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Background: Genomic sequencing, including whole exome sequencing (WES), is
enabling a higher resolution for defining diseases, understand mechanisms, and
improving the practice of clinical care. However, WES routinely identifies genomic
variants with uncertain functional effects. Furthering uncertainty in WES data
interpretation is that many genes can express multiple transcripts and their relative
expression may differ by body tissue. In order to interpret WES data, we not only need
to understand which transcript is most relevant, but what tissue is most relevant.

Methods: In this work, we quantify how frequently differences in transcript and tissue
expression affect WES data interpretation at gene, pathway, disease, and biologic
network levels. We combined and analyzed multiple large and publically available
datasets to inform genomic data interpretation.

Results: Across well-established biologic pathways and genes with pathogenic disease
variants, 54 and 40% have a different protein coding effect by transcript selection for,
respectively, 25 and 50% of the genes contained. Additionally, strong differences in
human tissue expression levels affect 33 and 19% of the same set of pathways and
diseases for, respectively, 25 and 50% of the genes contained.

Conclusion: Whole exome sequencing identifies genomic variants, but to interpret the
functional effects of those variants in high-resolution, we recommend building transcript
selection and cross-tissue gene expression levels into hypotheses and analyses. Using
current large-scale data, we show how extensively interpretation of genomic variants
may differ according to transcript and tissue, across most pathways and disease. Thus,
their inclusion is necessary for WES data interpretation.

Keywords: precision medicine, genomic interpretation, variant prioritization, mechanistic modeling, knowledge
generation
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INTRODUCTION

Variety is a hallmark of BigData. In large-volume genomics such
as whole exome sequencing (WES), we not only observe a variety
of DNA variant types, but also may access a variety of data
for variant annotation. “Annotation” refers to integration and
mapping data to existing knowledge resources. Data integration
is, for example, combining WES and gene expression data to
study how genomic features may influence gene expression
levels (Clyde, 2017) or how variants alter transcription factor
binding sites (Mathelier et al., 2015). An example of using
knowledge resources would be associating variants to known
biochemical pathways. Annotation is necessary for biologists to
understand how genetics influences physiology and for clinicians
to understand how genomics data from individual patients may
affect health and disease. Annotation and data integration are
critical for prioritization and interpretation of WES data.

One of the first annotations used in both prioritization and
interpretation is what effect the variant has on a protein coding
sequence. A variety of genomic variant types identified from
WES, including single nucleotide variants (SNVs) and small
insertions and deletions, can have drastic (e.g., frameshift),
moderate (missense), or mild (silent) effects on the encoded
protein. Even within missense SNVs, there is often a tremendous
range of functional effects spanning from loss of stability, through
impaired activity, to no measurable change to the protein. Our
ability to predict functional changes to the protein depends on
which transcript is used for annotation (Figure 1A). Additionally,
gene regulation can supersede some of these effects – higher
expression may compensate for a variant that lowers enzyme
efficiency, while a gain-of-function variant may not be expressed
(Figure 1B). As clinical genomics sequencing and direct-to-
consumer testing become more prevalent, it is necessary to
update current practices. One such current practice is to associate
genomic variants to pathways, without accounting for biologic
context – how the pathway may be different in terms of
transcripts used and gene expression levels in different tissues
and at different times. Understanding the functional effects of
genomic variants requires the right context.

After variant annotation, researchers are often interested
in a functional context; what biologic processes or functional
pathways are affected? Genes do not act in isolation. The
environment of a gene may differ between tissues or over time,
and it may only be a few (or a single) of those contexts that the
genomic variant has an effect (Figure 1C). In many WES studies,
gene expression for the right tissue and in the right condition is
typically not available, nor is a closely matched gene expression
control. Therefore, it is crucial to bring in additional knowledge
to assess which genes in these pathways may be most relevant.

In this work, we first gathered multiple publically available
datasets to assess the question of how frequently known variants
identified from WES would have a different interpretation due
to transcript selection. Next, we quantified how frequently
transcript selection and differential gene expression affect the
genes within pathways and disease-gene networks. We also
considered protein–protein interaction network features for
affected versus unaffected genes. Our results emphasize how

common both effects are and the need for improved methods
to handle them. We believe that better addressing transcript
selection and cross-tissue gene expression will increase the yield
of WES data interpretation.

