining from sugars and replacing them with artificial sweeteners, which maintain

the palatability without ingesting calories. Nevertheless, the safety and health benefits of

artificial sweeteners consumption remain a topic of debate within the scientific community

and society at large. Notably, artificial sweeteners are metabolized differently from each

other due to their different properties. Therefore, the difference in metabolic fate of

artificial sweeteners may underlie conflicting findings that have been reported related

to their effects on body weight control, glucose homeostasis, and underlying biological

mechanisms. Thus, extrapolation of themetabolic effects of a single artificial sweetener to

all artificial sweeteners is not appropriate. Although many rodent studies have assessed

themetabolic effects of artificial sweeteners, long-term studies in humans are scarce. The

majority of clinical studies performed thus far report no significant effects or beneficial

effects of artificial sweeteners on body weight and glycemic control, but it should

be emphasized that the study duration of most studies was limited. Clearly, further

well-controlled, long-term human studies investigating the effects of different artificial

sweeteners and their impact on gut microbiota, body weight regulation and glucose

homeostasis, as well as the underlying mechanisms, are warranted.

Keywords: artificial sweeteners, obesity, type 2 diabetes mellitus, insulin resistance, gut microbiota

INTRODUCTION

Diet is among the most important health influencers. Along with globalization and economic
growth, a shift in dietary habits has occurred since 1970 (1, 2). Energy intake has increased along
with the consumption of animal fat and energy-dense foods, while fiber intake has decreased (2).
This dietary shift contributes to the rise of non-communicable diseases, including obesity, type 2
diabetes mellitus (T2DM), cardiovascular disease, and cancer (3–5). A poor diet was found to be
the leading risk factor of death and third leading risk factor for disability-adjusted life-years loss
in the United States (6). Globally, 11 million deaths and 255 million disability-adjusted life-years
were attributable to dietary risk factors in 2017 (7). Due to the increasing trends in overweight
and obesity, there is a strong focus on dietary overconsumption and energy restriction. In 2016,
there were more than 1.9 billion overweight adults and 650 million obese adults, representing a
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global prevalence of 13% (8). Beside adults, the prevalence of
childhood obesity has also increased dramatically worldwide.
Over 340 million children and adolescents (5–19 year of age)
were overweight or obese in 2016 (8).

However, obesity and its associated metabolic disorders,
including T2DM, cardiovascular disease, and fatty liver disease,
are preventable. Many strategies exist to achieve successful
weight loss by improving dietary habits and energy balance.
However, even more challenging than achieving weight loss
is the maintenance of body weight after weight loss (9). The
intake of sugar contributes to the overall energy density of
diets, thereby promoting obesity (10, 11). In particular the
consumption of sugar-sweetened beverages has been associated
with cardiometabolic complications, driven by an increased
energy intake and obesity (12). Therefore, one common approach
to improve energy balance is to refrain from sugars by replacing
them with artificial sweeteners. Although the World Health
Organization (WHO) recommends free sugar intake of <10% of
total energy intake, preferably <5% of total energy intake as a
conditional recommendation, a large proportion of the European
population appears to exceed this threshold, especially children
(13). For instance, 81% of the Dutch population does not fulfill
this recommendation as the intake of free sugars equals∼14% of
total energy intake in the Netherlands (14).

As artificial sweeteners offer a sweeter taste without
calories, the replacement of sugars with these sweeteners
seems promising in reducing sugar and energy intake. Meta-
analyses of Randomized Controlled Trials (RCTs) have shown
that daily energy intake (after 4 or 10 weeks) and sugar intake
(after 4 weeks) were lower in healthy, overweight, and obese
individuals receiving artificial sweeteners as a replacements
of sugars in the diet (15). Sweeteners are classified as natural
sweeteners and artificial sweeteners. Artificial sweeteners are
further classified as nutritive and non-nutritive sweeteners,
depending on whether they contain calories. The nutritive
sweeteners include the monosaccharide polyols (e.g., xylitol,
mannitol, and sorbitol) and the disaccharide polyols (e.g., lactitol
and maltitol). The non-nutritive sweeteners, known as artificial
sweeteners, include substances from different chemical classes
that are 30–13,000 times sweeter than sucrose (16). Artificial
sweeteners are metabolized differently and have different
properties, including sweetness intensity, persistence of sweet
taste, coating of the teeth, and aftertaste effects (15). Therefore,
each sweetener is unique and may affect the perceived taste or
use in food applications differently (17). Sweetener consumption
is highly prevalent in both adults and children and is expected to
increase even more in the near future. In the United states,∼25%
of children and >41% of adults consumed artificial sweeteners
in 2009–2012, representing a 200% increase in consumption
in children and a 54% increase among adults compared to
data from 1999 to 2000 (18). Between these decades, a rise in
food products containing artificial sweeteners occurred with
more than 6,000 new products launched in the United states
alone (19). Currently, six different artificial sweeteners are
approved by the Food and Drug Administration (FDA) as food
additives in the United States, including saccharin, sucralose,
aspartame, advantame, acesulfame-potassium, and neotame

(20). Furthermore, thaumatin, steviol glycosides, obtained
from the leaves of Stevia plant, and Luo Han Guo fruit extracts
have been granted the Generally Recognized as Safe (GRAS)
status by the FDA (20, 21). In the European Union, the range
of approved artificial sweeteners is broader, as cyclamate,
aspartame-acesulfame salt, and neohesperidin dihydrochalcone
are also approved by the EU Scientific Committee on Food
(22–24). Other artificial sweeteners have not been assessed yet or
are declared as unsafe for usage.

Despite the fact that many national authorities have
recognized artificial sweeteners as safe and well-tolerated, a
lot of controversies about the effects of sweeteners on human
health still exist. Whereas, some longitudinal cohort studies
show an association between artificial sweeteners consumption
and reduced risk of T2DM, overweight and obesity, other
observational studies have yielded opposite findings (25–28).
Furthermore, longitudinal cohort studies found a positive
association between the consumption of artificial sweeteners
and the risk of hypertension, stroke, and cardiovascular events
(29). Thus, although the use of artificial sweeteners seem
promising in assisting weight loss, artificial sweeteners have been
linked to a variety of health concerns, including obesity and
its related cardiometabolic disturbances (29–31). Importantly,
however, it cannot be excluded that the associations found in
these observational and prospective cohort studies studies are
largely explained by an increase in artificial sweetener intake
to compensate for an unhealthy diet or lifestyle in general
(reverse causation). The safety and health benefits of artificial
sweeteners consumption remain controversial. Considering the
rising prevalence of obesity and T2DM along with the increased
consumption of artificial sweeteners, it is important to clarify
their health benefits and/or harms (18, 32, 33). Therefore,
the physiological health effects of artificial sweeteners should
be elucidated.

In this review, we provide an overview of the physiological
effects of artificial sweeteners on body weight control and
glucose homeostasis. Furthermore, the pharmacokinetics of the
commonly used artificial sweeteners will be addressed to identify
the controversies of the existing evidence surrounding their use.
Subsequently, effects of artificial sweeteners on body weight and
glycemic control will be discussed.

