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Radiation therapy remains an important component of cancer treatment. Gene-encoded
proteins were the actual executors of cellular functions. Proteomic was a novel technology
that can systematically analysis protein composition and measure their levels of change,
this was a high throughput method, and were the import tools in the post genomic era. In
recent years, rapid progress of proteomic have been made in the study of cancer
mechanism, diagnosis, and treatment. This article elaborates current advances and
future directions of proteomics in the discovery of radiosensitive cancer biomarkers.
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1 INTRODUCTION

Radiation therapy is a highly targeted treatment accurately suppressing the tumor with wide ranging
application, and contributed to approximately 40% of all cancer cures across the world (1). This
treatment modality is also very effective for other cancer related problems including pain, tumor
bleeding, and acute superior vena cava syndrome (2–4). Despite the great benefit, the existence of
radiation resistance leads to local recurrence, distant metastasis, and poor survival, this is really a
key challenge in cancer treatment (5). With the development of precision medicine in clinic
practice, there was an urgent need to screen a number of biomarkers for patient’s stratification and
thus develop appropriate treatment strategies (6). Indeed, investigators were dedicated to identify
potential radiosensitivity biomarkers to perform tailored radiation therapy for cancer patients (7, 8).
Big data was the basis for the realization of precision medicine (9). After the completion of human
genome sequencing, the “post-genome” era has arrived (10). Genes cannot perform the functions by
themselves, and their functions need to be performed directly through transcription and translation
to proteins (11).

Protein expression can be influenced by environmental conditions, nutritional status, and
therapeutic modalities. Protein expression can directly reflect different physiological or pathological
processes in the organism (12). Proteomic was an advanced systemic biology research method in the
“post-genomic” era, it was studied by large-scale screening and identification of protein expression
in body fluids, tissues, cells or organisms under various conditions, and protein-protein interactions
will be well recognized (13). Mass spectrometry (MS) has become an important tool for large-scale
protein identification in proteomics (14). Currently, research of proteomics mainly focused on basic
medicine, health screening, disease prevention, prognosis prediction, patient stratification, and the
identification of new targets (15–18).

Since proteins can directly reflect cellular biological processes and were dynamic changed in real
time, the application of proteomics in precision medicine has attracted much attention (19, 20).
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In recent years, researchers attempt to analyze protein expression
in tumor tissue and plasma during radiation therapy by
proteomics technology, this will be facilitating the detection of
proteins that play a key role during the course of radiotherapy
and biomarkers that can predict radiotherapy sensitivity in the
earlier phase (21, 22). With the development of proteomics,
tumor radiation therapy has entered a new era in the context of
precision medicine (23). In the present analysis, we reviewed the
research progress of proteomics in screening tumor radiotherapy
sensitivity markers (Figure 1).
2 APPLICATION OF PROTEOMICS TO
IDENTIFY PREDICTIVE BIOMARKERS
OF RADIOSENSIVITY

Technological advances in MS have driven an increased
capability for rapid, accurate and effective proteomic discovery.
To date, several proteomics techniques have been applied to
identify potential biomarkers of radiosensitivity (Figure 2).