METHODS

Reference Data
We downloaded the ClinVar database of genomic variants and
their disease annotation (Landrum et al., 2014), May 2018 release
for human genome build GRCh37. Variants were retained if they
had at least one submitter that provided a manually curated
assertion criteria. We further defined pathogenic variants as those
with clinical significance categorized as (likely)pathogenic and
lacking any other conflicting classification. We defined as VUS,
variants with “uncertain” or “conflicting” annotation. We defined
benign variants as those with a “benign” significance, or with
“likely benign” as long as at least one submitter also classified it
as “benign.” We included variants whose effect in ClinVar could
reasonably change protein coding potential between different
transcripts of the same gene, using a biotype filter including
four categories: “protein coding,” “nonsense mediated decay,”
“retained intron,” and “processed transcript.”

We downloaded pathway definitions from three resources:
MSigDB Hallmarks (Subramanian et al., 2005) KEGG (Kanehisa
et al., 2012), and Reactome (Croft et al., 2011). Pathways
describe cellular processes with defined inputs and outputs.
These three resources were chosen because they are publically
available, commonly used, and represent, respectively, a small,
medium, and large number of pathways and, respectively,
broad, focused, and granular detail. We also downloaded three
resources that define the relationships between genes and
diseases: DisGeNet (Pinero et al., 2015), Monarch Initiative
(Mungall et al., 2017), and Orphanet (INSERM, 1997). These
three gene-centric definitions of diseases have been developed
with different emphases. They are each more popular than
others in different research areas, motivating us to consider
how transcript-affected genes may distribute among them.
We downloaded two recently developed resources of high-
throughput and high-quality protein–protein interactions: CCSB
(Rolland et al., 2014) and BioPlex (Huttlin et al., 2015). Protein
physical interaction networks assess all potential interactions that
each protein can make. They are more general than pathways
and used to assess cross talk between pathways or broad patterns
across the human proteome.

Transcript Analysis
We used SnpEff (Cingolani et al., 2012) v4.3 and the Ensembl
(Yates et al., 2016) database of transcript definitions to annotate
the protein-coding effect of genomic variants. We annotated all
transcripts meeting the above variant filtering criteria in order
to be comprehensive (expression levels of these transcripts is
considered below). We used chi-squared tests to compare the
proportion of genes with differing impact across transcripts
and for each variant type (pathogenic, VUS, and benign). We
considered four classes of variant impact: high (alteration to
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FIGURE 1 | Interpreting the effects of genomics variants identified in WES requires transcript selection and context. (A) Schematic of a single genomic variant within
a protein-coding gene that has a different impact in each of three isoforms. We first show a reference WT sequence with exons shown in boxes and introns as
connecting lines. The DNA sequence is colored blue and encoded protein sequence in green. We consider the effect on this example sequence of a G > A variant.
In the first transcript, the variant introduces an early stop codon. The second, an alternative splice site is used leading to a different reading frame, and a missense
variant. Finally, for a third transcript an additional splicing pattern skips over the altered region and the genomic variant has no effect on the encoded protein
sequence. (B) Many genes exhibit variability in expression level across tissues. This must also be considered for an accurate assessment of the effect of genomic
variants. (C) Data interpretation is further challenged by the reality of biologic networks – the effects of transcript selection and tissue-specific expression affect not
only the gene of interest (represented by a larger circle), but also the genes interacting with it (represented by smaller circles) in biologic networks or protein
complexes. Thus, even if these features do not directly affect a gene of interest, a genomic variant may have a different apparent functional effect due to different
environments in different biologic contexts.

coding length or frame), moderate (missense), low (silent), and
modifier (non-coding). We define a gene as “transcript-affected”
if the protein-coding impact of known pathogenic variants differs
between the gene’s transcripts (Figure 1A). That is, we minimally
required, for example, at least one transcript with a missense or
nonsense variant, and a second transcript for the same variant
with a different impact class.