METHODS

Ample data is available on the effects of artificial sweeteners on
body weight and glucose homeostasis. Nevertheless, fewer studies
are available reporting the effects of specific artificial sweeteners.
A review of the literature was conducted using PubMed
databases in the period January–April 2020. The following
search terms were used for artificial sweeteners: “artificial
sweeteners” OR “non-caloric sweeteners” OR “non-nutritive
sweeteners” OR “aspartame” OR “sucralose” OR “acesulfame
potassium” OR “acesulfame-K” OR “steviol glycoside” OR
“rebaudioside” OR “saccharin.” Different combinations of search
terms were used, with and without the artificial sweetener
search term, including pharmacokinetics (MeSH terms), body
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weight (MeSH terms), adiposity (MeSH terms), caloric intake
(MeSH terms), sweet taste receptors (MeSH terms), gut-brain
axis (MeSH terms), adipogenesis (MeSH terms), microbiota
(MeSH terms), short chain fatty acids (MeSH terms), free
fatty acid receptors (MeSH terms), energy expenditure (MeSH
terms), glucose homeostasis (MeSH terms), insulin secretion
(MeSH terms), and inflammation (MeSH terms). Articles written
in English language were included. No data restrictions were
applied. Reference lists of relevant systematic reviews were
screened to identify further relevant citations. Human studies
were mainly selected for this review to address the effect of
artificial sweeteners on parameters related to body weight or
adiposity and glucose homeostasis. In case of limited or lacking
human data, rodent studies and in vitro studies were also
considered. Studies in healthy adults as well as adults living with
overweight, obesity or diabetes were included. RCTs (including
weight-loss studies), prospective cohort studies, cross-sectional
studies, and meta-analyses were included in the literature search.
Studies included the use of artificial sweeteners solely, without
carbohydrate or caloric content modification, unless specified
otherwise. Studies with children (≤18 years), pregnant women,
or individuals with acute or chronic diseases other than obesity
and diabetes were excluded. Furthermore, studies that did not
specify the type of artificial sweetener were excluded. We have
identified 5meta-analyses of RCTs or RCTs studying the effects of
specific artificial sweeteners on adiposity and 20 meta-analyses of
RCTs or RCTs studying the effects of specific artificial sweeteners
on glucose homeostasis as indicated in Tables 1, 2, respectively.
Retrieved papers were first screened by title and subsequently by
abstract based on the criteria. Full papers were reviewed in case
the abstract was insufficient to determine the eligibility. Endnote
X8 was used for themanagement of articles and citations. In total,
164 publications were identified that matched these criteria.

PHARMACOKINETICS

To determine safety of artificial sweeteners the FDA considers
probable intake, cumulative effects from all uses, and
toxicological data in animals. The European Food Safety
Authority (EFSA) evaluates and confirms that the intake of
artificial sweeteners, within the acceptable daily intake (ADI),
does not cause cancer or other health-related problems, and
are therefore safe for human consumption (56, 57). Although
authorities consider artificial sweeteners as safe as they do not
pose any health-related problems, when consumed within the
ADI, no specific safety claims have been made about the effects
of sweeteners on non-communicable diseases, such as obesity
and T2DM. Despite the fact that several artificial sweeteners
are tested for pharmacological and toxicological aspects, the
concerns about the effects of unmetabolized compounds on
non-communicable diseases still exist. Artificial sweeteners have
distinct structures and are metabolized differently as some but
not all are digested or fermented (Figure 1). The most common
artificial sweeteners such as acesulfame potassium, saccharin,
aspartame, sucralose, and steviol glycoside will be discussed in
the present review.

Acesulfame Potassium
Acesulfame potassium (acesulfame-K) (6-Methyl-1,2,3-
oxathiazin-4(3H)-one 2,2-dioxide), belonging into the
oxathiazinodioxide class of chemicals, is a white crystalline
powder and is ∼200 times sweeter compared to sucrose (58, 59).
Due to the higher intensity and the longer persistence of the
sweetness, acesulfame-K is used in a wide range of products,
mainly soft drinks. Although this sweetener contains potassium,
its intake does not influence systemic potassium levels (60).
Acesulfame-K is not metabolized by the body (61). Following
ingestion, acesulfame-K is completely absorbed into the systemic
circulation and distributed (58, 62) (Figure 1). The absorption
of acesulfame-K is very rapid, thereby making it unlikely that it
will reach the lower gastrointestinal (GI) tract to impact the gut
microbiota upon administration of a normal ADI-dosage (63).
Within 24 h after ingestion, acesulfame-K is primarily excreted
via the kidneys into the urine (>99%), with <1% excreted in
feces (58, 62).

Saccharin
Saccharin (1,1-dioxo-1,2-benzothiazol-3-one) is available in
three different forms: in acid form, or bound to sodium or
calcium (64). The most common form is sodium salt due to
its high solubility and stability. Saccharin is ∼300 times sweeter
than sucrose (62, 64). Similarly to acesulfame-K, saccharin
is not metabolized by the body (65). Therefore, the FDA
considers saccharin as safe (20). After ingestion of saccharin,
∼85–95% is absorbed and bound to plasma proteins to be
distributed via blood (58) (Figure 1). Thereupon, the saccharin
is excreted in the urine, while the remaining 5–15% passes
through the GI-tract entirely to be eliminated in the feces
unchanged (58, 66). Therefore, a fraction of saccharin that is
not immediately absorbed is able to affect the gut microbiota
composition (58).

Aspartame
Aspartame ((3S)-3-amino-4-[[(2S)-1-methoxy-1-oxo-
3-phenylpropan-2-yl]amino]-4-oxobutanoic acid) is
approximately 200 times sweeter than sucrose (58). In contrast
to other artificial sweeteners, aspartame contains 4 calories
per gram. Nevertheless, due to the sweetening intensity, only
a small amount of aspartame is used in products to achieve
sweetness. Therefore, few calories are derived from aspartame in
sweetener products. Upon ingestion, aspartame is broken down
in the small intestine by esterases and peptidases to aspartic
acid, phenylalanine, and methanol (16, 67) (Figure 1). Only
the hydrolyzed components are absorbed into the circulation
and metabolized following their normal metabolic pathways
(68). Methanol is metabolized in the liver, while aspartate acid
and phenylalanine enter the free amino acid pool. Thereupon,
the components are taken up by peripheral tissues, utilized for
protein synthesis and metabolism, and excreted. Aspartame does
not accumulate in the body as it is rapidly digested (57). Neither
aspartame nor its components reach the colon. Therefore,
aspartame is not able to affect the gut microbiota (58, 69).
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TABLE 1 | Characteristics of human studies investigating the effect of specific artificial sweeteners on body weight or adiposity.

References Study type Duration Participants Dosage artificial

sweetener

Comparator Adiposity

measure

Statistical

significance

Aspartame

(34) Meta-analysis Acute−16 weeks Obese, T2DM 162mg, ad libitum, or

500ml beverage

Sucrose or water Body weight N.S.

(34) Meta-analysis Acute Obese, T2DM 162mg or 500ml

beverage

Sucrose Body weight N.S.

Steviol glycoside

(35) Meta-analysis 90 days−2 years Healthy, T1DM,

T2DM

3.75–1,500 mg/day Placebo (talcum,

maize starch or

unspecified)

BMI N.S.

Saccharin

(36) RCT 12 weeks Overweight, obese 1.25–1.75 L/daily Sucrose Body weight N.S.

Sucralose

(37) RCT 7 days Healthy 780 mg/day Placebo (calcium

carbonate)

Body weight N.S.

(38) RCT 14 days Healthy 36 mg/day in

commercial sachets

Control group Body weight and

BMI

N.S.

RCT, Randomized Controlled Trial; T2DM, Type 2 Diabetes Mellitus; T1DM, Type 1 Diabetes Mellitus; BMI, body mass index; N.S, non-significant.