2.1 Matrix-Assisted Laser Desorption/
Ionization Time-of-Flight Mass
Spectrometry (MALDI-TOF-MS)
MALDI-TOF-MS is an approach in proteomics to identify
proteins from simple mixtures frequently combined with two-
Frontiers in Oncology | www.frontiersin.org 2
dimensional gel electrophoresis (24). Relatively less intense
sample preparation was required for this technique; besides,
peaks in a spectrum were typically used as indications of
peptide content. However, reproducibility of outcomes may be
a problem because of this technique is sensitivity to
contaminants from salts. MALDI-TOF-MS may be replaced
with the emerging of advanced MS techniques.
2.2 Isobaric Tags for Relative and
Absolute Quantification (iTRAQ)
iTRAQ technology is a shotgun-based quantization method that
uses isobaric reagents to label all primary amines of peptides and
proteins (25). The concentration of potential radiosensitivity
biomarkers in cancers can easily be quantified using iTRAQ-
based proteomics because of the advantages including less time
consuming and decreased variation (26). Notably, this technique
is expensive, sensitive to contamination from salts, and the
variability will arise if the enzymatic digestion is inefficient.
2.3 Liquid Chromatography With Tandem
Mass Spectrometry (LC-MS/MS)
LC-MS/MS is an analytical chemistry technique that includes
physical separation of the analytes in liquid samples and
followed by their mass-based identification (27). This technology
contributed to the determination of the accurate mass, putative
FIGURE 1 | Proteomics approaches for the discovery, validation, and clinical application of biomarkers. (MS, mass spectrometer; IGRT, Image-guided radiation
therapy; IMRT, Intensity-modulated radiation therapy).
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FIGURE 2 | Scheme of the workflow and methodological strategies for proteomics application in identifying radiosensitivity biomarkers. (2-DE, two-dimensional gel
electrophoresis; 2D-DIGE, two-dimensional difference gel electrophoresis; GO, The Gene Ontology; HPRD, human protein reference database; iTRAQ, isobaric tags
for relative and absolute quantitation; KEGG, Kyoto Encyclopedia of Genes and Genomes; MALDI-MS, matrix-assisted laser desorption ionization mass
spectrometer; MRM, multiple reaction monitoring; SWATH, sequential window acquisition of all theoretical fragment ion spectra).
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formula, and elucidate the structure of the analyte with relatively
small amounts of samples. Therefore, it has been widely used for
the analysis of both small molecules and large protein molecules.
Nevertheless, the instruments are extremely costly. Sample
preparation is important for the extraction of target compounds
from complex samples such as serum; otherwise, the system may
be contaminated and resulted in a decreased sensitivity (28).
Additionally, it is time consuming because of the large amount
of information acquired from LC-MS/MS.
2.4 Multiple Reaction Monitoring (MRM)
MRM, also known as Selective Reaction Monitoring (SRM) is a
technique based on triple quadrupole mass spectrometer and use
the signal of selected tandemmass spectrometry fragment ions for
further quantification (29). This method can eliminate most of the
non-target detection and improve the detection sensitivity of the
target proteins in complex samples, the results are reproducible.
Meanwhile, MRM could be used for biomarker validation and has
the potential to serve as a complementary tool to traditional
methods including western blot, immunohistochemistry, and
enzyme-linked immunosorbent assay (30). Despite these
advantages, MRM may not suitable for proteins that are too
short and variable, such as immunoglobulin. For the selected
peptides from same target proteins, were observed, incomplete
trypsin digestion of parental ions may lead to different
quantitation outcomes (31).
2.5 Sequential Window Acquisition of All
Theoretical Mass Spectra (SWATH-MS)
SWATH-MS is an emerging proteomic platform based on data
independent acquisition (DIA) principle for label free
quantification (32). It provides a complete and permanent
information of all fragment ions in a sample, moreover, a
spectral library is necessary to analysis the SWATH-MS data.
This technology allows quantitative analysis of peptides covering
a great amount of proteins with a high quantitative accuracy and
reproducibility. The current disadvantage of SWATH-MS is that
the peptide quantification is still less sensitive compared withMRM
(33). SWATH-MS is a promising technique and novel algorithms
are needed for identifying cancer radiosensitivity factors.
3 RADIOSENSITIVITY BIOMARKERS
IN CANCERS

