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Abstract: Only a mere fraction of the huge variety of human pathogenic viruses can be targeted by the
currently available spectrum of antiviral drugs. The severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) outbreak has highlighted the urgent need for molecules that can be deployed quickly
to treat novel, developing or re-emerging viral infections. Sulfated polysaccharides are found on
the surfaces of both the susceptible host cells and the majority of human viruses, and thus can play
an important role during viral infection. Such polysaccharides widely occurring in natural sources,
specifically those converted into sulfated varieties, have already proved to possess a high level and
sometimes also broad-spectrum antiviral activity. This antiviral potency can be determined through
multifold molecular pathways, which in many cases have low profiles of cytotoxicity. Consequently,
several new polysaccharide-derived drugs are currently being investigated in clinical settings. We
reviewed the present status of research on sulfated polysaccharide-based antiviral agents, their
structural characteristics, structure–activity relationships, and the potential of clinical application.
Furthermore, the molecular mechanisms of sulfated polysaccharides involved in viral infection or in
antiviral activity, respectively, are discussed, together with a focus on the emerging methodology
contributing to polysaccharide-based drug development.

Keywords: sulfated polysaccharides; antiviral activities and mechanisms; drug structure-activity
relationship; antiviral efficacy; heparin mimetics; in vivo studies; virus entry as a target; major human
pathogenic viruses; emerging viral infections

1. Introduction

Viruses represent opportunistic, replicative units, tightly integrated into the regu-
latory machinery of their infected host cells and can be found in the entire sphere of
living organisms. Virus infections have a huge impact on life on this globe and are highly
complex in their way of virus–host interaction, whereas the viral genetic composition
varies substantially between different viruses. For example, the Ebola virus encodes only
seven major proteins but, nevertheless, can have a significant impact on the life of infected
populations [1]. Other viruses, termed as eukaryotic giant viruses can have extra genes
for encoding proteins active in metabolic processes, otherwise typically found in living
organisms [2]. According to the complexity of virus regulation, a number of targeting
options can be considered for the conceptualization of antiviral drugs, which may target
the entry, replication, proteolytic processing and particle egress steps of the infectious
virus cycle [3]. Antiviral drug approaches still have a rate-limiting issue that only a very
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low number of compounds are available to combat more than 220 human virus infections
known. Furthermore, just a selected repertoire of antiviral drugs are formally or provision-
ally approved for medical treatment [3]. A rapidly growing human population and the
simultaneous landscape change in the last century have led to an increase of infectious
viruses from wildlife. Especially viruses originating from domesticated species, primates
and bats which frequently acquire the capacity to infect and to spread among humans, thus
spilling over from other geographic regions and/or from the animal kingdom [4,5]. Human
coronaviruses, such as SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-
CoV) and now SARS-CoV-2, are leading examples of rapidly emerging viruses for which no
particular treatments have been available before. It goes without saying that in a situation
like the COVID-19 pandemic, resulting from the human-to-human spread of SARS-CoV-2
infections, all options of antiviral drug development, vaccine production and preventive
measures are intensely examined towards a game-changing combination of interventions.
However, in specific cases, the time schedules of development represent restricting factors
and thus need to be addressed by forward-planning research. One example of a widely
available and broadly bioactive group of compounds are polysaccharides, particularly
those omnipresent in natural environments and produced by living organisms, such as
microorganisms, plants and the marine biotope. Generally, natural products derived from
both marine and land biota are a valuable source of front-line drug development [6–13].
They may even outperform synthetic screening libraries in terms of structural diversity and
biological relevance [8,14,15]. Natural polymers, specifically polysaccharides, on account
of their inherent unique properties as well as their attractive biological activities are of great
current interest for biomedical applications. The properties mainly favoring the aspects of
their use as antiviral candidate compounds comprise their limited polysaccharide-induced
toxicity, biocompatibility and biodegradability [16–22]. In particular, the astonishing di-
versity of sulfated polysaccharides from marine and plant biota are prospective bioactive
chemicals [12,13,23,24]. Contrary to their animal counterparts, sulfated polysaccharides
of marine origin are considered to be safe and non-immunogenic in many cases [25–27].
Emerging evidence demonstrated that sulfated polysaccharides offer exciting pharmaco-
logical perspectives for the generation of antiviral drugs [10,18,23,24,28–31]. Importantly,
the mode of action of these polymers is mostly different from clinically used antiviral
drugs [10,24,29]. Moreover, by virtue of their structural uniqueness and high molecular
weight (MW), sulfated polysaccharides have characteristics that small drug molecules do
not have. For instance, the pharmacodynamics and pharmacokinetics of these polymers
can be adjusted by the fine-tuning of their molecular weight and structural character-
istics [17,32,33]. This adjustability has been considerably investigated in the context of
cancer therapy, an area in which the generation of polysaccharide-based carriers of drug
delivery has become an ongoing focus of research activities [34–36]. Incidentally, mul-
tivalency plays a major role in biological processes and particularly in the relationship
between pathogenic microorganisms and their host that involves protein–polysaccharide
interaction [37]. Sulfated polysaccharides are multivalent, meaning that many structural
components of the backbone or pendant chains can simultaneously bind to more than
one complementary binding protein or receptor that are present on the targets such as
cellular surfaces. As several individual ligand–receptor bonds work together, multivalent
interactions are usually stronger than monovalent interactions. In particular, semisynthetic
sulfated polysaccharides can imitate such type of multivalent interaction that is common in
biological systems including virus–host cell interaction [38].

As one particular example for the relevance of polysaccharide molecules in hu-
man virus infections, the increased rate of thromboembolic events in COVID-19 patients
should be mentioned that shows that coagulopathy plays a role in the pathophysiology
of SARS-CoV-2 [39]. The use of low-molecular-weight heparin (LMWH) decreases mor-
tality in patients with severe coronavirus coagulopathy, according to new findings [40].
Although the entire spectrum of heparin’s positive impacts for COVID-19 patients is still
being investigated, promising clinical results already suggest that heparin-mimicking com-



Viruses 2022, 14, 35 3 of 47

pounds might be beneficial for the treatment or prevention of SARS-CoV-2 infections [41].
Beyond SARS-CoV-2, a major focus of current research is to further resolve the diverse
biological effects of sulfated polysaccharides, especially to investigate structure–activity
relationships. Limited access to pure sulfated polysaccharides with established structural
features and MW is a visible problem in exploring the variety of biological effects. Yet, these
structural features are decisive in determining the biological and/or therapeutic capabilities
of individual prototypes of this group of polymers. Moreover, although polysaccharides
are the most common components of the plant world, their sulfated derivatives are only
biosynthesized by seaweeds and mammals [42]. Thus, polysaccharide sulfates, which are
most potent in producing strong biological effects such as antiviral activities, are currently
generated on a biotechnological basis by using a two-step process, i.e., an initial extraction
of the polysaccharide mass from plant material followed by a chemical sulfation reaction
towards an oligosulfated entity of individual polysaccharide determinants. A recently
proposed cost-effective single-stage process has the ability to generate a large number of
sulfated polysaccharides with different structural features from plant materials, and thus
inducing potential biological activities including antiviral activity in the final product [43].
Along with the alteration of the typical hydroxyl groups into sulfates, a functionality that is
rarely found in higher plants, this method also changes some of the properties (like the MW,
composition, sulfate content and others) of the generated sulfated polysaccharides, and,
therefore, the chances of producing libraries of such polymers with interesting biomolecular
properties can be increased [43–47].

From this point of view, we focus on sulfated polysaccharides that show antiviral
effects on their own. In this review, the initial part presents a historical view and an
overview of the sulfated polysaccharide-based antiviral agents. Herein, we describe the
structural features of several families of naturally occurring sulfated polysaccharides by
analyzing their antiviral activities. The next focus is given to polysaccharides that have
been chemically sulfated, and to chemically sulfated polysaccharides produced by a one-
step extraction-sulfation method. Incidentally, the synthesis of new molecules possessing
diverse structures utilizing this cost-effective one-step will be a useful addition to the
arsenal of antivirals. Additionally, these sulfated polysaccharides will help to establish
an improved understanding of the structure–activity relationship (SAR). Then, the mode
of action of these sulfated polysaccharides and their current analysis in pre-clinical and
clinical studies is described. As this review does not go into detail with the synthesis or
biological activities of other types of sulfated polymers, such as sulfated non-carbohydrates,
it should be emphasized that these issues have already been discussed elsewhere [17,48–50].
Finally, the present review provides a comprehensive analysis of sulfated polysaccharide-
based antiviral agents. Furthermore, it provides an update-insight into the SAR of sulfated
polysaccharides, their mechanism of action and the future perspective of in vivo studies,
with a specific focus on developments in the past, pandemic-imprinted months and years.

2. The Origins and Early Steps of Natural Source-Based Antiviral Drug Development

In 1947, the first report of the antiviral activity of polysaccharides appeared, under
mostly serendipitous circumstances [51], as the authors were still far away from our
current knowledge about viruses and their targeting by inhibitory molecules. Then in
1947 and 1948, researchers quickly investigated specific polysaccharides for their antiviral
efficacies against influenza and mumps viruses [52,53]. After these initial periods, Gerber
and co-workers observed inhibitory effects towards mumps virus and influenza B virus
exerted by marine algae-derived polysaccharides [54]. However, these findings drew little
attention because their antiviral activities were thought to be essentially nonspecific. Later
on, Ehresmann and co-workers (1977) causally linked polysaccharide-containing fractions
of red algae extracts with the suppressive effects on the replication of herpes simplex and
other viruses [55], before Richards and co-workers (1978) reported similar findings [56].
In 1987, Nakashima et al., found that sulfated polysaccharides from Schizymenia pacifica,
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a red alga, possess the potential to inhibit the reverse transcriptase activity of human
immunodeficiency virus type 1 (HIV-1) [57,58].