Sucralose
Sucralose (2R,3R,4R,5R,6R)-2-[(2R,3S,4S,5S)-2,5-bis
(chloromethyl)-3,4-dihydroxyoxolan-2-yl]oxy-5-chloro-6-
(hydroxymethyl)oxane-3,4-diol) is very similar to sucrose in
structure. However, the three hydroxyl groups attached to
the sucrose molecule are replaced by chlorine atoms, thereby
changing the confirmation of the molecule, to form sucralose
(58). Thus, glycosidic enzymes are unable to recognize and digest
sucralose. Although sucralose is made from sugar, it provides no
calories as it is not digested in the body (16, 70). Sucralose is 600
times sweeter compared to sucrose. Most of the sucralose passes
through the GI tract entirely to be directly eliminated in the feces,
whereas a small amount (11–27%) is absorbed and is directed
toward the kidneys to be excreted in the urine (71) (Figure 1).
Nevertheless, sucralose was found to be non-nutritive to bacteria
and resistant to fermentation, while affecting microbiota through
bacteriostatic effects (72).

Steviol Glycoside
Steviol glycosides (13-Hydroxykaur-16-en-18-oic acid) are the
chemical compounds responsible for the sweet taste and can
be found on the leaves of the South American plant Stevia
rebaudiana (73). Steviol glycosides are ∼100 to 300 times
sweeter compared to sucrose (73). Steviol glycosides cannot be
hydrolyzed by the digestive enzymes and acids present in the
upper GI tract (58, 74). Nevertheless, the microbiota in the
colon, primarily Bacteroides, is able to degrade steviol glycosides
(75). Therefore, steviol glycosides are able to modulate the gut
microbiota as they encounter it directly. Steviol glycoside is
degraded by cleavage of the glycoside linkage, thereby forming
steviol, steviolbioside, and glucose (76–78) (Figure 1). In turn,
steviolbioside will be converted to steviol (78). The formed
glucose is either utilized by colonic bacteria or absorbed,
metabolized, and excreted into the expired air as carbon dioxide

and water, while steviol is absorbed and enters the liver via the
portal vein (79, 80). Nonetheless, the entry of steviol into the
portal vein is slow due to the slow metabolization by the colonic
bacteria, depending on the species (81). In the liver, steviol is
glucoronidated and excreted into the urine (82, 83).

Body Weight and Adiposity
An increased body weight and adiposity develop under
conditions of a positive energy balance. The regulation of energy
balance is a complex process that involves homeostatic regulation
of energy intake and energy expenditure. Although artificial
sweeteners are as sweet or even sweeter than natural sugars,
the caloric content and the metabolism routes are different.
Therefore, it is likely that artificial sweeteners may affect energy
balance, and thus body weight, differently compared to natural
sugars via underlying physiological processes comprising the
gut microbiota, the reward-system, and adipogenesis (Figure 2).
Considering the increase in the prevalence of overweight and
obesity and the rising interest in losing weight, preventing weight
gain and maintaining weight loss, it is important to elucidate
the effects of artificial sweeteners on body weight control. Meta-
analysis, based on RCTs, showed that there is no significant
difference in body weight change between overweight and lean
individuals consuming artificial sweeteners compared to those
receiving sugars or cellulose as placebo for <6 months (15).
Furthermore, Azad et al. (29) reported no significant effects
of artificial sweeteners on weight change compared to sugar
or water in people living with obesity, based on meta-analysis
of long-term RCTs (≥6 months). Interestingly, however, other
meta-analysis of RCTs (4 weeks to 40 months) showed that the
intake of artificial sweeteners resulted in reduced body weight
in overweight and lean individuals compared to sugar or water
(84). Notably, however, this meta-analysis included 4 out of 12
intervention studies carried out in the context of a weight loss
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TABLE 2 | Characteristics of human studies investigating the effect of specific artificial sweeteners on glucose homeostasis.

References Study type Duration Participants Dosage artificial sweetener Comparator Measure of glucose homeostasis Statistical

significance

Aspartame

(39) RCT Acute Healthy 169mg Water Glucose levels N.S

(40) RCT Acute Obese 500ml beverage Water Glucose levels N.S.

(43) RCT Acute T2DM 400mg in beverage Unsweetened flavored beverage Glucose levels N.S.

(44) RCT Acute Healthy, overweight 250mg Water Glucose levels N.S.

(45) RCT Acute Healthy 400mg Placebo (corn flour) Glucose levels N.S.

(46) RCT Acute Healthy, T2DM 72mg Water Glucose levels N.S.

(47) RCT 2 weeks Healthy 425 mg/day - Glucose levels, HbA1c N.S.

(48) RCT 2 weeks Diabetic (not specified) 125 mg/day - Glucose levels N.S.

(49) RCT 6 weeks T2DM 163 mg/day Sucrose Glucose levels, HbA1c N.S.

(50) RCT 18 weeks T1DM, T2DM 270 mg/day Placebo (corn starch) Glucose levels, HbA1c N.S.

Steviol glycoside

(35) Meta-analysis 3–6 months Healthy, T1DM, T2DM 3.75–1,500 mg/day Placebo (talcum, starch or unspecified) HbA1c N.S.

(35) Meta-analysis 3–24 months Healthy, T1DM, T2DM 3.75–1,500 mg/day Placebo (talcum, starch or unspecified) Glucose levels N.S.

Saccharin

(43) RCT Acute Healthy, T1DM, T2DM 135mg in beverage Unsweetened flavored beverage Glucose levels N.S.

Acesulfame-K

(39) RCT Acute Healthy 220mg Water Glucose levels N.S.

Sucralose

(39) RCT Acute Healthy 62mg Water Glucose levels N.S.

(51) RCT Acute Healthy 60mg Glucose Glucose levels N.S.

(52) RCT Acute Healthy 50ml beverage Water Glucose levels N.S.

(53) RCT Acute Healthy 80mg infusion Saline infusion Glucose levels N.S.

(42) RCT Acute Healthy 960mg infusion Saline infusion Glucose levels N.S.

(46) RCT Acute Healthy, T2DM 24mg Water Glucose levels N.S.

(54) RCT 10 days Healthy 60mg in beverage - Insulin sensitivity N.S.

(54) RCT 10 days Healthy 60mg + maltodextrin - Insulin sensitivity ↓, P < 0.043

(47) RCT 2 weeks Healthy 0.136 mg/day - Insulin sensitivity N.S.

(38) RCT 2 weeks Healthy 36 mg/day + maltodextrin/ dextrose Control group Insulin sensitivity −17.7%, P < 0.04

(55) RCT 13 weeks T2DM 667 mg/day Placebo (cellulose) HbA1c N.S.

Acesulfame-K, acesulfame potassium; RCT, Randomized Controlled Trial; T2DM, Type 2 Diabetes Mellitus; T1DM, Type 1 Diabetes Mellitus; HbA1c, glycated hemoglobin; N.S, non-significant.
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FIGURE 1 | Overview of the major routes of absorption, digestion, metabolism, and excretion of different types of artificial sweeteners. (A) Acesulfame-K, saccharin,

and sucralose. Acesulfame-K is completely absorbed into the systemic circulation to be excreted in the urine via the kidneys. The majority of saccharin is absorbed

and distributed, while the remaining amount passes the gastrointestinal tract to be eliminated in the feces. Most of the sucralose passes the gastrointestinal tract to be

eliminated in the feces, while a small amount is directed toward the kidneys to be excreted in the urine. (B) Aspartame and steviol glycoside. Aspartame is digested in

the small intestine and the hydrolyzed components are absorbed and metabolized following their normal metabolic pathways. Steviol glycoside is fermented by the

gut microbiota to form steviol, which is absorbed into the liver and excreted in the urine. Acesulfame-K, acesulfame potassium.

program (84). Nevertheless, these findings strongly suggest that
artificial sweeteners may have neutral or beneficial effects on
long-term body weight control.