Approximately 50% of tumors need to be treated with radiation
therapy, and how to select eligible patients to receive
radiotherapy was really a problem (34). Proteins expression
were altered during radiotherapy, the application of proteomics
to analyze these differential proteins has the potential to identify
potential biomarkers of radiation resistance and further revealing
the underlying molecular mechanisms. This will contribute to
screen patients that eligible for radiotherapy and reveal novel
Frontiers in Oncology | www.frontiersin.org 4
targets of anticancer therapy. In the current study, the following
terms were utilized: “neoplasms”, “proteomic”, “radiotherapy”,
we also manually checking reference lists to identify additional
relevant studies.
3.1 Head and Neck Cancers
Head and neck cancers were the sixth leading cancer by
incidence and the eighth major cause of cancer related death
across the world, and squamous cell carcinoma was the most
common type (35). Intensity-modulated radiotherapy was one of
the most effective treatment strategies for head and neck cancers
(36). Despite a good survival rates of 40%-50%, some patients
still exhibit resistance to radiotherapy and resulted in tumor
recurrence (37). Identification of biomarkers related to head and
neck cancer radiation resistance would helpful to improve
patient survival.
3.1.1 Nasopharyngeal Carcinoma
Radiotherapy with or without chemotherapy is the standard
treatment option for nasopharyngeal cancer because of the
complex anatomical location of this disease (38). Radiation
resistance is a severe obstacle to the successful treatment of
nasopharyngeal carcinoma, and biomarkers related to the
radiation response is of great importance (39). Wu et al.
analyzed the proteomic changes of tumor tissues before and
after radiation therapy in patients of nasopharyngeal carcinoma
and found that endoplasmic reticulum protein 29 (ERP29),
manganese superoxide dismutase (Mn-SOD), heat shock
protein 27 (HSP27), and glutathione S-transferase (GST) were
significantly upregulated and correlated with radiation
resistance; ERp29 was significantly overexpressed in radiation-
resistant tumor tissues as verified by immunohistochemistry; the
application of small RNA silencing technique to downregulate
ERP29 expression enhanced both radiosensitivity and apoptosis
in CNE-1 and 6-10B cells (40). This study suggests that ERP29
has the potential to be used as a marker for predicting the efficacy
of radiotherapy in nasopharyngeal carcinoma. HSP27 was a
chaperone belonged to the small heat shock protein family, the
protein involved in the inhibition of apoptotic cell death,
regulation of cell proliferation and differentiation (41). The
analysis by Zhang et al. also confirmed HSP27 as a biomarker
of radiation resistance in nasopharyngeal cancer (42). Zhang
et al. performed serum proteins profiles using LC-MS/MS and
found secreted protein acidic and cysteine rich (SPARC), serpin
family D member 1S (ERPIND1), complement C4B,
peptidylprolyl Isomerase B (PPIB), and family with sequence
similarity 173-member A (FAM173A) were associated with
radiation resistance (43). To date, the role of SPARC,
SERPIND1, and FAM173A in cancer remains unclear.
Complement C4B was a component of the classical activation
pathway, dysregulated complement expression within the tumor
microenvironment was capable of suppressing antitumor
immunity and resulted in poor clinical outcomes (44). PPIB
was a cyclosporine-binding protein that participated to regulate
cyclosporine A-mediated immunosuppression, further
February 2022 | Volume 12 | Article 852791
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investigation revealed PPIB conferred radiation resistance in
head and neck cancer via facilitating DNA repair (45).

In addition, Feng et al. established a radiation-resistant cell
line CNE2-RR from fractionated radiotherapy irradiated
nasopharyngeal carcinoma CNE2 cell line, and proteomic
analysis identified 34 cases of differential proteins; after
validated by 90 clinical tissue specimens of nasopharyngeal
carcinoma, they identified that 14-3-3s and maspin were
significantly downregulated, conversely, GRP78 and Mn-SOD
were significantly upregulated; cellular studies confirmed that
upregulation of 14-3-3s could effectively improve the radiation
sensitivity of CNE2-RR cell lines (46). GRP78 was a
multifunctional protein folding chaperone in endoplasmic
reticulum (ER), overexpression of GRP78 was associated with
poor survival; suppressing GRP78 enhanced the efficacy of
radiation therapy in cancer models (47). Li et al. compared
CNE2-RR cell lines with CNE2 cell lines with MALDI-TOF-MS
and uncovered 16 cases of proteins related to radiation sensitivity
in CNE2-RR cell lines; among them, Nm23H1 was significantly
overexpressed and annexin A3 was significantly downregulated;
however, the final results were not validated (48). With the same
cell lines, another study reported fibrillin-2, CD166, sulfhydryl
oxidase 1 and cofilin-2 as biomarkers of radiosensitivity using
iTRAQ technique, further analysis revealed the 4 proteins
involved in cell adhesion, migration and invasion (49).
Similarly, Li et al. analyzed the CNE2-RR cell lines using LC-
MS/MS and found MAPK15 was involved in radiation
resistance, the potential mechanisms were MAPK15 attenuated
reactive oxygen species accumulation and promoted DNA
damage repair (39). Accordingly, the above studies suggested
that the results of different proteomic techniques were not
identical, and further analyses were required in improving the
homogeneity of these proteomic techniques.