Meanwhile, the polyanionic property of polysaccharide compounds was considered
to be generally important for antiviral activity [59,60]. Especially, the potential of sulfated
polysaccharides, such as dextran sulfate, heparin, and agar, were evaluated as inhibitors
of viral replication in vitro [59–62]. To explain how polyanionic compounds may exert
inhibitory effects on viruses, two theories have been established. The first involved a viral
adsorption inhibition mechanism, in which the polymer would adhere to the surface of
infectious virions and subsequently prevents the host cell attachment [61,63]. A second,
alternative point of view favored the fact that polyanions could boost the cellular interferon
production, a signal transduction system induced by virus-infected cells to notify adjacent
cells in order to generate a largely antiviral intracellular environment [17,64–66]. There was,
however, no clear consensus on which mechanism was preferred or how a polysaccharide
compound might act in one or more antiviral modes of action. Then, during the further
study of the antiviral activity of sulfated polysaccharides, three primary investigative stages
arose. First, naturally occurring sulfated polysaccharides are being studied in detail until
today [10,29–31,67–69]. The second important stage of advances occurred in 1987, when Ito
and co-workers chemically sulfated a bacterial polysaccharide progenitor to dextran sulfate,
and subsequently blocked the replication of HIV-1 in vitro [70]. Finally, as illustrated
by Table 1, a list of diverse forms of sulfated polysaccharides, basically all of which are
occurring in natural sources, is provided and the information is added in which way
antiviral activities have been determined for a variety of viruses. In 2015, a new one-stage
strategy combining polysaccharide extraction and chemical sulfation emerged [43].

Table 1. Naturally occurring sulfated polysaccharides: molecular masses, sulfate contents (mol %)
and their half-maximal inhibitory in vitro/effective concentrations (IC50, EC50) referring to the
indicated viruses.
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Table 1. Cont.
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virus-host cell binding,
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3. Naturally Occurring Sulfated Polysaccharides-Based Antivirals
3.1. Seaweed-Derived Compounds

Seaweeds, including brown (Phaeophyceae), green (Chlorophyta), and red (Rhodophyta),
biosynthesize various sulfated polysaccharides as a key component of their cell walls [116–119].
The structures of these polymers vary greatly, and many of them exhibited a wide spectrum
of antiviral activity [29,31,67,120,121]. The following section will explore a number of
promising naturally occurring sulfated polysaccharides analysing the antiviral activity of
these polymers.
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3.1.1. Fucoidans

Fucoidan polysaccharides containing significant percentages of L-fucose and sul-
fated ester groups are constituents of brown algae and some marine invertebrates [122].
Conchie and Percival (1950) depicted fucoidan from the brown algae Fucus vesiculosus
as a polysaccharide-based on L-fucose with mainly α-(1,2) glycosidic bonds and sulfate
groups at position 4 [123]. In 1993, Patankar and co-workers reinvestigated the structure
of fucoidan of this alga and it was shown that the main chain of this polysaccharide
contains (1,3)-linked Fucp residues [124]. More recent studies showed that the back-
bone of fucoidan is built up of alternating α-(1,3)- and α-(1,4)-linked Fucp residues as
displayed in Table 1 [125–127]. Later on, Karmakar and co-workers (2009) reported the
presence of a fucoidan the core region of which is composed primarily of α-(1,2)- and
α-(1,3)-linked Fucp residues with sulfate groups at position 4 and 2 [128]. These complex
polysaccharides inhibited a wide variety of viruses including HIV [81,129–131], herpes sim-
plex virus (HSV) [76,77,79,80,101,132–138], Influenza virus (IV) [139–143], avian influenza
virus (AIV) [144], human cytomegalovirus (HCMV) [132,134], Newcastle disease virus
(NDV) [107,145] bovine viral diarrhoea virus [31,78,146], SARS-CoV-2 [82,147–149] and
murine norovirus [150]. Notably, several sulfated polysaccharides exert varied inhibitory
efficacy against different viruses, implying that the target molecules with which polysac-
charides interact are somewhat different (Table 1). Recently, an in vitro assay with two
fucoidans revealed that these polymers are effective SARS-CoV-2 inhibitors [148]. In fact,
they outperformed remdesivir (RDV), a drug currently licenced for use as an emergency
treatment in severe COVID-19 infections [82]. Additionally, the sulfated galactofucan from
Saccharina japonica showed a strong binding ability to SARS-CoV-2 spike glycoproteins [147].

3.1.2. Galactans

The main polysaccharide components of red algae are sulfated galactans, which usu-
ally have a linear backbone built up of alternating 3-linked β-D-Galp and 4-linked α-Galp
residues. The latter have the L-configuration in the agar group of polysaccharides, but the
D-configuration in carrageenans. In addition, 4-linked residues may be present, in part or
completely, as 3,6-anhydro derivatives. This clear-cut separation between carrageenans
and agarans has been upset by the finding of a third group, named DL-galactan hybrids,
in which the 3,6-anhydro galactose units can have D- and L- configurations in the same
molecule (Table 1). Concerning antiviral activity, agarans inhibit herpes simplex virus
type 1 (HSV-1) [151], sulfated galactans are effective HSV, HMPV, white spot disease virus
inhibitors [85,87,152–156], and DL-hybrid galactan sulfate exerts activity against HSV-1,
dengue virus (DENV) [86] and DENV-2 [93]. As of 1987, carrageenans have been found
to exert antiviral activity against an array of viruses (Table 1), both enveloped and non-
enveloped, including HIV [90], HSV [89,91,157–159], human papilloma viruses (HPV) [160],
hepatitis-A [161], DENV [89,93,162,163], JEV [104], rhinoviruses (RVs) [164], and tobacco
mosaic virus [165], rift valley fever virus [158], measles morbillivirus [105], influenza
virus [94,95,166,167], influenza A virus(IAV) [92], bovine herpesvirus type 1 [168], suid her-
pesvirus type 1 [168], porcine reproductive and respiratory syndrome virus (PRRSV) [169],
rabies virus (RABV) [170], SARS-CoV-2 [171], and SARS-CoV-2 [171–178]. For instance,
carrageenan isolated from Meristiella gelidium has a very high selectivity index (25,000)
for herpes simplex virus type 2 (HSV-2), signifying that this biopolymer is a reasonable
contender for further antiviral research [89]. Furthermore, it had potent inhibitory ef-
fects in vivo against HSV [179,180] and murine cytomegalovirus [181]. Lynch et al., (2021)
recently investigated the impact of Fucus vesiculosus, Mastocarpus stellatus, and algal deriva-
tives (fucoidan and κ-carrageenan) on the performance of the oyster Crassostrea gigas, as
well as the ostreid herpesvirus-1 microvar (OsHV-1 µVar) and bacteria Vibrio spp. develop-
ment [182]. OsHV-1 µVar prevalence was reported to be much reduced in treated oysters,
and κ-carrageenan was found to decrease viral replication (loads), while OsHV-1 µVar
was not detected in fucoidan-treated oysters after Day 8 of the 26-day study. From the
standpoint of oyster production, the two-fold effect of improving an oyster’s immunolog-
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ical function while lowering OsHV-1 µVar would be extremely helpful to the industry’s
long-term viability.

3.1.3. Ulvan

Relating to marine green algal polysaccharides, ulvan is a hot topic of research aimed at
developing novel therapeutic agents [183,184]. Typically, this polymer contains Rha, GlcA,
IduA, Xyl residues and sulfate [185–189]. The major repeating disaccharide units as shown
in Table 1 consist of GlcA and Rha-3-sulfate, and iduronic acid with Rha-3-sulfate [186].
Ulvan, like other sulfated polysaccharides, can prevent virus adsorption and thereby
viral entrance into the cell [107,184,190,191]. It has been shown to be effective against
a number of viruses including Japanese encephalitis virus (JEV) [192], influenza virus
(H1N1) [139], DENV [100], AIV [144], vesicular stomatitis virus [106], measles virus [105],
HSV [45,108,134], NDV [107], Indiana vesiculo virus [106], and human metapneumo virus
(HMPV) [193]. This sulfated polymer is also useful in managing viruses associated with
poultry-linked operations, such as the NDV, a deadly virus that causes large economic
losses in hens. In vitro experiments on Vero cells revealed that ulvan has an IC50 of
0.1 µg mL−1 for inhibiting viral entrance [107]. It prevents the intact protein F0 from
being cleaved into the mature form, which inhibits viral fusion. This biopolymer has
superior anti-cell-cell fusion effects than fucoidans, and when used together, it can have
even stronger effects [107]. Concerning the antiviral efficacy against the avian flu AIV-
H9N2, ulvan from U. pertusa by itself demonstrated only mild efficacy [144]. Yet, if paired
with a vaccine against the same virus, it resulted in a hundred percent increase in antibody
titer compared to the immunisation alone. The immunomodulatory activity of the polymer
was thought to be accountable for the increased humoral immune response [144]. Even
oligosaccharides made from ulvan have substantial antiviral properties. For example,
the low MW oligomer (4.3 kDa) derived from the ulvan of U. pertusa through chemical
degradation shows greater efficacy against Avian Leukosis Virus Subgroup J (ALV-J) than
ulvan itself, and this molecule bonds with viral particles and impedes ALV-J adsorption
onto the host cells [194]. Reisky and co-workers demonstrated that a marine bacterial
enzymatic cascade is able to degrade ulvan yielding oligo- and monosaccharides [195]
thereby paving the way for generating low MW sulfated molecules.