Considering specific types of artificial sweeteners,
meta-analyses, based on RCTs, showed no effect of aspartame
consumption on body weight compared to sugar or water
in individuals with either obesity or T2DM (34) (Table 1).
Only studies wherein aspartame was evaluated alone were
included in the meta-analyses to clarify the specific effects of
aspartame without interference of results obtained due to the
consumption of other sweeteners. However, large heterogeneity

was found due to different treatment patterns for aspartame
and sugar or water. Similarly, meta-analysis, based on RCTs,
showed no effect of steviol glycoside consumption on BMI
compared to talcum, maize starch, or unspecified matching
placebo in healthy individuals and patients with diabetes (35).
Additionally, subgroup analyses showed no significant effect
of steviol glycoside on BMI in either healthy individuals and
patients with diabetes. The results indicate that these artificial
sweeteners do not affect body weight. However, the effects of
acesulfame-K and saccharin can still be debated, as there is
no consistent evidence, and meta-analyses are lacking. More
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FIGURE 2 | Overview of the mechanisms of how artificial sweeteners may affect physiological processes involved in body weight regulation. Artificial sweeteners

interact with T1R-family of sweet-taste receptors in the oral cavity and gastrointestinal tract, thereby able to affect satiety and, in turn, energy intake and body weight.

However, in vivo studies have shown no effect of artificial sweeteners on the secretion of incretins. Furthermore, several artificial sweeteners may reach the adipose

tissue to interact with T1R-family of sweet-taste receptors and affect adipogenesis and, in turn, body weight. Moreover, several artificial sweeteners are able to induce

gut microbiota alterations. Thereupon, SCFA production is enhanced. It can be speculated that SCFA may, in turn, increase energy expenditure due to enhanced lipid

oxidation and affect satiety by modulating gut-brain signaling via incretins. Dashed lines indicate that the effect is dependent on type of artificial sweetener and/or that

results are inconsistent or hypothetical. SCFA, short chain fatty acids; GPCR; G-protein coupled receptor; T1R2, taste receptor type 1 member 2; T1R3, taste

receptor type 1 member 3.

specifically, one study that used the ADI-dosage for human
consumption (15 mg/kg/day) showed no effect on body weight
in mice after 8 weeks of acesulfame-K consumption, while
another study shows an increase in body weight by exceeding
the ADI more than 2-fold (37.5 mg/kg/day) after 4 weeks in
mice (85, 86). Furthermore, saccharin consumption was found

to increase body weight in mice compared to water, sucrose or
glucose, whereas other studies in rodents have shown reduced
or unchanged body weight compared to mice receiving water,
glucose, fructose or sucrose (87–94). However, the absorption
of saccharin is lower in rodents compared to humans due to
a relative higher stomach pH in rodents (92). Furthermore,
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differences in perception of sweetness for individual artificial
sweeteners exist between different rodent species and strains
(95). Therefore, perception and post-ingestive responses of
rodents might differ from humans. Nevertheless, human data on
the effect of acesulfame-K on body weight is currently lacking.
Moreover, human data on the effect of saccharin on body weight
is scarce with only one study showing no significant effects on
body weight after 12 weeks of saccharin consumption compared
to sucrose in overweight and obese individuals (36). Moreover,
sucralose consumption has been reported to have no effect
on body weight in mice compared to water, and in human
studies compared to placebo (calcium carbonate) or control
(no-intervention) (37, 38, 85, 88, 96). Notably, contradictory
results from rodent studies for the effect on body weight exist
only for acesulfame-K and saccharin, which are largely or
entirely absorbed in their intact form, thereby being able to
reach the peripheral tissues. Consistently, rodent and human
studies found no effect of sucralose on body weight as only a
small amount is absorbed in its intact form, thereby reaching
the microbiota in a larger amount compared to acesulfame-K
and saccharin (37, 38, 85, 88, 96). As artificial sweeteners have
different metabolic fates, differences in physiological effects
affecting energy balance and adiposity should be elucidated.

THE INTERACTION BETWEEN ARTIFICIAL
SWEETENERS, REWARD, AND ADIPOSITY

Reward
As artificial sweeteners contain no or low amounts of calories,
one might expect that these sweeteners may contribute to lower
energy intake and thus body weight reduction. Nevertheless,
controversies exist whether artificial sweeteners affect appetite,
hunger, and eating behavior, and if these effects are beneficial or
not. One driving aspect in eating behavior is the reward of food.
The reward system plays an important role in regulating energy
intake, and can be divided into sensory and post-ingestive reward
(19, 97). After ingestion of either natural sugars or artificial
sweeteners, gustatory information is perceived by sweet taste
receptors, which are heterotrimeric G-protein coupled receptors
(GPR) consisting of two subunits, namely taste receptor type
1 member 2 (T1R2) and 3 (T1R3) (98, 99). The sweet taste
receptors are located in taste buds in the oral cavity and outside
the oral cavity, including the intestine and pancreatic β-cells
(100). The binding sites of sweet taste receptors are different for
artificial sweeteners and natural sugars (101). Upon interaction
of sweet compounds to the sweet receptor T1R2/T1R3, the
heterotrimeric G protein, α-gustducin, is activated (102). As
a result, the subunits Gβγ are dissociated and can interact
with phospholipase Cβ2 (PLC-β2), which in turn increases
production of inositol 1,4,5-triphosphate and diacylglycerol
(103). Consequently, the transient receptor potential cation
channel subfamily M member 5 is activated, thereby increasing
intracellular calcium and neurotransmitter release (104–106). As
artificial sweeteners and natural sugars bind differently to the
sweet taste receptors, the gustatory branch is activated differently
as well (19, 101). Thereupon, artificial sweeteners may generate

weaker signals that are sent to areas involved in reward and
satisfaction, as consistently demonstrated by using functional
Magnetic Resonance Imaging (fMRI) in several randomized
cross-over trials (107, 108).

Likewise, the ingestion of artificial sweeteners induces a
signaling cascade outside of the oral cavity. Within the GI tract,
sweet taste receptors are primarily located on enteroendocrine L-
and K-cells (104). The signal transduction pathway is similar as
in cells present in the oral cavity. Upon ligand binding of natural
sugars to sweet taste receptors, enteroendocrine L-cells secrete
glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), whereas
K-cells secrete glucose-dependent insulinotropic peptide (GIP)
(100). These hormones are able to cross the semi-permeable
blood-brain barrier, thereby reaching the hypothalamus and
affecting food intake by reducing appetite and increasing
satiety (41). However, artificial sweeteners may not be potent
secretagogues for GLP-1, PYY, and GIP to the same extent
in vivo as natural sugars, since the secretion is nutrient-
dependent (39, 109, 110). For instance, aspartame is digested
and absorbed before reaching the lower GI tract to bind to the
sweet taste receptors. Acesulfame-K, sucralose, steviol glycoside,
and saccharin pass through the lower GI tract to be absorbed,
digested or eliminated directly. Consistently, mice studies and
human crossover trials in lean and obese individuals have shown
no significant effects of artificial sweeteners on incretin secretion
(39, 40, 42, 51–53, 111, 112). In addition to the lack of an
effect on incretin secretion, two human crossover studies showed
no effect on appetite upon sucralose or aspartame-sweetened
diet coke consumption in healthy and obese individuals (40,
52). Furthermore, randomized cross-over trials showed weaker
reward and satisfaction signals upon aspartame or sucralose
ingestion in healthy individuals, thereby suggesting that caloric
intake is required in evoking a hypothalamic response (107,
108). Therefore, it has been suggested that artificial sweeteners
do not activate the food reward pathways in the same way
as natural sugars. The elimination of the post-ingestive reward
holds true for non-caloric artificial sweeteners, whereas the intake
of artificial sweeteners in the presence of carbohydrates may
elicit post-ingestive incretin responses, as demonstrated using
sucralose-sweetened beverages (54). Based on the above, it can
be postulated that artificial sweeteners solely offer less reward
compared to natural sugars, although it should be emphasized
that the differences in reward response has not been shown in
the context of a whole-meal approach or diets, where sugar was
replaced by artificial sweeteners.