Tissue Enrichment Analysis
We used gene-level tissue enrichment from the human protein
atlas (Uhlen et al., 2015, 2016). We used transcript-level data
from the GTEx Consortium (2015) v7. We used ANOVA
to assess intra- and inter-tissue gene expression variability
across the 11,688 GTEx samples. To identify the largest effects,
which we assumed to be the most robust, we define a gene
as “expression-affected” if (using the most highly expressed
transcript per gene) its expression was ≥80th percentile of
genes, the statistical significance for inter-tissue transcript
expression differences was p < 1 × 10−30, and the inter-
tissue ANOVA variance was ≥10x the intra-tissue variance
(Figure 1B). More transcripts were statistically significant in
the GTEx dataset than meet these criteria, even after multiple
testing correction, but we focused on the genes expressed robustly
and that have stark differences between tissues, assuming that
these observations are the most likely to be reproducible and
generalizable.

Software Used
All analyses were performed in the R programming language
(R Core Team, 2014). Pathway and network data were
organized and queried using the Bioconductor package, RITAN

(Zimmermann, 2018) v1.5.3. Graph metrics were computed
using the igraph package (Csardi and Nepusz, 2006) v1.2.2. We
generated plots using the R packages eulerr v5.0.0 and ggplot2
v3.1.0.

RESULTS

Transcript Selection Alters Interpretation
In the Clinvar dataset, our inclusion criteria selected 46,804
pathogenic variants affecting 10,572 protein-coding transcripts
(20,288 in total) from 3,439 genes. For VUS, we identified 156,782
variants affecting 14,847 protein-coding transcripts (29,174 in
total) from 4,914 genes. Benign variants numbered 39,637 and
affected 12,705 protein-coding transcripts (25,161 in total) in
4,324 genes. We tested if the proportion of transcript-altering
variants was different for pathogenic, VUS, and benign variants.
Pathogenic variants and VUS have a statistically significant
higher proportion of transcript-affected genes (p < 1 × 10−16),
but by a modest (∼0.05) effect size. We defined the 3,439 genes
with pathogenic variants that have a different coding impact
between transcripts, as transcript-affected.

We used the fraction of transcript-affected genes within
biologic pathways and definitions of genetic diseases as a
simplified metric to assess (Figure 2A). While variability across
pathways and diseases was high, the fraction of transcript-
affected genes can be greater than 90%. On average, each
disease has 68% of its genes transcript-affected and 29% of
genes within pathways are similarly affected. The proportion
of transcript-affected genes was higher for resources that were
developed specifically for genetic and diagnostic audiences (e.g.,
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FIGURE 2 | Most pathways and diseases are affected by variability in transcript selection and tissue-specific expression. We identified genes affected by each
feature and calculated the fraction of genes affected within pathways or defining diseases. (A) We compare the number of genes defined as transcript-affected and
expression-affected. (B) Among transcript-affected genes, we distinguish among the classification of variants. Most transcript-affected genes are affected by
pathogenic or VUS. The percent of each genes that are also expression-affected is shown below the count, for each category of gene. (C) Across three resources
that define biologic pathways (Hallmarks, KEGG, and Reactome) and three resources that define diseases (DisGeNet, Monarch, and Orphanet), the fraction of
expression-affected genes varied significantly, but averaged to about 25%. We show the distribution of pathways’ fraction of genes affected using a violin plot
(smoothed histogram) with quartiles indicated by horizontal lines; the middle line is the median. Genes affected by each of three classes of variants are distinguished.
(D) For the three resources of biologic pathways, we show the more nuanced relationship between expression-affected and transcript-affected; each point in the
plot is a pathway. Because there are many more Reactome pathways than the other two resources, points representing Reactome pathways are smaller so that they
do not fully occlude others. (E) We similarly summarized diseases. There are multiple diseases for which every contributing gene is expression- or transcript-affected.

Orphanet), compared to those developed for a broad audience
(e.g., DisGeNet).

Case Examples of Transcript-Affected
Genes
To better understand the functional associations for transcript-
associated variants, we selected three example proteins. First,
CHD7 is a chromatin-remodeling enzyme whose dysfunction
through genetic variants is well-established (Lalani et al., 2006).
Previous studies have investigated two transcripts of CHD7 and
demonstrated that each has a different biologic function (Colin
et al., 2010; Kita et al., 2012). Therefore, how genetic variants
may affect each of the two transcripts of CHD7 is critical to
their interpretation. Both transcripts are highly expressed in the
cerebellum and lowly expressed in multiple additional tissues.