3.1.4. Alginic Acids

The majority of brown seaweeds are prospective sources of alginate, a promising
biopolymer that can also be produced from a variety of microorganisms. Structurally,
alginic acid is a linear polymer made up of β-D-ManpA and α-L-GulpA acid residues, with
no sulfate ester. These monomers are glycosidically linked at the C-1 and C-4 positions
to produce the alginate. The polymer chain has been demonstrated to be made up of
three different types of blocks. The M blocks are totally made up of D-ManA (Table 1), the
G blocks contain exclusively L-GulA residues (Table 1), and the MG blocks be composed of
alternate between D-ManA and L-GulA-derived residues [196–199]. The alginate-derived
therapeutic agent “911” inhibits the viral reverse transcriptase [200] and the viral poly-
merase [201], thereby exhibiting activity against HIV-1 and HBV. Antiviral activity of
alginate polymers was also seen against other viruses such as HSV-1 and HSV-2, as well
as the HPV [101,202–204]. Sinha et al. (2010) found that chemically sulfated guluronans
produced from Sargassum tenerrimum are effective inhibitors of HSV type 1 (HSV-1) by
imitating the entry receptor’s active domain [74]. Similarly, the anti-HBV activity and
mechanism of action of marine-derived polyguluronate sulfate (PGS) in vitro have also
been reported [205]. The sulfated alginate from Sphacelaria indica and Laminaria angustata
exhibited anti-HSV-1 activity by inhibiting HSV attachment to cells by direct interaction of
polysaccharides with viral particles [76,77]. The crude polysaccharide 375 isolated from the
seaweed Ecklonia kurome shows good anti-SARS-CoV-2 infection activity in cell culture with
EC50 values of 27 nM and low toxicity, although the three polysaccharides purified by anion
exchange chromatography were less active implying that the cocktail-like polysaccharide
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worked synergistically by targeting multiple key molecules implicated in the virus infection
and replication [206]. For instance, the purified alginic acid does not inhibit SARS-CoV-2,
but it may bind to SARS-CoV-2 3CLpro and effectively impede the binding of SARS-CoV-2
-S1 protein with ACE2 (IC50 56.06 µg/mL) and thus have the potential to block SARS-CoV-2
infection. Serrano-Aroca et al. (2021) advocated the use of alginate-based biomaterials
for the management of COVID-19 [207]. Indeed, these biomaterials exhibited antiviral
activity against a wide range of viruses, including the HIV-1 [208–210], hepatitis A, B,
and C viruses [210–213], Sindbis virus [213], RABV [214], rubella virus [215], influenza
virus [216], HSV-1 and 2 [74,76,77,101,213,217], poliovirus type 1 [213,218], potato virus
X [219], tobacco mosaic virus [220,221], and murine norovirus [211,212]. Furthermore, the
toxicity of these elements has been determined to be very low or non-existent. The antiviral
mode of action is mostly attributed to viral aggregation and inhibition caused by interac-
tions between alginate-based materials and viral envelope components. Alike SARS-CoV-2
many of these viruses are enveloped positive-sense single-stranded RNA viruses, making
alginate-based materials extremely promising in the COVID-19 pandemic. Alongside the
above-mentioned sulfated polysaccharides from marine origin, sulfated rhamnan and
sulfated glucuronorhamnan also have antiviral activity against EV71 and IV [103,222,223].

3.2. Animal-Derived Compounds
3.2.1. Heparin

The linear-structured, sulfated polysaccharide heparin is made up of repeating se-
quences of a uronic acid and D-glucosamine residues, and both of them are joined by
1,4-glycosidic linkages. The uronic acid can be β-D-GlcA or its C-5 epimer, α-L-IduA.
Iduronate can be O-sulfated at position-2, whereas glucosamine can be N-sulfated, N-
acetylated, or unmodified, and decorated with O-sulfates at position-6 and, less frequently,
at position-3 [224,225]. This glycosaminoglycan (GAG) shows broad-spectrum activity
against enveloped viruses including coronaviruses [110,226], SARS-CoV-2 [109,227–233],
SARS-CoV-19 [111], zika virus [234], enterovirus 71 [235], echovirus [236]. In 2020, Mycroft-
West and co-workers demonstrated that heparin inhibits SARS-CoV-2 infection in vitro [237].
The high incidence of thromboembolic events in COVID-19 patients suggests that coagu-
lopathy plays an important role in the SARS-CoV-2 pathogenesis [39]. This already makes
the anticoagulant molecule heparin a unique, potentially curative agent that appears to
be a powerful, readily available measure to address the ongoing crisis associated with
COVID-19 disease. This GAG also exhibits anti-inflammatory activity [238]. The antiviral,
anticoagulant and anti-inflammatory activity of heparin against SARS-CoV-2 form a unique
therapeutic combination [111]. Thus, repurposing heparin mimicking molecules such as
sulfated polysaccharides to fight COVID-19 appears to be a powerful, readily available
measure to address the current pandemic. Since many viruses employ cell-surface HS
for attachment, it’s an attractive broad-spectrum antiviral target [72]. The first step in the
cascade of interactions required for viral attachment is often the binding of a viral protein
to HS [239]. For the reason that HS and heparin share similar glycosyl building blocks,
and HS-binding proteins interact with heparin as well, heparin is drawing attention in
COVID-19 treatment beyond its anticoagulant capabilities. Recently, both heparin and
HS have been found to attach to S1 RBD [40,237,240], encourage a conformational change
in SARS-CoV-2′s S1 RBD [237], and hinder SARS-CoV-2′s cellular invasion [41]. This
drug has also been demonstrated to stop the binding of the SARS-CoV-2 spike protein to
a human cell line [232], as well as the entry of pseudoviruses expressing the SARS-CoV-2
spike protein into human cells [109]. The heparin-derived drug enoxaparin also inhibits
pseudovirus entrance [109], and hence LMWHs may be useful in COVID-19. Besides,
LMWH treatment of COVID-19 patients was found to considerably reduce plasma levels
of IL-6, a critical cytokine linked to the disease’s immunopathogenesis, in a retrospective
clinical investigation [241].
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3.2.2. Chondroitin Sulfate

Chondroitin sulfate (CS) is a linear polysaccharide made up of repeated units of (1,4)-
β-glucuronic acid (GlcA) and (1,3)-β-N-acetyl-galactosamine (GalNAc) that have sulfate
groups at various places [242–245]. Based on sulfate position, CS has been dissented into
four subtypes: CS-A, CS-C, CS-D, and CS-E. CS type A (CS-A) comprises GalNAc units sul-
fated at C-4, whereas CS-C has C-6 sulfated GalNAc units. The C-2 sulfated GlcA and C-6
sulfated GalNAc units make up Chondroitin sulfate type D (CS-D). GalNAc residues disul-
fated at C-4 and C-6 positions make up chondroitin sulfate E (CS-E). Marchetti et al. (2004)
found that CS types A, B, C, and D had modest antiherpetic action [246], whereas CS-E
isolated from squid cartilage had significant antiviral activity [247]. Antiviral activity of
CS-E was seen against DENV [115]. And that CS-E showed antiviral activity as an entry
inhibitor targeting the E protein of DENV. As reported by Kato and coworkers [115], shared
carbohydrate determinants on CS-E may be key epitopes for DENV interaction and may
be responsible for DENV inhibition. Studies on the structure-function correlation of CS in
different biological systems have been hampered by its structural intricacy. Enzyme-based
CS oligosaccharide syntheses have recently emerged as promising strategies for producing
structurally specified oligosaccharides [248]. Polysaccharides with structures similar to
GAGs, isolated from marine invertebrate species, have antiviral activity with a low antico-
agulant potential [249]. Lian and colleagues (2013) discovered that a fucosylated GAG from
an echinoderm has considerable anti HIV-1 efficacy [250]. The mechanism involves target-
ing CD4i of gp120, which results in HIV-1 entry inhibition. Another study [113] found that
fucosylated chondroitin sulfate (FCS) derived from the sea cucumber Thelenota ananas had
anti-HIV action, inhibiting numerous strains of HIV-1 reproduction with varying potencies.
This polymer (FCS) can bind potently to recombinant HIV-1 gp120 protein, but it does not
block recombinant HIV-1 reverse transcriptase. Thus, several polysaccharides from marine
algae, and animal sources displayed effective inhibitory effects against a number of human
and animal viruses.

Table 1 includes additional data on chemical features and antiviral activities of natu-
rally occurring sulfated polysaccharides [71,73,75,83,84,88,96–99,102,112,114].

4. Sulfated Polysaccharides Generated by Chemical Sulfation Reaction

In 1987 it was observed that sulfated polysaccharides synthesized by a chemical sul-
fation reaction on polysaccharides are capable of inhibiting HIV [70]. Based on earlier
research from the 1960s, dextran sulfate, the chemically sulfated derivative of an α-1,6-
linked glucan namely dextran, was reported as a strong inhibitor of HIV with a 50%
effective concentration at 0.1 µg mL–1 [70,251]. Afterwards, researchers began investigating
a wide variety of other synthetic sulfated polysaccharides, and the results were promising
(Table 2) [31,43–47,96,252–280]. Notably, these polysaccharides’ action spectrum has been
displayed to comprise different enveloped viruses, encompassing viruses that appear as
cunning infectious agents such as HSV and HCMV in immunocompromised patients [31].
Sulfated dextran, one of the few polymers that moved to clinical trials, hit multiple prob-
lems. The polymer had a reduced lifetime, quite low bioavailability, limited central nervous
system penetration, and undesirable side effects. The most serious disadvantage was that
it significantly raised circulating levels of the p24 antigen, implying that the polymer aided
HIV multiplication [281]. Curdlan sulfate, another sulfated glucan containing a backbone of
β-1,3-linked Glcp residues, synthesized by the chemical sulfation reaction of curdlan, a bac-
terial polysaccharide, efficiently prevents entry/fusion and restricts antibody-dependent
enhancement of DENV infection in vitro [257]. A number of sulfated polysaccharides
synthesized from plant structural polysaccharides such as cellulose, hemicelluloses and
pectin, and gum polysaccharides also displayed potent antiviral activities against different
viruses. In a comparative evaluation of sulfated galactomannan synthesized from diverse
sources such as fenugreek gum, guar gum, tara gum, and locust bean gum, Muschin
et al. (2016) found that these polymers have prominent anti-HIV and anti-DENV activities
(Table 2) [262]. Electrostatic interaction of negatively charged sulfate groups of sulfated
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galactomannans and positively charged amino groups of surface proteins of viruses be the
reason for these activities. Sulfated galactomannans generated from Adenanthera pavonina,
Caesalpinia ferrea, and Dimorphandra gardneriana too exhibited activities against DENV-2 and
PV-1 viruses in Vero cells [263,264]. The protection of sulfated konjac glucomannan against
the HIV virus on lymphocyte MT-4 cells was detected using the MTT technique [268].
The EC50 (1.2–1.3 µg/mL) of this polymer is comparable to that of typical antiviral drugs.
Cellulose sulfate derived synthetically by chemical sulfation of cellulose, the most abundant
renewable polymer in nature is another polymer with potent anti-HIV activity [282–284].
In 2010, Saha et al., associated the inhibition of bovine herpes virus type-1 with sulfated
derivatives of pectic polysaccharide fraction from the medicinal plant Azadirachta indica in
HEp-2 cells [260]. Later on, Faccin-Galhardi et al. [259,261] demonstrated the inhibition of
poliovirus and HSV-1 replication by these sulfated polymers, in similar conditions. Their
antiviral effect originates due to the interference of polysaccharides at the early stages of
HSV-1 replication. The chemically sulfated polysaccharide of Angelica sinensis had an antivi-
ral effect on the mouse leukaemia virus, with polymer possessing the highest DS having the
greatest antiviral effect [285]. Another study on polysaccharides from Achyranthes bidentata
revealed that the sulfate functionality significantly enhanced virus clearance rates in swine
reproductive and respiratory disease [286]. Likewise, the astragalus polysaccharide that
had been chemically sulfated had a stronger activity against the infectious bursal disease
virus than the native polymer [287]. Macroalgae are the primary source of non-animal sul-
fated polysaccharides in the marine environment. As shown in Table 2, chemical sulfation
of both non-sulfated as well as sulfated polysaccharides such as lentinan [252,255], al-
ginic acid [74,76,77,205], xylan [97], xylomannan [43,98], ulvan [45] and fucoidan [73,74,77]
yielded derivatives possessing activity against TMV, HSV-1 and HSV-2. In general, the
yield of sulfated polysaccharides obtained by the chemical sulfation reaction of polysaccha-
rides varied from 17% to 118% depending on the nature of the reagents used for chemical
sulfation and, also, on the nature of substate [18].