Energy Intake
The lack in complete satisfaction may drive the assumption
that artificial sweeteners fuel food seeking behavior, thereby
contributing to increased or no differences in energy intake.
However, less satisfaction does not necessarily translate into
compensatory (excess) energy intake (113–116). RCTs have
shown that the reduced caloric intake by replacing natural
sugars with artificial sweeteners is not completely compensated
(117, 118). As a result, energy intake after the use of artificial
sweeteners is still lower compared to natural sugars, even
after putative compensatory energy intake. Therefore, the
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compensatory energy intake does not seem to pose a threat
to weight gain and may aid in weight loss (maintenance).
Furthermore, meta-analysis of acute RCTs (≤1 day) showed that
artificial sweeteners decrease energy intake in comparison to
caloric sweeteners in overweight and lean individuals, whereas
no difference was found in comparison with water (84). In
a meta-analysis of long-term RCTs (4 weeks to 40 months),
artificial sweeteners were found to decrease energy intake
compared to caloric sweeteners or water (84). Similarly, a meta-
analysis including RCTs with a study duration of 4–10 weeks
showed reduced energy and sugar intake in lean and overweight
individuals consuming artificial sweeteners compared to those
receiving sugar (15). Taken together, these findings suggest that
compensatory energy intake during consumption of artificial
sweeteners does not seem to occur in the short- and long-term, or
at least does not completely compensate for the reduced caloric
intake compared to sugar intake.

Adipogenesis
Sweet taste receptors are expressed in many organs, including
adipose tissue (119). Not all artificial sweeteners will reach
the adipose tissue as some are not absorbed into the systemic
circulation. The sweet taste-sensing receptor in adipose tissue
differs in comparison to the receptors in sweet taste buds or in
the GI tract. In adipocytes, the expression of T1R3 was found
to be higher than T1R2, suggesting that a higher percentage of
T1R3 is present as a homomer (120). Nevertheless, increased
adipogenesis and reduced lipolysis were found, independent
of T1R2 and T1R3, upon in vitro stimulation of adipocytes
with saccharin (119). It has been suggested that saccharin
act on a protein kinase A-mediated mechanism downstream
of cyclic adenosine monophosphate (cAMP). Consequently,
hormone sensitive lipase (HSL) phosphorylation is reduced by
regulating HSL phosphatase, thereby inhibiting lipolysis (119).
Likewise, acesulfame-K was found to stimulate adipogenesis
(119). However, the active concentrations of saccharin and
acesulfame- K in adipocytes (4.5mM) were higher than expected
to be observed in humans as bolus oral doses of maximum
daily intake of saccharin, for instance, results in peak plasma
concentrations of ∼75µm (119). Similarly, other in vitro
studies in human mesenchymal stem cells showed increased fat
accumulation and upregulation of genes involved in adipogenesis
upon stimulation with a higher sucralose concentration (0.45
or 4.5mM) (121). Notably, as discussed earlier, contradictory
results regarding body weight were found for acesulfame-K and
saccharin. Thus, since these artificial sweeteners are largely or
entirely absorbed, it could be argued that they reach the adipose
tissue and may impact adipogenesis. Nevertheless, Masubuchi
et al. (120) showed reduced adipogenesis in 3T3-L1 cells upon
stimulation with saccharin or sucralose (20mM) by activation
of adenylate cyclase-cAMP signaling pathway. Along with
cAMP-dependent pro-adipogenic signals, cAMP-independent
anti-adipogenic signals are generated, which may dominate
the formal signal to inhibit adipogenesis (120). Hence, studies
investigating the role of artificial sweeteners and peripheral
sweet taste receptors are scarce, and existing in vitro studies

examining the effects of artificial sweeteners on adipogenesis
provide inconsistent results (119–121).

THE INTERACTION BETWEEN ARTIFICIAL
SWEETENERS, GUT MICROBIOTA, AND
ENERGY BALANCE

Alterations in Gut Microbiota
Gut microbiota and the produced microbial fermentation
products are key to many aspects of human health (122). Besides
the involvement of fermenting indigestible food components, gut
microbiota seems closely linked to metabolism, energy balance,
and the immune system (123). An important modifying factor
influencing the composition of the microbiota, and thereby the
overall health, is diet (124). Artificial sweeteners may alter the gut
microbiota composition, evidenced by increased gut microbiota
dysbiosis and an increased Firmicutes:Bacteroidetes ratio in a
cross-sectional study with morbidly obese individuals (125).
Moreover, another cross-sectional study showed no association
between aspartame or acesulfame-K consumption and bacteria
abundance profiles or predicted gene function (126). However,
bacterial diversity differed between aspartame or acesulfame-K
consumers and non-consumers (126). Furthermore, Suez et al.
(89) demonstrated that artificial sweeteners are able to induce
glucose intolerance in mice and distinct human subsets by
altering the gut microbiome. Supplementation of saccharin (5
mg/kg/d) for 1 week induced an elevated glycemic response after
an oral glucose load, which was associated with microbiome
alterations in a small group of study participants clustered as
“responders” (n = 4), while no response was found in the other
individuals (“non-responders”, n = 3) (89). The poor glycemic
response in the “responders” was replicated in mice upon
fecal transplantation. Similarly to the above mentioned cross-
sectional study (126), the microbiome composition between
the “responders” and “non-responders” were already distinct
prior to saccharin exposure, thereby suggesting that humans
feature an unique response to artificial sweeteners and that the
gut microbiome may serve as a predictor for the susceptibility
(89). Nevertheless, in the latter study there was no placebo
group in the short-term intervention study and the number
of individuals was small, indicating that replication of these
findings is required. Overall, human trials investigating the effect
of artificial sweeteners on gut microbiota are scarce.

Regarding rodent studies, an increased
Firmicutes:Bacteroidetes ratio, resembling that of obese
individuals, was found in mice after 11 weeks of saccharin
consumption (89). Consistently, modulation of the gut
microbiota was found in other rodent studies upon saccharin
consumption, as a minor fraction of saccharin is not absorbed
and will concentrate in the colon (96, 127). Besides saccharin,
sucralose was consistently found to affect microbiota in mice as
it accumulates in the colon (85, 88, 96). However, contradictory
results regarding the effect of acesulfame-K on gut microbiota
composition have also been found in rodents (85, 86). This
discrepancy is at least partly explained by the difference of
administered dosage. More specifically, one study that used
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the ADI-dosage for human consumption (15 mg/kg/day)
showed no effect on microbiota composition in mice after 8
weeks consumption, while another study that applied a dosage
that exceeds the ADI more than 2-fold (37.5 mg/kg/day),
showed an increase in Bacteroides and Firmicutes after 4 weeks
consumption in mice (69, 85, 86). Since the absorption of
acesulfame-K is very rapid, it is unlikely that it will reach the
lower GI tract upon administration of a normal ADI-dosage
(63). Regarding other artificial sweeteners, aspartame does not
affect the gut microbiota, since it is digested and broken down
into residual components before entering the lower GI tract (58).
Whereas, steviol glycoside encounters the microbiota directly in
order to be fermented. Controversial results exist between in vivo
and in vitro studies using human feces as well as E.coli cell lines.
In vitro fermentation studies using human feces showed no effect
of steviol glycoside on microbiota composition (75, 128). Other
in vitro studies using E.coli cell lines showed selective growth
inhibition upon steviol glycoside stimulation, or little or no effect
on bacterial growth (96, 129). Nevertheless, the consumption of
steviol glycoside (2–3 mg/kg) was found to alter gut microbiota
composition in mice after 9 weeks (130).