3.1.2 Other Types of Head and Neck Cancers
Comparative analysis of protein profiles of radiation resistant cell
lines QL1, SCC15 and SCC25 verified that Non-metastatic
protein 23 H1 (Nm23-H1) was highly expressed and could be
used as a marker of radiation resistance (50). Nm23-H1 served as
a housekeeping enzyme and involved in suppressing cancer cell
metastasis, the activation of Nm23-H1 was capable of inhibiting
cancer metastasis via redox regulation (51). Comparative
proteomic analysis of head and neck squamous carcinoma cell
lines FaDu and SCC25 with radiation-resistant cell lines FaDu-
RR and SCC25-RR showed that Ras-related C3 botulinum toxin
substrate 1 (Rac1) could be used as a new therapeutic target (52).
Rac1 is a cytoskeleton involved in cell adhension, morphology,
and movement; overexpression of Rac1 is associated with
unfavorable survival in different type of cancer (53).

Interestingly, Matsukawa et al. performed a proteomic analysis
of tumor tissues from 18 patients with locally advanced oral
squamous carcinoma treated with neoadjuvant radiotherapy,
galactose lectin 7 was identified and validated as a predictor of
radiation resistance with a sensitivity of 96%, a specificity of 39.5%,
in the meantime, the 5-year disease-specific survival rate was
75.2% in the galactose lectin 7 low expression group and 100%
for the high expression group (54). Further analysis also confirmed
Frontiers in Oncology | www.frontiersin.org 5
that the invasive ability was decreased in galactose lectin 7
overexpressed cells; however, the invasive ability was not
significantly altered after knockdown of galactose lectin 7.
Therefore, further investigation was necessary for galactose
lectin 7 in predicting radiation resistance. Lin et al. analyzed
three head and neck tumor cell lines, KB, SAS, and OECM1,
and found that five proteins including Heat shock protein 96
(Gp96), Glucose regulatory protein 78 (GRP78), Heat shock
protein 60 (HSP60), Ras-related protein Rab-40B (Rab40B) and
Growth/differentiation factor-15 (GDF-15) was upregulated, while
membrane-linked protein V was downregulation and was
associated with radiation resistance; moreover, after silencing of
Gp96, tumor cell growth was stunted, clonogenesis was
diminished, and the proportion of cells in G2/M phase was
increased; in the Gp96-silenced mouse transplant tumor model,
the tumor size was significantly reduced when compared with
normal mouse after receiving radiotherapy (55). Most of the
biomarkers discovered in Lin et al’s study were involved in the
regulation of ER stress, and ER stress has been depicted as a
hallmark of cancer (56). Our previous analysis also indicated ER
stress is associated with radiation resistance (57). Proteomic
analysis of the laryngeal cancer cell line HEp-2 and the
radiation-resistant cell line HEp-2-RR showed that Chloride
Intracellular Channel 1 (CLIC1) induces radiation resistance by
inhibiting the production of reactive oxygen species (58). These
studies suggest that a number of proteins were involved in the
regulation of radiation sensitivity and can be used to predict
radiotherapy efficacy and facilitate the development of novel
strategies in anticancer therapy.
3.2 Thoracic Cancers
In recent years, the incidence of thoracic cancers including
esophageal cancer, breast cancer, and lung cancer, were
gradually increased across the world (59). Radiotherapy plays a
key role in thoracic cancer patients that were not suitable for
surgery or early stage non-small cell lung cancer, however,
radiation resistance was a common cause of treatment failure
(60, 61). Thereby, it was important to identify biomarkers of
radiation resistance for each type of chest tumors.