Table 2. Sulfated polysaccharides obtained by chemical sulfation reaction on isolated material:
molecular weights, sulfate contents (mol %) and their half-maximal inhibitory in vitro/effective
concentrations (IC50, EC50) referring to the indicated viruses.
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yielded derivatives possessing activity against TMV, HSV-1 and HSV-2. In general, the 
yield of sulfated polysaccharides obtained by the chemical sulfation reaction of 
polysaccharides varied from 17% to 118% depending on the nature of the reagents used 
for chemical sulfation and, also, on the nature of substate [18]. 

Table 2. Sulfated polysaccharides obtained by chemical sulfation reaction on isolated material: 
molecular weights, sulfate contents (mol %) and their half-maximal inhibitory in vitro/effective 
concentrations (IC50, EC50) referring to the indicated viruses. 
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1.
Le

nt
in

an
su

lf
at

e

Lentinus edodes in
HSO3Cl-Py

- 0

TMV

-

Affinity of the polyanion
towards positive ions on

viral particles
[252]

- 0.69 -

- 0.98 -

- 1.37 -

Lentinus edodes
In HSO3Cl-Py

- 0
TMV

- Affinity towards TMV
coat protein

[253]
- 0.98 -

Lentinula edodes
In HSO3Cl-Py

- 0

NDV

-

[254]
- 0.69 -

- 0.98 -

- 1.37 -

Lentinus edodes
In HSO3Cl-Py

- 0

IBV

-

Activity refers to DS
(up to DS value 0.98)

[255]- 0.69 -

- 0.98 -

- 1.37 -

2.
D

ex
tr

an
su

lf
at

e

Leuconostocmesenteroid
In HSO3Cl-Py 1–70 81 HIV-1

HIV-2
0.2–7.1
0.1–3.9

Activity by shielding off
the positively charged

sites in the V3 loop of the
viral envelope

glycoprotein gp120

[31]

3.
C

ur
dl

an
su

lf
at

e

Curdlan in DMSO
In SO3-py 6.2–10.8 0.66–1.55 HIV 0.04–0.4

DS is an antiviral
determinant, but not the

position of sulfate groups
[256]

Curdlan
In SO3-py

14 1.4
DENV-2

0.26 Inhibition of viral
infection at the step of
virus-host cell binding

[257]
6 1.5 0.37

Curdlan
In SO3-py 172 9.23 HBV -

Interference with virus
binding to host
cells surfaces

[258]
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4.
Pe

ct
in

su
lf

at
e

Azadirachta indica
In SO3-pyridine

41 4
HSV-1

31.1 Interference at an early
stage of the viral
replication cycle

[259]
11 4 80.5

80 -
BoHV-1

32.1 Inhibition of virus-cell
adsorption

[260]
41 4 105.2

41 4
PV-1

37.5 Inhibition of the initial
stage of viral replication [261]

11 4 12.1

5.
G

al
ac

to
m

an
na

n
su

lf
at

es

Fenugreek gum
In PSA and SO3-Py 7–24 0.7–1.4

HIV

0.4–1.6

Electrostatic interaction
between negatively

charged sulfate groups
and positively charged
amino groups of viral

surface proteins

[262]

Guar gum
In PSA and SO3-Py 8–23 1.1–1.3 0.3–0.6

Locust bean gum
In PSA and SO3-P 9–23 1–1.4 0.3–0.7

Tara gum
In PSA, SO3-Py 6–24 0.7–1.3 0.2–8

Adenanthera pavonina
In HSO3Cl-Py 700 1.21 PV-1 1.18

Inhibition mainly the
initial stages of
viral infection

[263]

A. pavonina
C. ferrea

D. gardneriana In
HSO3Cl-Py

- 0.72–0.82 DENV -2 - Entry inhibitor of DENV-2 [264]

Mimosa scabrella
In HSO3Cl-Py

- 0
HSV-1

n.a. Inhibition of the virus
attachment step

[265]
620 0.62 <2.5

Leucaena
leucocephala

In HSO3Cl-Py

- 0
YFV

n.a. Block of early stages of
viral replication [266]

574 0.50 200

Commercial
Galactomannans

In PSA

4 1.11

HIV

2.14

Electrostatic interaction
between sulfate and

amino groups
[267]

4.6 1.12 1.93

5.2 1.15 0.44

6.5 1.16 0.23

7.5 1.52 0.18

6.
G

lu
co

m
an

na
n

su
lfa

te

Konjac glucomanna
In PSA and SO3-Py

8 1.3

HIV

1.4
Electrostatic interaction

between sulfate and
amino groups

[268]
8 1.4 1.3

8 1.9 1.6

56 1.6 0.7

Konjac glucomannan
In HSO3Cl-Py - 33.11 CVB 148 Block of virus invading

function [269]
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Agaricus brasiliensis
In HSO3Cl-Py 86 14.77 HSV-1

HSV-2(vivo)
17.27
4.73

Inhibition of viral
attachment and entry [270]

Agaricus brasiliensis
In HSO3Cl-Py 86 14.77 HSV-1

HSV-2
1.24
0.39

Inhibition of viral
attachment [271]

7.
X

yl
an

su
lf

at
e

Scinaia hatei
In SO3-py 0–1.95 HSV-1

HSV-2
0.4–7.6

0.22–11.7 Inhibition of viral entry [97]

8.
O

ph
io

po
go

n
po

ly
sa

cc
ha

ri
de

Ophiopogon japonicus
In HSO3Cl-Py

0.83–
1.52 NDV - Inhibition of viral

adsorption [272]

9.
G

ly
co

sa
m

in
og

ly
-

ca
n Pseudomonas In

H2SO4-DMF

- -

IVA

>100
Inhibition of viral

attachment to the cell
prior to viral penetration

[273]130 4.3 16

150 8 5.2

Sulfated polysaccharide generated by combined extraction-sulfation from natural sources
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10
.X

yl
om

an
na

n
su

lf
at

e

Scinaia hatei
In SO3·Py 12–74 11.3–

50.1
HSV-1
HSV-2

0.67–88
(0.22–38.55)

Sulfate groups represent
hallmark of activity [43]

11
.G

lu
ca

n
su

lf
at

e

Rice bran
In Oleum-DMF

68 1.6 HSV-1
GPCMV
MCMV
HCMV

3–>10
8.1–>10
3.4–8.1
2.4–6.5

Inhibition of viral entry [47]30.5 1.7

27.3 1.2

Rice bran
In SO3-Py

- 0.3–0.4
HCMV

n.a. Sulfate groups represent
hallmark of activity [274]

- 2 3.46

Eleocharis dulcis fruit
In oleum–DMF

- 0

HCMV

>30 Mode of antiviral action
mostly based on the

inhibition of viral entry
[275]- 1.2 -

94 1.7 2.3

- 0.7 -

Oat Bran
In HSO3Cl-Py

500 0
HIV-1

n.a. Negative compound
charges bind to positively

charged amino acids

[276]
686 36.5 5.98

Gastrodia elata Bl
In HSO3Cl-Py

280 0
DENV-2

n.a. DS is the determining
factor of antiviral activity [277]65 0.206 20.6

190 1.68 10.7

Gastrodia elata Bl
In HSO3Cl-Py 190 1.68 DENV-2 0.68 Interference with viral

adsorption [278]

Agaricus
brasiliensis

In HSO3Cl-Py

609 0 HSV-1
(HSV-2)

n.a.
(n.a.)

Inhibition of viral
adsorption and

penetration

[279]

127 1.88 6.7 (4.6)

Botryosphaeran
In HSO3Cl-Py

- 0
HSV

DENV

39.3 or n.a. Electrostatic interaction
between sulfate and

amino groups
[280]- 0.4 3.0 (66)

- 1.1 2.4 (78)

12
.S

ul
fa

te
d

U
lv

an

Enteromorpha
compressa

In Oleum-DMF

5 -
HSV-1

200 Electrostatic interference
with the positive charge of

viral glycoprotein
[45]

34 22 28.2
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13
.A

ra
bi

no
ga

la
ct

an
su

lf
at

e

Anogeissus latifolia
gum

In SO3·Py

- 0

HSV-1

n.a.