As gut microbiota is closely linked to many aspects of
health, changes in microbiota composition may lead to negative
alterations in metabolic homeostasis. Suez et al. (89) showed
an increase in the glycan degradation pathway, along with
an increased Firmicutes:Bacteroidetes ratio, in mice after 11
weeks of saccharin consumption. As a result, glycans are
fermented to form short chain fatty acids (SCFA), including
acetate and propionate (89, 131). In addition, sucralose was
found to increase cecal propionate levels in mice after 8 weeks
of consumption (132). In contrast, acesulfame-K consumption
did not affect SCFA levels in mice following 8 weeks of
consumption upon normal ADI-dosage (85). Furthermore,
steviol glycoside was found to increase SCFA after 9 weeks
of steviol glycoside consumption in rodents and in studies
using an in vitro model of the human colon (GIS1) (130,
133). The increase in SCFA levels may be an indicator of
enhanced energy harvest, as the capacity to extract energy has
been suggested to be increased as result of artificial sweetener
consumption. Butyrate, particularly, serves as an energy supply
for ∼60–70% for colonocytes and gut epithelial cells (134,
135). Whereas, acetate mainly contributes to lipogenesis in the
cytosol of hepatocytes and adipocytes or can be oxidized in
skeletal muscle (136, 137). In addition, propionate serves as a
precursor for gluconeogenesis, lipogenesis, and protein synthesis
(89, 138, 139). However, the significance of energy harvest in
humans is still unclear, and increased SCFA concentrations
have merely been associated with beneficial health effects in
humans (140).

Gut-Brain Signaling
In the small intestine, propionate is able to bind to GPR43 and
GPR41, free fatty acid receptors (FFAR) 2 and 3, respectively,
in the enteroendocrine L-cells (141). Upon binding to the
receptors, the secretion of GLP-1 and PYY is stimulated
(142). Mice lacking FFAR2 or FFAR3 were found to have
reduced SCFA-triggered GLP-1 secretion in vitro and in vivo

(143). Furthermore, we have recently performed a double-blind,
crossover study, showing increased PYY concentration upon
acute colonic administration of mixtures of acetate, propionate,
and butyrate in overweight or obese men (144). Therefore,
it is tempting to speculate that artificial sweeteners, that
are able to modulate gut microbiota, are able to affect
gut-brain signaling, via increased SCFA production. Besides gut-
brain signaling, SCFA are found to affect appetite regulation
and leptin secretion, as described more extensively elsewhere
(140). Nevertheless, human studies investigating the effect of
artificial sweeteners on hunger-satiety cycle, via SCFA, are
currently lacking.

Energy Expenditure
Besides affecting the hunger-satiety cycle, SCFA may modulate
body weight control by influencing energy expenditure. Our
recently performed double-blind, crossover study, showed
increased lipid oxidation, and thus energy expenditure, upon
acute colonic infusions of SCFA in overweight or obese men
(144). Consistently, mice studies have shown increased lipid
oxidation by increasing sympathetic activity in brown adipose
tissue, via gut-neural signaling, upon SCFA administration (145–
147). However, the relevance of brown adipose tissue in body
weight regulation in humans seems less evident, as it may
only contribute to a very minor extent to energy expenditure
(148). Acetate and butyrate were found to enhance lipid
oxidation in mice studies and in vitro studies using bovine
hepatocytes, possibly mediated via GPR41 and GPR43 (140,
141, 149–152). Nevertheless, in vivo studies found no effect
on energy expenditure in mice after 40 weeks of acesulfame-
K exposure or 5 weeks of saccharin exposure (89, 153).
Similar to findings in liver, SCFA were found to enhance
lipid oxidation in skeletal muscle as shown in rodents and
C2C12 myotubes (154–156). However, human data regarding
the effects of SCFA on tissue metabolism are currently lacking.
Moreover, human evidence of the effects of artificial sweeteners
on microbiota alterations, and subsequently SCFA production,
are very limited. Thus, although it is tempting to speculate
that artificial sweeteners may affect energy expenditure through
altered SCFA production in the gut, further studies are needed to
investigate this.

Importantly, the putative beneficial effects of the intake
of artificial sweeteners, by SCFA production, are mainly
based on studies in rodents. Furthermore, no difference in
energy expenditure, using ventilated-hood and 24 h whole body
indirect calorimetry, was found upon sucralose consumption
in acute studies and long-term (10 weeks) RCTs, whereas
lipid oxidation was enhanced and carbohydrate oxidation was
decreased compared to sucrose in normal weight and overweight
individuals (157, 158). Moreover, no changes in energy
expenditure, estimated based on accelerometry, were observed
upon saccharin-, aspartame-, sucralose-, or steviol glycoside-
sweetened beverage consumption for 12 weeks compared to
sucrose in overweight or obese individuals (36). These findings
may imply that a reduction in energy intake rather than an
increase in energy expenditure may contribute to the beneficial
effects of sucralose on body weight control.
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GLUCOSE HOMEOSTASIS

Besides potentially affecting body weight control, artificial
sweeteners may also affect glycemic control, since glucose
absorption may be reduced upon replacement of available
carbohydrates. However, this does not necessarily translate into
an improved glucose homeostasis, since alterations in intestinal
glucose transport and absorption, insulin resistance, and reduced
insulin secretory capacity by artificial sweeteners may contribute
to impaired glucose homeostasis (Figure 3). However, the results
of systemic reviews and meta-analysis that have been performed
to investigate the relationship between artificial sweetener intake
and glucose homeostasis or risk of T2DM are controversial.
Daher et al. (159) reported that the majority of systemic
reviews and meta-analysis, based on RCTs or prospective cohort
studies in healthy individuals yielded no conclusive evidence
that artificial sweeteners increase the risk for T2DM. Other
intervention studies in healthy individuals and patients with
diabetes showed no significant effect of artificial sweeteners
on glucose homeostasis (glucose and insulin levels) (159). On
the other hand, systematic reviews and meta-analysis, based
on prospective cohort studies in healthy individuals, showed
a positive association between artificial sweetener intake and
the incidence of T2DM, independent of adiposity (although
attenuated after adjustment for BMI) (159). However, the
evidence for a relationship between artificial sweeteners and
T2DM is based on prospective cohort studies using only
baseline exposure and may be caused by reverse causation.
Hence, evidence from systematic and meta-analysis does not
consistently show that artificial sweeteners reduce the risk of
T2DM in humans.