Dozens of pathogenic truncating and frameshift variants occur in
the longer transcript that are non-coding in the shorter transcript.
For example, Chr8:g.61693628C > T indicates p.Gln579∗ in
the longer transcript and is intronic (c.1716+19C > T) in the
shorter. Second, ARID1A is part of a chromatin-remodeling
complex and has a multiple alternative transcripts that are
expressed in multiple tissues. For the canonical transcript, the
genomic variant Chr1:g.27099885G > A leads to a missense
substitution, p.Gly1255Glu, while this exon is not used in some
of the alternative transcripts. In this example, a missense variant
could have little effect on a phenotype if the phenotype is
primarily driven by the short transcript. Third, KMT2C, also
known as MLL3, is a transcriptional regulator through histone
methylation. KMT2C contains a structural domain called a
PHD domain that binds methylated lysine residues on histone
tails. Binding to histones is critical for regulating function.
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There are multiple transcripts of KMT2C. The pathogenic
genomic variant, Chr7:g.151836877C > T, alters splicing in
the canonical transcript. However, there are alternative and
expressed transcripts that can be expressed to a higher level than
the canonical transcript, for which this genomic variant precedes
the coding region; the variant is within the 5′ untranslated
region. Thus, determining precisely which transcript(s) is the
right transcript for the right tissue at the right time is challenging,
but necessary for improving genomics data interpretation,
particularly when different transcripts may have different biologic
functions.

Effects of Genomic Variants Are Context
Dependent
We used large publically available datasets to determine
how frequently gene expression differences between human
tissues significantly affects interpretation (expression-affected)
and concordance with transcript-affected genes. Further, we
investigated the neighbors of expression-affected genes in
biologic pathways and networks. We defined 3,471 genes as
expression-affected. While this number is similar to the number
of genes defined as transcript-affected for pathogenic variants, the
overlap is modest – 677 (20%) genes are in common. Because we
chose conservative criteria for defining expression-affected genes,
we do not expect to recapitulate all gene-level data from previous
studies that aimed to characterize broad differences. Comparing
to the Protein Atlas datasets, our conservative definition of
expression-affected genes capture 27% of genes with moderate
(grouped expression) to strong (enhanced/enriched expression)
cross-tissue differences. Thus, the true impact of this feature is
broader and we are focusing on the strongest signal.

Next, we looked up these genes in pathway resources and in
resources that define the genetic contributors to diseases. There
are some pathways and diseases that have no affected genes, but
some for which every gene is affected (Figures 2B,C). On average,
each disease and pathway has, respectively, 24 and 33% of their
contributing genes expression-affected.

On average, pathways have a higher fraction of expression-
associated genes than transcript-associated, while rare diseases
have a closer balance between the two classes (Figures 2D,E).
The diverse balance of transcript- and expression-affected genes
means that each pathway and disease must be individually
assessed.

We next considered network-based context for genes strongly
affected cross-tissue gene expression. We measured network
properties for expression-associated genes and compared to those
from random sampling of the same number of protein-coding
genes. We found a significant difference in degree distribution;
In randomly generated graphs the number of genes connected
to x other genes decayed at a rate of x−3.52 ± 0.16, but in
the expression-associated network the rate was x−2.72. The
expression-associate network also has higher betweeness and
edge density, compared to randomly generated graphs. Thus,
consistent with prior data indicating that we are focusing on
the strongest signal, the genes selected are representative from
across large biologic interaction networks. They are likely to have

an influence on function whether or not genes of interest are
altered, because they will act in a different context, even within
the majority of biologic pathways.

To summarize the prevalence of these two features across
biologic networks and the genetic contributors to diseases, we
calculated how many of them are affected for 25 or 50% of their
associated genes. First, 54 and 40% have the interpretation of
the protein coding impact changed by transcript selection for,
respectively, 25 and 50% of the genes contained. Second, 33
and 19% of the same set of pathways and diseases are affected
by the strong differences in human tissue expression levels for,
respectively, 25 and 50% of the genes contained.

DISCUSSION

The complexity of interpreting the functional implications
of genomic changes has been appreciated since before the
completion of the Human Genome Project (Frazer, 2012). While
data, methods, and tools have increased, our understanding of
how deep these interpretation challenges are has also increased.
While tissue-(2015) and transcript-specific (McCarthy et al.,
2014) differences are expected in some biologic contexts,
their prevalence across biologic pathways and their potential
effects on WES data interpretation, are not systematically
considered.