Inhibition of viral
attachment and entry [44]69 0.1 127

35 0.3 630

31 0.5 342

14
.A

ra
bi

no
xy

la
n

su
lf

at
e

Plantago ovata seed
husk

In SO3·Py

31.3 0.1

HSV-1

n.a.
DS determines

antiviral activity [46]
26.7 0.4 11.5

18.4 0.9 2.9

n.a., no activity; CVB, Coxsackievirus B; PSA, piperidine-N-sulfonic acid; Py, pyridine; - no data found. Notably,
drawings are not intended to be representative of the full sample composition. EC50, half-maximal inhibitory
compound concentration measured by eukaryotic cell-based assays. IC50, half-maximal inhibitory compound
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5. Synthesis of New Molecules Possessing Diverse Structures by a Single-Step Process
Will Be a Useful Addition to the Arsenal of Antivirals

Traditional chemical synthesis of sulfated polysaccharides is notoriously difficult,
owing to the existence of a great number of stereocenters, the occurrence of alike func-
tional groups, and the need to protect the glycosidic linkage patterns. Besides, fabricating
polymers with reduced polydispersity adds to the difficulty. Chemical modification of
the structure of naturally occurring molecules is an obvious way to change its proper-
ties. In fact, there are instances in the literature showing that chemical alterations can
cause adverse or positive changes in the biological activity of natural compounds [11,288].
Recently, a unique one-step process that utilizes SO3·Pyr in dimethylformamide (DMF)
solvent (SO3·Pyr/DMF) as reagent directly produces additionally sulfated xylomannan,
starting from a seaweed namely, Scinaia hatei [43]. These synthesized polymers possess
significant antiviral activities. The advantage of this process is that SO3·Pyr/DMF behaves
as a “dual reagent”, as it effectively extracts polysaccharides from the plant material while
promoting the chemical alteration of the hydroxy group existing in the polymer into sulfate
functionality in the same pot as shown in Figure 1. Apropos methodological aspect, DMF as
an aprotic polar solvent can extract polysaccharide, a polar compound containing hydroxyl
and other polar functionalities. Moreover, this reagent also assists the dissolution process by
destroying ionic and hydrogen bonds, which are found in the cell wall components of plant
materials. Subsequent studies corroborate this economic procedure by creating various
sulfated polysaccharides with different building blocks from plant materials [44,46,47,275].
The yield of sulfated polysaccharides obtained using the one-step procedure varies between
7% and 58% based on the starting material’s dry weight [46,47]. For this reason, the strategy
has the capability to produce bioactive polymers through chemical diversification and func-
tionalization of plant materials, which usually contain massive amounts of polysaccharides
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with different structures and functions. In particular, this simple procedure can eventually
be standardized and made suitable for large-scale processes. It is expected that the outcome
of this combined extraction-sulfation process will stimulate more research projects to apply
this experimental method to produce biologically active compounds and possibly aim at
a pharmaceutical development of plant-derived medicines.
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6. Low Molecular Weight Heparin Mimetics

Heparin octasaccharides, synthesized from digested commercial heparin, serve as de-
coys for HSV binding; their structure varies from heparan sulfate in the degree of sulfation
and MW, making them excellent mimics of the cell surface receptor. The decoys can then
interact with HSV, most likely by binding to the glycoproteins gB or gC [289]. Based on re-
cent data demonstrating that heparin oligosaccharides or comparable mimetics can reduce
SARS-CoV-2 binding to target cells, the possibility of employing these oligosaccharides
as COVID-19 therapeutic agents is gaining traction. In addition, non-coagulating heparin
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formulations that diminish cell binding and infectivity without inducing bleeding can be
developed [40]. The potential of LMWH to mitigate cytokine storm in severe COVID-19
patients has also been investigated [241]. It has been observed that LMWH improves the
coagulation dysfunction of COVID-19 patients and exerts anti-inflammatory effects by
reducing IL-6 and increasing lymphocyte %. This group suggested that LMWH can be
used as a potential therapeutic drug for the treatment of COVID-19, paving the way for
a subsequent well-controlled clinical trial. Pixatimod (PG545), a clinical-stage heparan
sulfate mimetic, is a potent inhibitor of a number of viruses, such as HSV-2 [290], HIV [291],
RSV [292], Ross River, Barmah Forest, Asian CHIK, and chikungunya viruses [293], and
DENV [294], with EC50

′s ranging from 0.06 to 14 µg/mL. It has also been shown to possess
virucidal activity, a unique feature only found in this particular class of amphiphilic HS
mimetic [290,295]. In a prophylactic mouse HSV-2 genital infection model [290], a prophy-
lactic Ross River virus mouse model [293], and a therapeutic DENV mouse model [294],
in vivo efficacy of this compound was confirmed. Guimond et al. (2020) found that pixati-
mod binds directly to the SARS-CoV-2 spike protein S1 receptor-binding domain (RBD)
and alters its conformation [296]. Notably, this site overlaps with the known ACE2 binding
site in the S1 RBD. Furthermore, pixatimod inhibits the binding of recombinant S1 RBD
to Vero cells which express the ACE2 receptor. Moreover, in assays with three different
isolates of live SARS-CoV-2 virus, it was shown that pixatimod effectively inhibits viral
infection of Vero cells. The neoagarohexaose (NA6), a 937 Da oligosaccharide derived
from agarose by enzymatic hydrolysis, inhibited murine norovirus (MNV) replication with
an EC50 of 1.5 µM in RAW264.7 cells. Moreover, it lowered viral RNA titer in a human
hepatocellular carcinoma Huh7-derived cell line harboring a human norovirus subgenomic
replicon. It was shown that IFN-β induction is the crucial pathway that is activated in
a CD14-dependent manner by NA6 via the TLR4 to reduce norovirus loads in vitro and
in mice. Chitooligosaccharides (COSs), prepared by chemical or enzymatic hydrolysis
of chitosans, also have good biological activities including antibacterial activities [297].
The sulfated derivative of chitooligosaccharide (SCOS) possessed good anti-HIV activ-
ities at low MW (Mr 3000–5000) [298]. SCOS showed inhibitory actions on viral entry
and virus-cell fusion via blocking the interaction between HIV-1 gp120 and CD4+ T cell
surface receptors, suggesting that this marine-derived sulfated chitooligosaccharide has
the potential to be developed into a novel antiviral agent. The neoagarohexaose (NA6),
a 937 Da oligosaccharide derived from agarose by enzymatic hydrolysis, is a noncanonical
Toll-like receptor 4 (TLR4) agonist with an EC50 of 1.5 µM in RAW264.7 cells against murine
norovirus (MNV) [299]. This oligosaccharide also lowered viral RNA titer in a human
hepatocellular carcinoma Huh7-derived cell line harboring a human norovirus subgenomic
replicon. Although the exact molecular mechanism of NA6 recognition by the TLR4 com-
plex remains to be elucidated, it was shown that IFN-β induction is the crucial pathway that
is activated in a CD14-dependent manner by NA6 via the TLR4 to reduce norovirus loads
in vitro and in mice. Low-molecular-weight mannogalactofucans (LMMGFs, <4000 g/mol)
prepared by the enzymatic degradation of Undaria pinnatifida galactofucan (MF) were
found to inhibit HSV type 1 with IC50 values of 2.64 and 2.42 µg/mL for LMMGFs and
MF, respectively [300]. LMMGFs inhibited the viral entry on the host cell surface and also
exhibited inhibitory activity directly against viral particles, as observed in a virucidal assay.

7. Relationship between Structures of Sulfated Polysaccharide and Their
Antiviral Activities

In the past few decades, a substantial variety of sulfated polysaccharides with antiviral
properties have been discovered (Table 1). In spite of this, due to significant dissimilarities
in chemical structures of these biopolymers and a lack of data relating to both structure
and function, establishing a compelling structure–activity relationship (SAR) was difficult.
Additionally, depending on the types of viruses utilized, the potency of these biopoly-
mers varied significantly in vitro (Table 1) reflecting differences in the interaction of these
biopolymers with the different virus types. Even so, certain common structural motifs can
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be considered to be generally significant for antiviral activation, based on recent studies
(Table 1). In the case of sulfated glucans, the crucial factor of antiviral activity is the molec-
ular weight (MW). High MW is frequently associated with significant antiviral activity.
For example, with dextran sulfates with MWs spanning from 1 to 500 kDa but the same
sulfate content (81%), a significant increase in anti-viral activity was detected as the MW
climbed from 1 to 10 kDa, even if antiviral activity tended to plateau at higher MS [31]. In
a similar fashion, agarans [151], carrageenans [301], fucoidans [132] or chemically sulfated
polysaccharides from E. compressa [45], Rice bran [47], Azadirachta indica leaves [259] and
Anogeissus latifolia gum [44] show a comparable relationship (Figure 2). However, the
general validity of this finding can be proven with sulfated polysaccharides of particular
classes, such as ulvans, glucans, pectins, arabinogalactan or others, provided they show dis-
tinct structural similarities (Figure 2A–D). Sulfated polysaccharides of different classes with
different degrees of sulfation, glycosyl composition and linkage pattern, branching pattern,
have different structures and, therefore, dissimilar properties such as antiviral potencies.
Regrettably, high-MS derivatives frequently have the drawback of lower tissue-penetrating
properties, making them inapt for human use [302]. In contrast, oligosaccharides, such as
those derived from carrageenan by chemical and enzymatic treatment, can have consid-
erably higher bioavailability and biological activity [303]. An octasaccharide generated
from a sulfated polymannuroguluronate (SPMG) could inhibit HIV adsorption [208] by
targeting CD4 in lymphocytes [304]. According to new research [40], the administration
of LMWH reduces mortality in individuals with severe coronavirus coagulopathy. They
advocated using specially engineered heparan sulfate oligosaccharides as a new COVID-19
management method. Recently, polysaccharides were identified in buds of clove a potential
natural anti-COVID-19 remedy [305].
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Figure 2. Comparison of antiviral activity of sulfated (A) ulvans against HSV-1 [45], (B) glucans
against HCMV [47], (C) pectins against HSV-1 [259] and (D) arabinogalactans against HSV-1 [44],
having different molecular masses (MSs). Antiviral activity was performed by plaque reduction assay
in HEp-2 cells (human larynx epithelial cells carcinoma, ATCC CCL-23) (A,C), in Vero cells (ATCC
CCL-81) (D) and by GFP-based replication assay in primary human fibroblasts (B).