3.2.1 Esophageal Cancer
With the application of two-dimensional protein liquid
chromatography system and linear trap quadruple mass
spectrometer, Cui et al. analyzed the serum proteomic profiles
before and after radiotherapy of Kazakh esophageal cancer
patients in Xinjiang and found 21 significant different
expressed protein spots peaks; Clusterin (CLU) was detected as
a radiation resistant biomarker, and Apolipoprotein A1
(APOA1) was discovered as a serum biomarker of esophageal
squamous cell carcinoma (62). Based on next-generation MS,
Maher et al. analyzed plasma protein expression changes before,
during, and after radiotherapy in 31 esophageal cancer patients
treated with neoadjuvant radiotherapy, final results indicated
that complements C3a and C4a could be utilized in predicting
the efficacy of neoadjuvant radiotherapy with a sensitivity of
78.6% and a specificity of 83.3% (21). Since then, the molecular
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mechanisms of allergenic toxins in predicting radiotherapy
efficacy have been elaborated. Surace et al. found that
radiotherapy induced tumor cell death, activated the
complement system, and produced complement C3a and C5a,
both C3a and C5a were concentrated in tumor tissue in the short
term and induced specific anti-tumor immune responses;
besides, glucocorticoids suppressed complement activation and
decreased the efficacy of radiotherapy, therefore, these drugs
should be administered with caution in cancer patients during
radiotherapy (63). The study further confirmed that the
application of immunosuppressants, such as dexamethasone,
would lead to reduced treatment efficacy during radiotherapy.
Proteomic analysis of esophageal cancer reveals a close
relationship between radiotherapy and anti-tumor immune
response, which may provide novel ideas for clinical studies of
radiotherapy and immune checkpoint inhibitors.

3.2.2 Breast Cancer
Yang et al. used X-ray to treat breast cancer MDA- MB-231 cell
line, and eight differential proteins were identified by MS as the
following: Heat shock protein 70 (HSP70), Inosine
Monophosphate Dehydrogenase 2 (IMPDH2), Eukaryotic
Translation Initiation Factor 4H (EIF4H), Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH), Vimentin (VIM), Tubulin
Alpha 1b (TUBA1B), Tubulin Alpha 8 (TUBA8) and GRP78
(64). Kim et al. investigated protein expression profiles of breast
cancer MDA- MB-231 BC cell treated with single or fractionated
radiotherapy and found that several tumor-derived factors
including CTSD (Cathepsin D), Gelsolin (GSN), and Mannose
Receptor C Type 2 (MRC2) were upregulated, the results also
suggested that these factors were involved in regulating the
immune response during radiotherapy (65). These screened
proteins may be involved in regulating breast cancer cell
radiosensitivity and further studies were needed. Comparative
proteomic analysis of the breast cancer radiation-sensitive cell
line MCF+FIS4 and the radiation-resistant cell line MCF+FIR3
revealed that peroxidase II (PrxII) was significantly increased in
the MCF+FIR3 cell line, and silencing of PrxII increased the
radiation sensitivity of breast cancer cells, conversely,
overexpressing PrxII in breast cancer cells resulted in radiation
resistance; further exploration showed that reactive oxygen
species were essential for breast cancer radiation resistance and
stress-induced overexpression of PrxII protects breast cancer
cells from radiation-induced oxidative damage and thus
attenuates radiation sensitivity (66). Serum based LC–ESI-MS/
MS analysis confirmed oxidative stress response, acute phase
response, and coagulation properties were hallmarks of
radiosensitivity in breast cancer (67). However, it was worth
noticing that the key molecular pathways involved in
radiosensitivity is somehow influenced by the radiation doses
(68). Guo et al. analyzed the protein kinase profiles of MCF-7 cell
line and its cognate radiation-resistant cell line MCF-7/C6 and
validated the results showed that checkpoint kinase 1 (CHK1),
cell cycle protein-dependent kinases 1 and 2 (CDK1 and CDK2)
were significantly upregulated in the radiation resistant cell lines;
this suggests that both DNA repair and cell cycle were involved
in regulating breast cancer radiation resistance (69).
Frontiers in Oncology | www.frontiersin.org 6
To detect the homogeneity and heterogeneity between
different proteomics techniques, Laura et al. analyzed breast
cancer radiation resistant cell lines (MCF7-RR, MDA-MB-231-
RR and T47D-RR) with their cognate radiation therapy sensitive
cell lines using three different proteomics techniques: the two-
dimensional gel electrophoresis in combination with MS, liquid
chromatography coupled with tandem mass spectrometry, and
quantitative proteomics using iTRAQ technique; the resules
verified that 26S proteasome and GRP78 were significantly
down-regulated in all radiation-resistant cell lines, in addition,
very few overlapping proteins were identified by the three
techniques, which indicating the different advantages with
different proteomics techniques (70). Over the past decades,
GRP78 has been recognized as a target in anticancer strategies
(71). Several compounds and antibodies targeting GRP78 have
been investigated in various type of cancers (47, 72, 73).