Considering specific types of artificial sweeteners, glucose
homeostasis seems to be unaffected by aspartame and steviol
glycoside. No significant effect on glucose levels and glycated
hemoglobin (HbA1c) levels were found after acute or long-term
aspartame consumption (39, 40, 43–50) (Table 2). Similarly, a
meta-analysis of long-term RCTs showed no effect of steviol
glycoside on glucose levels and HbA1c levels in healthy
individuals and patients with diabetes (35). Regarding other
artificial sweeteners, glucose levels were not found to be affected
by acute saccharin consumption in healthy individuals and
patients with diabetes, and acute acesulfame-K consumption in
healthy individuals (39, 43). In addition, mice studies found
no effect on glucose tolerance upon acesulfame-K consumption
(153). Nevertheless, data from rodent studies on saccharin
consumption remain controversial, as one study showed an
increase in glucose tolerance after 11 weeks of commercial
saccharin added to drinking water, whereas another study found
no effect after 7 weeks of pure saccharin added to drinking
water (89, 160). However, the discrepancies may be explained
by differences in caloric content of the drinking water, as the
study showing increased glucose tolerance used a commercial
sweetener (Sucrazit), consisting out of 95% glucose and 5%
saccharin, whereas the other study showing no effect used pure
saccharin (89, 160). More specifically, one study that used the
ADI-dosage for human consumption (15 mg/kg/day) showed
no effect on body weight in mice after 8 weeks of acesulfame-
K consumption, while another study shows the opposite by

exceeding the ADI more than 2-fold (37.5 mg/kg/day) after 4
weeks in mice (85, 86). Furthermore, glucose and HbA1c levels
were not affected by acute or long-term sucralose consumption
in healthy individuals and patients with diabetes (39, 42,
46, 51–53, 55). Remarkedly, short-term sucralose consumption
alone showed no effect on insulin sensitivity in healthy
individuals, whereas sucralose-sweetened beverages, containing
carbohydrates, or sucralose sachets added to carbohydrate-
containing beverages or meals, decreased insulin sensitivity in
healthy individuals (38, 47, 54). Therefore, it has been suggested
that sucralose may impair glucose metabolism only when co-
ingested with carbohydrates. The role of artificial sweeteners in
enhancing intestinal glucose absorption, thereby perturbating
glucose homeostasis in the presence of carbohydrate content,
can be speculated (as discussed below). The discrepancies of the
effects of artificial sweeteners on glucose homeostasis may be
explained by the difference in types of artificial sweeteners and
the intake of artificial sweeteners solely or in combination with
carbohydrates. Nevertheless, more human studies are needed to
confirm these findings, and assess whether these putative effects
on glucose homeostasis can be translated to a situation where
artificial sweeteners are consumed as part of the diet with other
dietary components.

Intestinal Glucose Absorption
The GI tract plays a major role in the regulation of
glucose homeostasis. As artificial sweeteners may impact gut
microbiota and function, they are able to alter intestinal
glucose absorption and thus postprandial glucose levels. Upon
ingestion of carbohydrates, glucose is largely absorbed across
the enterocytes of the intestinal wall via sodium-glucose
cotransporter-1 (SGLT1) on the apical membrane and the
passive glucose transporter 2 (GLUT2) on the basolateral
membrane (106). The sweet taste receptors located in the
GI tract serve as glucose sensors to adapt dietary glucose
concentrations (161). Upon binding of glucose to the sweet
taste receptors, the secretion of GLP-1, GLP-2, and GIP is
enhanced, which in turn increases the expression of GLUT2
(162, 163). However, artificial sweeteners alone seem not able
to elicit the same effects as natural sugars in vivo due to lack
of caloric content, as discussed earlier. Nevertheless, SGLT1
was found to be upregulated by sucralose, acesulfame-K, and
saccharin in wild-type mice, but not in mice lacking T1R3
or α-gustducin (161). This was not found for aspartame, as
mice do not sense it as sweet (161). In addition, sucralose,
acesulfame-K, and saccharin were found to increase GLUT2
insertion into the apical membrane, thereby increasing the rate
of intestinal glucose absorption in mice (164). Nevertheless, a
cross-over study of intraduodenal infusion of sucralose (960mg)
in healthy individuals showed no difference in intestinal glucose
absorption compared to saline infusion in combination with
glucose (53). Additionally, intraduodenal infusion of sucralose
(80 and 800mg) was not found to stimulate GIP release
compared to saline infusion in combination with glucose in
healthy individuals (42). Notably, however, the measurement of
intestinal glucose absorption in the latter study is less sensitive
compared to the methodology applied in the rodent studies,
as intestinal glucose absorption rate is indirectly measured by
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FIGURE 3 | Overview of the effects of artificial sweeteners on physiological processes involved in glucose homeostasis. Artificial sweeteners may enhance intestinal

glucose absorption by upregulating SGLT1 and GLUT2. Furthermore, artificial sweeteners affect insulin secretory capacity by interacting with GPCR. Moreover, the

artificial sweetener-induced gut microbiota dysbiosis, in turn, may affect insulin secretion via the enhancement of SCFA. Upon dysbiosis, LPS levels may increase, and

endotoxemia and chronic inflammation occurs, which might affect ectopic fat accumulation and insulin resistance. Dashed lines indicate that the effect is dependent

on type of artificial sweetener. SGLT1, sodium glucose transporter 1; GLUT2, glucose transporter 2; GPCR, G-protein coupled receptor; T1R2, taste receptor type 1

member 2; T1R3, taste receptor type 1 member 3; SCFA, short chain fatty acids; LPS, lipopolysaccharide; TLR4, toll-like receptor 4; CD14, cluster of differentiation

antigen 14.

adding a non-metabolizable glucose analog to the intestinal
perfusate (106). To date, no significant effects of artificial
sweeteners on intestinal glucose absorption have been reported
in humans.

Insulin Secretion
The intake of nutrients is associated with a large set of sensory
cues that enables the human body to prepare for metabolic
digestion and utilization. Exposure to sweet-tasting sugars,
even before ingestion, triggers physiological responses related
to the release of insulin or incretin in order to reduce blood
glucose levels. However, artificial sweeteners are not able to
prepare the GI tract for digestion and utilization of nutrients
as well as sugars (107, 165). Smeets and colleagues (107) have
shown in a randomized crossover study in healthy individuals

that there was no cephalic insulin response upon tasting of
aspartame, while an early rise in insulin concentration was
found when tasting glucose. Likewise, no cephalic response
upon sucralose has been reported in a randomized crossover
study in healthy individuals (52). Furthermore, while natural
sugars are able to stimulate the secretion of incretins, thereby
stimulating β-cells to secrete insulin, artificial sweeteners do
not directly induce incretin secretion as this appears nutrient-
dependent (39, 109, 110, 166). Moreover, insulin secretion is
stimulated upon the interaction of both natural sugars and
artificial sweeteners with sweet-taste receptors in pancreatic β-
cells by initiating a signal transduction pathway via Ca2+ and
cAMP-dependent mechanism (167). Taken together, this may
suggest that artificial sweeteners stimulate insulin secretion less
compared to natural sugars.
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In agreement with this, the majority of acute and short-
term (7–12 days) RCTs showed no significant effect of
sucralose consumption or intravenous infusion on circulating
insulin levels compared to water, glucose, sucrose, placebo
(calcium carbonate), or saline infusion as control in healthy
individuals (36, 37, 42, 51, 52, 168). Only three studies
reported opposite findings, of which two studies found increased
insulin levels after acute (48mg) or long-term (4 weeks,
200 mg/day) sucralose consumption compared to water or
placebo (unspecified) in obese or healthy individuals (169–
171). The reasons for these discrepant findings are not clear
but may be related to differences in study population or
duration of the intervention. Moreover, Sylvetsky et al. (171)
showed increased insulin levels after acute intake of a diet-
beverage including sucralose, acesulfame-K, and aspartame
compared to carbonated water (seltzer) in healthy individuals.
Nevertheless, no differences in insulin levels were found
upon water with sucralose consumption compared to water
consumption alone, thereby indicating that the taste associated
with diet soda or other ingredients may affect the insulin
secretion. Furthermore, acute and longer-term (12–16 weeks)
studies showed no effect of saccharin, acesulfame-K, steviol
glycoside, and aspartame consumption on insulin levels in
healthy, diabetic, overweight, or obese individuals (36, 39, 40,
43–45, 48, 172–174). Taken together, the available human data
suggests that artificial sweeteners do not significantly affect
insulin levels.