The sulfated polysaccharide’s degree of sulfation (DS) (i.e., number of sulfate groups
per monosaccharide unit) is an especially important parameter that influences antiviral
activity [29]. The significant positive relationship between DSs of naturally occurring sul-
fated polysaccharides, such as carrageenan [29], fucoidans [130,306], or chemically sulfated
alginic acid [74,76], fucoidans [73,74,76,77], xylomannan [43,98], xylan [97], pectic polysac-
charide [259,261], glucans [280], ulvans [45] and their antiviral activity (Figure 3), despite
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considerable structural differences, underscores the relevance of degree of sulfation. This
is also true for chemically sulfated arabinoxylans, whose antiviral activities vary greatly
depending on the degree of sulfation, with highly sulfated polysaccharides being more
active [29,46,275]. Incidentally, a modeling study demonstrated that sulfated polysaccha-
rides with a single sulfate or carboxylate group per monosaccharide unit failed to achieve
stable binding with either S-protein receptor-binding domain (S-RBD) or ACE2, the human
angiotensin-converting enzyme-2 [307] supporting the significance of the extent of sulfation
on antiviral efficacy. Moreover, the removal of the sulfate functionality from ulvans [45], fu-
coidans [73], and chemically sulfated alginates [74,77], glucans [47,275], arabinoxylans [46],
and arabinogalactans [44], drastically reduced antiviral activity confirming the importance
of sulfate functionality. Sinha et al. (2010) demonstrated that the alginic acid of Sargassum
tenerrimum possesses little anti-viral activity (IC50 of 15 µg/mL) [74], although the potency
increased significantly (IC50 of 0.5 µg/mL) after the chemical sulfation reaction (Figure 3A).
The alginate contains 1.0 carboxyl group per uronide residue and following the sulfation
reaction the increase in charge density is less minuscule (1.0 carboxyl groups and 0.1 sulfate
groups per residue). Thus, the antiviral activity of sulfated polysaccharide is not just
a consequence of their high charge density, but also of the nature of anionic functionalities.
Thus, sulfate functionality is vital for the antiviral activity of polymers, as opposed to the
carboxyl group, which has little such effect. Incidentally, the extent of sulfation influences
the strength with which heparin or HS fragments bind proteins [308].
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Figure 3. Comparison of antiviral activity of sulfated (A) alginic acids against HSV-1 [74,76], (B) ul-
vans against HSV-1 [45], (C) fucoidans against HSV-1 [77], (D) fucoidans against HSV-1 [73], (E) xylans
against HSV-1 [97], (F) linear and branched β-1,4-xylans having same degrees of sulfation against
HSV-1 [46,97], (G) xylomannans against HSV-1 [98] and (H) glucans against HCMV and HSV-1 [275]
having different degrees of sulfation. Antiviral activity was performed by plaque reduction assay in
RC-37 cells (African green monkey kidney cells) (A,C), in HEp-2 cells (human larynx epithelial cells
carcinoma, ATCC CCL-23) (B), in Vero cells (D–G) and by GFP-based replication assay in primary
human fibroblasts (H).



Viruses 2022, 14, 35 26 of 47

The antiviral potency of sulfated polysaccharides depends, as well, on the precise
position of the sulfate functionality. Initial investigators employed CS types A, B, C, and D
but found little or no antiherpetic activity [246,309]. Later on, Bergefall et al. (2005) observed
that CS-E isolated from squid cartilage possesses substantial antiviral activity [247] and
it was explained by hypothesizing that the unique position of sulfates (at positions 4 and
6) in the main CS-E disaccharide unit is responsible for the antiviral activity. Similarly,
Carlucci et al. (1997) found that the number of α-D-galactose 2,6-disulfate residues in
natural carrageenan is closely connected to their antiherpetic activity, implying that the
specific sulfation of galactose residues is important [301]. Copeland et al., found that
a 3-O-sulfated octasaccharide made from heparin using an enzymatic method is more
effective than a 3-OH octasaccharide in inhibiting HSV-1 infection [310]. Purified 3-O-
sulfotransferase isoform 3 (3-OST-3) and a heparin-derived octasaccharide, namely 3-OH
octasaccharide, were incubated to produce this octasaccharide (Figure 4). As a result,
a precise sulfation pattern is required to prevent viral infection. Incidentally, the binding
of heparin to different proteins is influenced by distinct heparin sulfation motifs [311];
some interactions require the unique 3-O-sulfate group, whereas most proteins use N- and
2-O-sulfates, which in heparin are extremely common [312]. Singh et al. (2015) also found
that the pattern and extent of sulfation has a significant impact on the area on a protein
wherever heparin fragments choose to bind, and that not all heparin fragments which bind
have the same effect on the protein’s function [313].
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3S, 3-O-sulfated; 6S, 6-O-sulfated; NS, N-sulfated. (Adapted from [310]).

The overall structural features of chemically sulfated polysaccharides have an impact
on antiviral activity. Thus, sulfated glucans with no uronic acid and a high DS of 1.7 had
higher antiviral activity than polysaccharides with high uronide content (9 percent, w/w)
and a DS of 1.2 [275]. Likewise, sodium alginate (BEP) of Laminaria angustata had little
anti-viral activity (IC50 of 25 µg/mL), yet a sulfated fucoidan (F2) had greater efficacy (IC50
of 0.65 µg/mL). This alginate possesses 1.0 carboxyl group per sugar unit, whereas the
sulfated fucoidan is less anionic (0.05 carboxyl groups and 0.1 sulfate groups per sugar
residue). Consequently, the antiviral activity of sulfated polysaccharides depends also
of their structural specificities, including the composition of constituent saccharides. In
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particular, the effect of glycosidic linkages on viral inhibition is among the least studied
polymer parameters. Linkage patterns and the anomeric configuration of the glycosidic
bonds modify torsion angle values, and even minuscule variations in these angles can
contribute to differences in the structure in solution. The more bending solution structure
of heparan sulfate compared to heparin [314] demonstrates this, however, sulfation and
glycosyl makeup changes may also play a role. Careful selection of the starting material is
required to investigate the effect of anomers or linking patterns on the antiviral activity of
a sulfated polysaccharide. In this regard, the fucoidan (F2) from Padina tetrastromatica with
a DS of 0.8 has lower anti-HSV-1 activity (IC50 of 1.05 µg/mL) [73], whereas the fucoidan
(S3) from Laminaria angustata with a lower DS value (0.4) has much stronger potency (IC50
of 0.2 µg/mL) [77]. Fraction S1 has 1,3-linked α-L-Fucp residues in its backbone, whereas F2
fraction has 1,2- and 1,3-linked α-L-Fucp residues in its backbone, indicating the relevance
of glycosidic connections in anti-HSV-1 activity. Thus, fucoidan’s anti-HSV-1 activity is
not only due to their DS, but also to their structural specificities such as glycosidic linkage
pattern. Furthermore, linear β-1,3-xylan sulfates are more potent antiviral molecules than
branched compounds with the same DS (Figure 3F). Advanced research is needed to justify
the relevance of glycosidic linkages and branching on antiviral efficacy.

Chain conformation of polysaccharides is another structural feature that can influ-
ence biological activities. Generally, polymers can adopt various chain conformations
such as random coil, duplex or triplex, rod-like, and sphere-like shapes, among others, in
the solution [315]. Incidentally, polysaccharides with similar structural features, such as
β-glucans, exhibit different bioactivities once the chain conformation is changed [316–318],
suggesting that this structural feature greatly influences their biological activities [319].
Noticeably, the β-1,3-glucans with or without β-1,6-branched glucose residues adopt triple
helices conformation in water but single random coils in DMSO or other polar solvents,
associated with breaking/formation of hydrogen bonds. The broken triple helices can
be reconstructed from the single chains, and triple helices can self-assemble into nan-
otubes with a hydrophobic cavity [315]. Relating to the dependence of antiviral activity on
polysaccharides’ chain conformation almost no data is available. In 2006, Adhikari et al.,
advocated that to demonstrate inhibitory activity, the sulfate groups must be exposed to
the macromolecule’s surface, which is highly dependent on the conformation and dynamic
stereochemistry (a time and solvent dependent component of conformation) of the stud-
ied polysaccharide [71]. Therefore, further study on the solution properties and chain
conformation of sulfated polysaccharides, as well as the effects of their conformation on an-
tiviral activities is essential for the successful applications of these biopolymers. Combined,
current data from our and other laboratories have shown that the antiviral properties of
sulfated polysaccharides are dependent not only on charge density, and MW, yet also on
the molecules’ structural features, such as glycosidic make up, linkage pattern, and chain
conformation, which need to be analyzed in details in years to come. [44,45,47,259,275].

8. Antiviral Mode of Action (MoA) of Sulfated Polysaccharides

As an initial step of the viral replication cycle, precise attachment of a virus particle to
its cell surface receptor is mandatory for viral entrance and ensuing intracellular multipli-
cation [157,304,320]. As shown below with instances from the crucial HSV and HIV, virus
polysaccharide interactions are also responsible for species and tissue tropism.

8.1. Sulfated Polysaccharides’ Role in Infections with Human Immunodeficiency Virus Type 1

Based on mechanism of action studies, it was found that sulfated polysaccharides exert
their anti-HIV activity by interfering with the interaction between HIV’s glycoprotein gp120
and the CD4+ antigen receptor on T cells [31,251,321]. Initially, the specific mechanism
of this connection was unknown. The V3 loop on the glycoprotein gp120 and the HIV-1
Tat protein were eventually identified as targets [322–325]. These materials also inhibit
HIV-induced syncytium formation—the huge multinucleated cells produced by HIV to
assemble, neutralize, and destroy T helper cells [112,322,323]. Furthermore, some of these
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polysaccharides may interact with HIV inside cells and impede replication by inhibiting
reverse transcriptase (RT). Polysaccharides must be absorbed by infected cells in order for
RT inhibition to occur, as demonstrated before with dextran sulfate and macrophages. Sul-
fated polysaccharides are hypothesized to function through two mechanisms: preventing
viral adsorption and slowing reverse transcription [57,326]. Inhibition of viral adsorption
and syncytium formation is currently thought to be the main mechanism [327].