Although the aforementioned studies uncovered several
potential radiation-resistant biomarkers, their clinical
significance has not been well investigated. Pietrowska et al.
analyzed the protein expression profiles of plasmas from breast
cancer patients treated with surgery and adjuvant radiotherapy,
in the surgery alone group, there was insignificant changes in
protein expression between preoperative and postoperative
serum samples; in patients receiving adjuvant radiotherapy,
they detected two serum peptides (registered m/z values 2,184
and 5,403 Da) were significantly downregulated (74). This study
confirmed that radiotherapy can modulating protein expression
in the plasma of cancer patients, however, further bioinformatics
analysis was needed to identify potential biomarkers of
radiation resistance.

3.2.3 Non-Small Cell Lung Cancer
Yun et al. established a radiation resistant H460 (RR-H460) cell line
that displayed cancer stem like cell phenotypes from parental
radiosensitive H460 non-small cell lung cancer cells, proteomic
analyses of the two cell lines by LC-MS/MS revealed VIM, GRP78,
fatty acid synthase (FASN), ubiquinol-cytochrome C reductase
complex core protein 1 (UQCRC1), plasminogen activator
inhibitor 2 (PAI-2), nodal modulator 2 (NOMO2), kinesin light
chain 4 (KLC4) and procollagen-lysine 2-oxoglutarate 5-
dioxygenase 3 (PLOD3) as radiation resistance biomarkers.
Among these identified proteins, VIM, GRP78, FASN, UQCRC1
have been validated in the prediction of radiation resistance (75).
Indeed, GRP78 and VIM have been depicted as radiation resistance
factors in other type of tumors (46, 65). Walker et al. collected
plasma from patients with locally advanced non-small cell lung
cancer treated with radical radiotherapy, proteomic analysis
revealed that C-reactive protein (CRP), Lipopolysaccharide
Binding Protein (LBP), and Leucine Rich Alpha-2-Glycoprotein
1 (LRG1) were significantly altered during radiotherapy, in the
squamous lung cancer subgroup, both CRP and LRG1 were
significantly elevated in patients with survival <17 months (22).
CRP is a predominant protein of the acute phase response; this
protein involved in inflammation response and the developing of
pro-metastatic tumor microenvironment (76). LRG1 promotes
neovascularization via regulating TGF-b signaling (77).
Radiotherapy induces the expression and release of pro-
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angiogenic factors, and the combination of LRG1 inhibitors might
be a promising strategy in improving the efficacy of radiotherapy
and patients’ prognosis (22). A proteomic analysis of non-small cell
lung cancer conducted by Huang et al. identified six potential
biomarkers in the radiation-resistant group, the results suggested
that a1 antitrypsin could be used as a marker of radiation
resistance (78). In conclusion, the above analyses suggested that
the screening of protentional biomarkers before and after
radiotherapy using proteomics technology can not only be used
to predict radiotherapy efficacy and patient survival, but also
contribute to the design of novel anti-tumor agents.

3.3 Abdominopelvic Tumors
Abdominopelvic tumors account for more than half of tumors in
the human body, and radiotherapy was extremely valuable in the
comprehensive treatment of abdominopelvic tumors.Nevertheless,
the existence of radiation resistance lead to cancer recurrence or
progression. Screening for biomarkers of radiation resistance was
useful in stratifying patients with abdominopelvic tumors and
optimal treatment strategies can be conducted.