Insulin Resistance
Insulin resistance is a major factor in the pathophysiology of
T2DM, of which the pathogenesis involves the accumulation
of ectopic fat and the activation of innate immune pathways,
thereby interfering with insulin signaling and action (175). The
artificial sweetener-induced gut microbiota dysbiosis has been
linked to metabolic endotoxemia and the development of an
inflammatory state, at least in rodents (89, 127, 176). Suez
et al. (89) showed an altered host metabolism by downstream
effects of microbiota in mice upon saccharin intake. The
authors found enriched microbial pathways, associated with
metabolic syndrome, in mice, including lipopolysaccharide
(LPS) synthesis, which is a breakdown product of the outer
membrane of Gram-negative bacteria (89, 177). Microbiota
dysbiosis is considered to be related to the loss of gut mucosal
integrity as the expression of tight junction proteins is reduced,
among other mechanisms (176, 178). Therefore, LPS may
translocate from the gut into the portal or systemic circulation,
thereby able to stimulate the activation of pro-inflammatory
macrophages and the secretion of pro-inflammatory cytokines
(127, 177, 179–181). Other studies showed disrupted intestinal
epithelial barrier in vitro using Caco-2 cells upon saccharin
stimulation, whereas aspartame, acesulfame-K, and sucralose did
not alter intestinal permeability (176). Similarly to the study
of Suez et al. (89), other rodent studies showed increased
LPS concentration, and subsequently enhanced inflammation,
in mice upon saccharin consumption by interfering with the
gut microbiota (127, 176). Regarding other artificial sweeteners,
the intake of acesulfame-K (exceeding the ADI-dosage for

humans by more than twice) or sucralose was found to
enhance inflammation in mice, whereas steviol glycoside was
found to reduce inflammation by attenuating LPS-induced
pro-inflammatory cytokine production in Caco-2 cells and
by regulating TLR2 and cytokine expression in S. aureus-
infected mouse mammary gland (86, 182–184). This indicates
that steviol glycoside possess anti-inflammatory properties,
whereas saccharin, acesulfame-K, and sucralose may increase
inflammation in rodent studies and in vitro. The resulting
endotoxins and inflammatory cytokines are able to infiltrate
peripheral tissues and release TNFα, IL-1β, and IL-6, which
may interfere with insulin signaling and insulin-stimulated
glucose uptake (185–187). Furthermore, inflammatory molecules
may inhibit adipogenesis by constraining the hyperplastic
expandability of adipose tissue (188). As a result, adipocyte
turnover and adipose tissue expansion is reduced, leading to
lipid overflow and fat accumulation in non-adipose tissues.
This ectopic fat, as well as the accumulation of bioactive
lipid metabolites, may disturb cellular function, ultimately
contributing to insulin resistance and a reduced β-cell function,
as described more extensively elsewhere (189).

Besides an enrichment of LPS synthesis, Suez et al. (89)
showed an increase in SCFA production, through alterations
in gut microbiota composition, in mice upon saccharin
consumption. The authors suggested that the enhanced SCFA
may serve as an energy source for the host or signaling molecules
or substrates for gluconeogenesis, de novo lipogenesis and
cholesterol synthesis (89). Counterintuitively, SCFA have most
often been associated with positive health effects (140). SCFA
were found to counteract LPS-induced inflammation by reducing
pro-inflammatory cytokines and enhancing anti-inflammatory
cytokines in murine macrophages (190). Furthermore, in
vitro studies have found an attenuation of lipolysis upon
SCFA stimulation in 3T3-L1 adipocytes, thereby reducing
plasma free fatty acids (191–194). Likewise, rodent studies
have demonstrated that SCFA may reduce intracellular lipid
accumulation, thereby alleviating oxidative stress (195–197).
In addition, as mentioned before, SCFA may affect energy
metabolism, for instance via the enhancement of lipid oxidation
in human studies (143). Repeatedly, artificial sweeteners have
been found to increase lipid oxidation compared to sucrose
in acute and long-term (10 weeks) RCTs in normal and/or
overweight individuals (157, 158). Chern et al. (158) suggested
that the difference in metabolism between sucralose and
sucrose is attributed to the distinct carbohydrate content
and the fact that sucrose is able to initiate carbohydrate-
specific physiological responses, including the secretion of
insulin and GLP-1. Taken together, it can be speculated that
artificial sweeteners, to some extent, play a protective role
in adiposity and insulin resistance by counteracting the LPS-
induced inflammation and subsequent impairment of insulin
signaling. However, it remains to be investigated whether the
findings of Suez et al. (89) in mice are translatable to humans
regarding the metabolic consequences of artificial sweetener-
induced microbiota alterations. Furthermore, human evidence
of the effects of artificial sweeteners on inflammation is
currently lacking.
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CONCLUSION AND PERSPECTIVES

The scope of this review was to review the physiological
effects of artificial sweeteners on body weight control and
glucose homeostasis, and to identify the controversies of
the existing evidence between different artificial sweeteners
surrounding their use. Although artificial sweeteners maintain
the same palatability as natural sugars, the metabolic routes
are different. Therefore, artificial sweeteners affect body weight
and glucose homeostasis differently compared to natural
sugars via underlying physiological processes comprising the
gut microbiota, reward-system, adipogenesis, insulin secretory
capacity, intestinal glucose absorption, and insulin resistance.
The gut microbiota, in particular, may play a major role
in the physiological effects of artificial sweeteners on body
weight regulation and glucose homeostasis. There is mechanistic
evidence that artificial sweeteners may induce gut microbiota
dysbiosis, by altering the gut microbiota composition and
function. Although different physiological processes are involved
in the effect of artificial sweeteners on metabolic health, meta-
analyses of RCTs or RCTs and prospective cohort studies
suggest that artificial sweeteners may have a neutral effect on
body weight and glycemic control, respectively, or may have
a beneficial effect on long-term body weight regulation. Even
though the majority of human studies report no significant
effects of artificial sweeteners on body weight and glycemic
control, it should be emphasized that the study duration of most
studies was limited. Furthermore, unlike rodent studies, long-
term studies investigating the underlying physiological effects
body weight control on metabolic health of artificial sweeteners
in humans are scarce and therefore warranted. Currently, within
the European H2020 project SWEET (www.sweetproject.eu), a
human multicenter study is ongoing which aims to investigate

the use of artificial sweeteners within the context of a healthy
lifestyle on body weight maintenance after weight loss and
on metabolic health risk. Notably, artificial sweeteners are
metabolized differently and may not all elicit the same metabolic
effect as, for instance, components may affect the gut microbiota
composition directly and others are easily digested and absorbed.
Not all studies investigating the effects of artificial sweeteners
on body weight control and glucose homeostasis take into
account the different metabolic pathways of distinct artificial
sweeteners. Therefore, human data on the effects of distinct
artificial sweeteners are limited or lacking. The difference in
metabolic fate of artificial sweeteners may underlie conflicting
findings that have been reported related to their effects on body
weight control, glucose homeostasis, and underlying biological
mechanisms. Therefore, extrapolation of the metabolic effects
of a single artificial sweetener to all artificial sweeteners is
not appropriate.

In this regard, future studies should consider the metabolic
pathways of different artificial sweeteners. Further (long-term)
human research investigating the underlying physiological
pathways of different artificial sweeteners on microbiota
alterations and its related metabolic pathway is warranted to
evaluate the potential impact of their use on body weight control
and glucose homeostasis. Ultimately, it would be interesting
to elucidate the impact of initial microbiota composition as a
predictor for the response to artificial sweeteners in humans.
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