8.2. The Putative MoA of Sulfated Polysaccharides in Infections with Herpes Simplex Viruses

HSV binds to heparan sulfate receptors in the course of the adsorption phase of
viral infection, the phase when the virus adheres to susceptible cells via specialized re-
ceptors. It was realized that, unlike other GAGs (such as chondroitin sulfate) bound to
cell surfaces, higher N-sulfation levels of heparan sulfate on cell surfaces could lead to
viral binding [328,329]. HSV infection was resistant in cells that did not express heparan
sulfate. Sulfated polysaccharides having antiviral action against HSV-1 and HSV-2 tend to
be effective against both viruses with low cytotoxicity. Their inhibitory effects are mostly
limited to the viral adsorption phase, where they interact either directly with the virus
or with heparan sulfate on cell surfaces; adding these polymers to cell cultures after in-
fection seldom results in significant viral suppression. Fucoidans derived from brown
algae (Sargassum horneri), for example, showed no viral suppression when HSV or host
cells were pre-treated with the sulfated fucoidan [330]. Their antiviral activity was ob-
served only during viral infection, implying that the polysaccharide may interact with
other membrane molecules on host cells (i.e., not heparan sulfate) while still interfering
with virus–cell fusion [330]. As previously stated, the MW of these polysaccharides has
a significant impact: high-molecular-weight polysaccharides are more effective at inhibiting
HSV-1 and HSV-2. Desulfated polysaccharides were similarly shown to have less inhibition
when added to HSV-infected cell cultures [83]. Other mechanisms of action have been
investigated, including stimulating B cell and cytotoxic T lymphocyte production (sulfated
fucoidan) or interfering with DNA replication, transcription, and viral protein production.
In some cases, the polysaccharides showed broad antiviral activity against a variety of
HSV-1 strains [331]. Heparin octasaccharides, made from digested commercial heparin, act
as decoys for HSV binding; their structure differs only in degree of sulfation from heparan
sulfate, making them ideal cell surface receptor mimics. The decoys can then interact with
HSV by binding to the glycoproteins gB or gC, which is most likely the case [289].

8.3. The Putative MoA of Sulfated Polysaccharides in Infections with SARS-CoV-2

Cellular heparan sulfate (HS) has been found to bind SARS-CoV-2 spike glycoprotein
(SGP) and co-operate with cell surface receptor angiotensin-converting enzyme 2 (ACE2) to
mediate SARS-CoV-2 infection of host cells [332–335]. The SARS-CoV-2 SGP has a major role in
the early infection process, where the S1 domain enables the binding and the S2 domain medi-
ates the engulfment of the virions by membrane fusion [336]. Investigation of the SARS-CoV-2
SGP sequence exposed the furin-like cleavage site at GAG-binding motif resides within S1/S2
proteolytic cleavage motif [332,337,338]. Interestingly, the presence of a furin cleavage site
at the S1/S2 boundary of SARS-CoV-2, in contrast to SARS-CoV-1, which does not have
such a cleavage site, is implicated as the cause of increased infectivity of SARS-CoV-2 [338].
Sulfated polysaccharides are thought to act in a similar fashion on SARS-CoV-2 as against
other enveloped viruses, i.e., the inhibition of virus adsorption, virus internalization and
uncoating. However, other modes of action have also been described, such as the inhibition of
3CLpro protease by the phlorotannin Dieckol [339]. Sulfated polysaccharides may also inhibit
the expression and activation of epidermal growth factor receptors, which have inhibitory
effects on coronaviruses [340].

8.4. Additional Aspects of MoA That are Independent of Virus Entry

The inhibition of viral entry into cells, as mediated by numerous natural source-
derived compounds including sulfated polysaccharides, is based on the interaction of these
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compounds with cell surfaces or viral glycoproteins/virion proteins or both. It should be
taken into account, however, that many cell surface-related processes like ligand binding,
cell-to-cell contacts, or drug interaction are also translating into intracellular responses.
A basic principle of the signaling pathways involves the cell surface stimuli that are trans-
duced by membrane regulators, such as receptor signaling kinases, towards intracellular
regulation, specifically also into the cell nucleus thus typically resulting in a modulation of
transcription activity of individual genes. Given this background, it appears quite plausible
that surface-active antiviral substances may either induce additional intracellular responses
or even specifically exert an MoA that is independent from the inhibition of viral entry.
Recently, we reported on examples of such intracellular modulation effects in the case
of cytomgalovirus replication inhibited by natural source-derived sulfated glucans [47].
In this context, we demonstrated that the antiviral MoA was not exclusively based on
the inhibition of viral entry, but was also linked to additional later effects of intracellular
replication. When the time of addition of the compounds was varied, experimental data
clearly indicated that the main anti-HCMV activity occurred at the stage of viral entry. In-
terestingly, however, we also noticed that after the viral entry phase, an increased antiviral
effect was measured when the compounds continuously remained on the cells, including
the viral post adsorption period, in which virus replication was maintained for several days.
This additional effect of long-term treatment either could be due to inhibition of the second
or third round of virus replication or, alternatively, could indicate an additional intracellular
effect of the glucans bound to the cell surface or to virions. This latter point was addressed
by measuring the expression levels of viral proteins belonging to immediate-early, early,
and late markers of the viral replication cycle. Indeed, a partial block of protein synthesis
was detected at the early stages of viral replication even when the substances were applied
after virus infection. Furthermore, as a clear-cut result, viral protein expression was already
blocked at the immediate early level of gene expression when substances were added in
a mode of drug preincubation-adsorption-postinfection. Subsequently, the production
of viral early and late proteins was consequently also inhibited, while the addition of
substances later than virus entry did not have a marked effect. This indicates that some
additional postentry effects of cell surface-bound sulfated glucans limited the efficacy of
intracellular viral replication. Theoretically, such intracellular may also contribute to the
viral modulation of innate immune responses, although this aspect of MoA awaits further
investigation. As an additional point to be addressed for these types of compounds is
the question of whether the antiviral potency of sulfated polysaccharides is dependent
on specific cell types or viral tissue tropism. Principally, it appears plausible that some
specificity may be directed to individual cell types, especially in these cases when limited
quantities of viral entry receptors are expressed on individual cells. Then, it is feasible to
expect a more pronounced entry-inhibitory efficacy of these compounds, however, detailed
experimental proof of this concept is still missing. The current understanding is that most
of the sulfated polysaccharides with antiviral activity are relatively broad-acting as based
on pleiotropic principles.

9. Polysaccharide-Based Compounds Possess an Intrinsic Potential of Broad-Spectrum
Antiviral Activity

Hundreds of viruses cause disease in humans, yet there is no specific medication for
the majority of them [3]. The fact that novel viruses frequently emerge among humans as
a result of spillover from other regions of the animal kingdom adds to the difficulty [4,5].
The scarcity of antiviral drugs that can be quickly mobilized and deployed for the treatment
of re-emerging or new viral illnesses was highlighted by the SARS-CoV-2 pandemic. Broad-
spectrum antivirals are one way to get around this problem. Polysaccharides are ideal for
this purpose since polysaccharide-based antivirals tend to prevent the physical attachment
and entry of the viral particles (Tables 1 and 2). Thus, polysaccharides that attach to one
virus and prevent cell attachment may be able to block viruses possessing comparable
cell attachment mechanisms. Examples of broader acting antiviral activities of a natural
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source-based compound, not limited to one virus species alone, have been demonstrated
by our group before [47,275,341]. Table 1 displays various polysaccharides that are able to
inhibit significantly an array of viruses including SARS-CoV-2. Thus, it may be assumed
that sulfated polysaccharides to be generated from natural products by using SO3.Pyr or
Oleum-DMF reagent will exert broad-spectrum antiviral activities.

10. Polysaccharide-Based Antiviral Agents in Pre-Clinical and Clinical Studies
10.1. Carrageenan

Carrageenan is the most profoundly tested polysaccharide in the context of antiviral
activity. It has been examined in humans for its ability to protect against sexually trans-
mitted viruses such as HIV, HSV, and HPV, as well as RVs. Based on the finding that
ι-carrageenan interferes directly with HPV adsorption to human sperm cells, two trials
have been conducted, both of which have shown that carrageenan-based gels are effective
against HPV transmission [342] and are well tolerated [343]. McGill University (Canada)
is now conducting a third experiment [344]. Additionally, seven clinical trials have been
conducted since 1997 to prove the efficacy of a carrageenan-based gel (carraguard) as
a vaginal microbicide against HIV and HSV transmission. None of these studies, however,
were able to conclusively demonstrate the efficacy of this topical treatment [120]. The ability
of carrageenan to interfere with influenza virus type A adsorption to the host cell [94], as
well as the discovery that a commercially available nasal spray containing carrageenan
had good anti-IV type A activities in vivo using mice [94,345,346], has led to two clini-
cal trials [166,347]. The results obtained demonstrated that direct local administration
of ι-carrageenan with nasal sprays significantly reduced the duration of RV-associated
cold symptoms. Carrageenan binds to viral glycoproteins, forming a physical barrier that
prevents virions from infecting their target cells [121]. Fewer viruses were able to repro-
duce as limited viruses have access to epithelial tissue, resulting in lower viral titers and
faster symptom relief. Notably, in the ι-carrageenan treatment group, the proinflammatory
mediators FGF2, GCSF, IL8, IL1, IP10, IL10, and IFN2 were reduced [345]. Incidentally, the
development of a nasal spray containing xylometazoline hydrochloride and ι-carrageenan
for the symptomatic relief of nasal congestion caused by RVs is the most thriving case of
utilization of carrageenan [348]. Several nasal sprays containing carrageenan are already
available in Europe and Canada [349,350]. A clinical trial testing the preventive impact
of a carrageenan nasal spray against SARS-CoV-2 is presently underway in the United
States [351], and similar efforts to create an anti-SARS-CoV-2 carrageenan nasal spray are
underway in the United Kingdom [352]. An overview of all currently conducted clinical
trials against SARS-CoV-2 is shown in Table 3.