To interpret WES data, a variant’s impact is its effect on
the coding potential of a transcript and must be distinguished
from its functional effect and clinical actionability – all three
are distinct. High-impact coding variants are likely to be
loss-of-function. Moderate-impact coding variants (missense
or in-frame INDELs) may have damaging effects on protein
function or have tolerated effects. Even low-impact variants
can be functional through alteration of regulatory motifs.
A variant’s clinical significance is its functional significance that
is relevant a human patient, in a particular clinical context
(not necessarily the context in question). The question of
whether a variant is “actionable” or not must be highly tailored
to patients by their care team and within the context of
their ongoing clinical care. These are three distinct layers of
information.

Each patient may have other factors in their germline,
development, lifestyle, or environment that either exacerbate
or ameliorate a functional effect. Thus, we need finer context-
specific resolution about how variants act together to impact
cellular and physiologic processes. Transcript selection is a
critical context to consider for variants of all types. Even for
established benign variants, if a different transcript is relevant in
a new study, the “benign” label may not be transferrable. In the
context of a different transcript, its impact on the encoded protein
may change. Additionally, transcript-affected variants may be
expressed at a low level, further complicating their experimental
assessment. In order to generate mechanistic understanding, we
need robust methods for each of the three layers of effects.

In addition to robust analytic methods, health care providers
need better tools to deliver salient genomics knowledge in
timely and appropriate ways. Clinical genomics testing is
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becoming increasingly common for a variety of disease areas
(Okur and Chung, 2017). An important extension of clinical
genomics testing is to move beyond associations and to develop
mechanisms. That is, many germline variants are associated
with common diseases such as asthma or heart disease, but
there is no clear functional link between the genotype and
phenotype. Thus, the causal relationship between the genotype
and phenotype is not established. In some diseases, the causal
mechanism is clearer than for other diseases. For example,
germline variants in certain DNA repair genes are associated
with lifetime cancer risk because they increase the rate of variant
accumulation across the genome, increasing the probability
of inactivating a tumor suppressor or activating a proto-
oncogene. Beyond direct genomic effects, many variants will
have epigenetic effects with differences in cross-tissue expression
profiles being one of the ways that epigenetic effects manifest.
Previous studies have analyzed splice-QTLs in selected tissues
or Li et al. (2016) across lymphoblastoid cell lines (Li et al.,
2016; Takata et al., 2017). Thus, learning health systems need
to be equipped to adapt to the new and increasingly varied
data that is available to augment genomics data and aid its
interpretation.

There are approaches for integrating existing data into
more accurate knowledge models, but we need additional
details to better interpret high-resolution data. Work by us
(Zimmermann et al., 2017; Zimmermann et al., 2018) and
others (Prokop et al., 2015; Towse et al., 2017; Agrahari et al.,
2018) turns toward molecular modeling as the next frontier
in genomics data interpretation, for its ability to not only
indicate if a variant has an effect on the encoded molecule,
but how and why. Methods for network-based integration
(Dimitrakopoulos et al., 2018) and metabolic modeling (Nielsen,
2017) will enabling researchers to tune models to the data
available for each sample. Additionally, the challenge remains
for generating and linking the granular models to a systems-
or physiologic-level model. Bringing data interpretation to a

physiologic level will require a new high-resolution data type –
high-resolution phenotyping.(Müller et al., 2018) The many
types of additional data we have discussed all enhance the
interpretability of data generated by exome sequencing and
will likely lead to greater clinical applicability of genomics
data.

CONCLUSION

We have quantified the prevalence across biologic pathways
and disease definitions, of changes in the interpretation of
genomic variants due to different protein coding impact across
transcripts, and of the encoded genes’ expression differing
between human tissues. Not only is WES data part of the
BigData in genomic medicine, but the volume and variety
of annotation resources makes them critical components too.
Clinical genetics sequencing is increasing as part of Precision
Medicine, increasing the demand for methods that interpret
WES data from individual patients. Leveraging multiple large and
publically available datasets, our analysis highlights the variety of
data and methods needed, to interpret WES data for new biologic
or disease-specific use.
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