10.2. Fucoidans

Fucoidans have also been investigated in vivo using mice for their activity against differ-
ent viruses [120]. Orally administered fucoidan from Undaria pinnatifida inhibited the propa-
gation of avian IAV (subtypes H5N3 and H7N2) while increasing antibody production [353].
In a separate investigation, oral treatment of the same fucoidan to immunocompetent and
immunocompromised mice infected with a lethal dosage of IV type A (subtypes H5N3 and
H7N2) reduced virus replication, weight loss, and death in both groups while also lengthening
their live expectancy. More intriguing was the fact that the use of fucoidan did not result
in the development of drug resistance, which is usual when using traditional antiviral drug
oseltamivir [354]. An intranasal application of fucoidan derived from Kjelmaniella crassifolia
yielded the same results [143]. Fucoidan interacts with IAV surface enzyme neuraminidase
(NA) in a host-independent manner to form a stable, inert complex that prevents viral entry
into cells. Moreover, fucodians were shown to interfere with the activation of EGFR, PKCα,
NF-κB and Akt, thereby inhibiting both IAV endocytosis and EGFR internalization [143]. More
recently, Richards et al., demonstrated that the oral administration of fucoidan from Undaria
pinnatifida was able to reduce symptoms and lung pathology after IAV infection [141], poten-
tially by preventing virions from interacting with alimentary epithelia. In addition to infection
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and replication in the respiratory tract, influenza viruses are known to replicate in the alimen-
tary tract [355]. Due to its binding and inactivation of IAV, orally administered fucoidan in the
alimentary tract may prevent harmful interactions between the virus and alimentary epithelia.
Richards et al., showed that the administration of fucoidan led to a minimal decrease in viral
titers [141]. Intraperitoneal infusion (10 mg/kg) of fucoidans from Fucus evanescens protected
mice from deadly intravaginal HSV-2 infection with a 50 percent efficacy [80]. Shikov and
his colleagues recently published a study with more pharmacokinetic data on the antiviral
activity of fucoidans [356]. Fucoidans may also exhibit indirect benefits as a randomized
clinical trial with 70 volunteers revealed an increased immune response to seasonal influenza
vaccination, when mekabu fucoidan was supplemented [357]. Further clinical trials should
help to give more insights into the efficacy of fucodians against IAV infections.

Table 3. Overview of all currently ongoing clinical trials of carrageenan against SARS-CoV-2 (listed
at clinicaltrials.gov, accessed on 20 November 2021 ).

Study Title Identifier Status Results Primary Outcome

1

Study to Investigate if Sucking a
Coldamaris Lozenge Elutes Sufficient
Iota-carrageenan to Inactivate Usual

Common Cold Viruses

NCT04533906 Completed Pending Iota-carrageenan
concentration in saliva

2
USEFULNESS of Topic Ivermectin and
Carrageenan to Prevent Contagion of

COVID 19 (IVERCAR)
NCT04425850 Completed Published

Number of participants
testing positive for

COVID-19

3

Prophylaxis COVID-19 in Healthcare
Agents by Intensive Treatment With

Ivermectin and
Iota-carrageenan (Ivercar-Tuc)

NCT04701710 Completed Pending
Number of subjects who

were diagnosed with
COVID-19 in EG and CG

4 Carrageenan Nasal Spray for
COVID-19 Prophylaxis NCT04590365 Recruiting Pending Rate of

COVID-19 infection

5

Efficacy of a Nasal Spray Containing
Iota-Carrageenan in the Prophylaxis of
COVID-19 Disease in Health Personnel

Dedicated to Patients with
COVID-19 Disease

NCT04521322 Recruiting Pending Diagnosis of
COVID19 disease

6

Effect of Local Treatment(Carrageenan
Nasal Spray and PVP-I Mouthwash) in
Reducing Viral Load in Patients With

COVID-19 (LT-COVID19)

NCT05049213 Recruiting Pending

Change from baseline
naso-pharyngeal viral

load quantified by
RT-PCR at Day 8

7

Prophylactic Treatment With Carragelose
Nasal Spray to Prevent SARS-CoV-2,

COVID-19, Infections in Health
Care Workers

NCT04681001 Recruiting Pending

Presence of COVID-19
symptoms including

symptoms of respiratory
viral infection

8
Efficacy and Safety Evaluation of

Inhaleen Inhalation in Hospitalized
COVID-19 Patients

NCT04793984 Recruiting Pending

Clinical status of
subjects as expressed on

the WHO-8-Category
ordinal scale

10.3. Lectins

One of the most promising experimental drugs is griffithsin, a lectin extracted from
red algae Griffithsia sp. Griffithsin binds asparagine-associated mannose structures in the
case of HIV-1-infected cells, thereby inhibiting the binding of glycoprotein gp120 to its
cell receptors [358–364]. Animal experiments demonstrated protection against high doses
of the chimeric simian-human immunodeficiency virus (SHIV) in macaques and against
vaginal HSV-2 and HPV pseudoviruses in mice [365,366]. A first clinical phase I study
was completed in 2018 to evaluate safety, pharmacokinetics and pharmacodynamics of

clinicaltrials.gov
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griffithsin in healthy women (NCT02875119). Another phase I study to determine the
safety and pharmacokinetics of a griffithsin enema was conducted in 2019, however was
prematurely terminated due to the COVID-19 pandemic [367].

10.4. Spirulan

The sulfated polysaccharide spirulan, existing as an ionic calcium or sodium form,
has been isolated from Arthrospira platensis [368]. This polymer proved effective against
enveloped viruses, including HSV-1, mumps virus, MV, HCMV, IAV and HIV-1 [368]. The
very promising potential of calcium spirulan against HSV infections has been demonstrated
by a recent study [369]. The clinical trial performed on 198 volunteers clearly illustrated
a prophylactic effect of calcium spirulan. Furthermore, the topical application of a microal-
gae extract containing spirulan, as analyzed against herpes labialis, was superior to topical
acyclovir [120]. Mechanistic analysis inficated that calcium spirulan blocks the attachment
and penetration of HSV-1 into mammalian epithelial cells with a potency that proved to be
at least comparable to acyclovir. In addition, an inhibitory effect onto the cellular entry of
Kaposi sarcoma-associated herpesvirus/HHV-8 was also described [369].

10.5. Alginic Acids

The alginate-derived therapeutic agent, called 911, is a novel anti-HIV therapeutic
agent that has been tested in phase 2 clinic trials [24]. This compound significantly limits the
replication of HIV both in vitro and in vivo, and its activity is attributed to the inhibition of
viral reverse transcriptase, the interference with viral adsorption, and the augmentation of
immune function [370]. The sulfated polymannuroguluronate (SPMG) derived from alginic
acid could inhibit HIV adsorption mainly through interfering with the interaction of virus
gp120 protein with the CD4 molecule on the surface of T cells [208,304,371]. Incidentally,
the octasaccharide unit was found to be the smallest active SPMG fragment capable of
inhibiting syncytium formation [371].

10.6. Modified Polysaccharides

Antiviral characteristics and applications for several modified polysaccharides have
also been initiated. Some sialic acid-modified polysaccharides, for example, have been
produced with the intention of creating virus-capturing face masks or filters in the fu-
ture [372,373]. Once carrageenan is replaced with the neuraminidase inhibitor zanamivir,
two separate synergistic processes result in a polymer with improved inhibition [166]. Other
changes, such as altering chitosan with disialooligosaccharide-terminated substituents, can
improve polysaccharide antiviral activities [372]. Chemoenzymatically produced oligosac-
charides have a higher inhibitory capacity than disialooligosaccharide monomers [372]. To
understand the influence of these factors on inhibition, the degree of polymerization (DP)
of chitosan and the degree of substitution (DS) of the disialooligosaccharide were changed
in this work. Influenza inhibition increased as DP increased, while the inhibitory impact
reduced as DS increased, perhaps due to steric crowding [372]. The fact that chitosan is
positively charged and sialic acid is negatively charged at physiological pH complicates this
work. As a result, bigger electrostatic complexes are likely to develop in these materials.

11. Future Perspective

The COVID-19 pandemic has highlighted the crucial need for antiviral chemicals that
can be quickly deployed when a previously unknown or ignored virus suddenly becomes
a worldwide emergency. Antiviral drug development for handling evolving viral illnesses
would necessitate the consideration of compounds with novel modes of action. Polymeric
chemicals lower the drug’s toxicity and the occurrence of side effects. They can also boost
the efficacy of the real therapeutic ingredient. Because multivalent interactions are usually
stronger than monovalent interactions, sulfated polysaccharides that are polyvalent can
bind to multiple complementary receptors on biological targets at the same time. The most
important aspect of polysaccharides is their structure, and the presence of functionality that
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can be altered by chemical reactions to induce and change biological activities. The extent
of sulfation, MW, sugar composition, glycosidic linkage patterns, structures, and shape
are all factors that determine the antiviral properties of polysaccharides. Consequently,
these molecules should be investigated further as potential antiviral agents that can be
used alone or in conjunction with existing medications. The majority of antiviral actions
of sulfated polysaccharides have been extensively documented in vitro or in mice model
systems. The next step would be to bring the most promising polysaccharides into clinical
trials to investigate their activity in a controlled and randomized setting. The application of
carrageenan as a nasal spray or oral drops as prophylaxis and early-stage treatment against
common cold viruses and SARS-CoV-2 is thought to be a very promising aspect, which
is currently evaluated by various clinical trials. The results of these investigations may
help to establish the use of polysaccharides as a natural high-value antiviral drug with the
advantage of a low rate of adverse effects.
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