3.3.1 Rectal Cancer
The protein profiles of rectal cancer tissue of patients before and after
radiotherapy were analyzed by MALDI-TOF-MS, both ERp57and
Galectin-3 were the main biomarkers identified (79). ERp57
belonged to the protein disulfide isomerase family, this protein
conferred immune escape via multiple immune regulatory
processes (80). Galectin-3 was a member of the lectin family and
contributed to tumor microenvironment immunosuppression and
immune cell regulation (81). Besides, Chauvin et al. analyzed the
protein expression profile of 23 rectal cancer patients treated with
neoadjuvant radiotherapyand found that Interferon InducedProtein
with Tetratricopeptide Repeats 1 (IFIT1), FAST Kinase Domains 2
(FASTKD2), Phosphatidylinositol-5-Phosphate 4-Kinase Type 2
Beta (PIP4K2B), AT-Rich Interaction Domain 1B (ARID1B), and
Solute Carrier Family 25 Member 33 (SLC25A33) were
overexpressed in patients achieved complete remission, in the
meantime, Caldesmon 1 (CALD1), Carboxypeptidase A3 (CPA3),
Beta-1,3-Galactosyltransferase 5 (B3GALT5), Receptor Interacting
Serine/ThreonineKinase 1 (RIPK1), andCD117were upregulated in
patientswithpoor response (82).Among these identifiedbiomarkers,
PIP4K2B was a lipid kinase and involved in the regulation of cancer
cell proliferation via transduced changes in GTP into changes in the
levels of the stress regulated phosphoinositide PtdIns5P (83).
Furthermore, CALD1, a biomarker of cancer associated fibroblasts,
was found to be an independent biomarker of poor survival by gene
expression profiles ofmicro-dissected rectal cancer (84). To date, the
mechanisms of these altered proteins mediate radiation resistance in
rectal tumor cells havenotbeen fully elucidated, and large sample size
clinical studieswere required.Additionally, it shouldbenoted that the
changes of radiosensitivity biomarkers in serummay be tumor stages
specific (81).

3.3.2 Prostate Cancer
Skvortsova et al. compared the protein profiles between three
prostate cancer radiation therapy-resistant cell lines (PC3-RR,
Frontiers in Oncology | www.frontiersin.org 7
DU145-RR, and LNCaP-RR) and their cognate radiation
sensitive cell lines, the result revealed five proteins were
significantly altered: NME/NM23 Nucleoside Diphosphate
Kinase 1 (NME1), Heat Shock Protein Family A Member 8
(HSPA8), Apurinic/Apyrimidinic Endodeoxyribonuclease 1
(APEX1), and Ras-related protein Rab-11A (RAB11A); APEX1
was an DNA repair enzyme, knockout of APEX1 significantly
enhanced radiosensitivity of prostate cancer cells (85). It was
worth noting that NME1 served as a metastasis suppressor in
cancer cells, this enzyme decreased pEGFR and pAkt expression
in a dynamin dependent manner and contributed to metastasis
suppression via altering tumor endocytic and motility
phenotypes (86). Chang et al. analyzed the protein profiles of
three prostate cancer radiation-resistant cell lines (PC3, DU145,
and LNCaP) and their cognate radiation sensitive cell lines using
label-free liquid chromatography tandem mass spectrometry,
final results revealed Aldolase, Fructose-Bisphosphate A
(ALDOA) involved in the regulation of radiation sensitivity
both on prostate cancer cell lines and its transplant tumor
models (87). Both aldolase and ALDOA involved in glucose
metabolism, these enzymes promoted cancer cell metastasis via
interacting with g-actin (88). One of the glycolysis markers,
lactate dehydrogenase A has been demonstrated as a
biomarker of radiation resistance in a radioresistant prostate
cancer xenograft mouse model using LC-MS/MS (89). Glycolysis
was associated with treatment resistance in different type of
cancers, thereby serving as a promising target of antitumor
therapy (90). These studies suggested that the mechanisms of
radiation resistance regulation were really complex and the
combination of various proteomic techniques can be used to
uncover novel radiation resistance biomarkers.
3.4 Extracranial Tumors in Children
Neuroblastoma was the most common extracranial solid tumor
in children, with approximately 60% of children experiencing
disease progression and metastasis (91). Abou-Antoun et al.
compared the protein expression profiles of anchorage
dependent and anchorage independent murine neuroblastoma
and found that a dose of 2.5 Gy irradiation induced
overexpression of survivin, Cyclin-dependent kinase 1 (CDC2),
and Poly(ADP-Ribose) Polymerase 1 (PARP1) in unanchored
neuroblastoma, and knockdown of survivin combined with
multitargeted receptor tyrosine kinase inhibitor sunitinib
enhanced the radiosensitivity of anchorage independent
neuroblastoma; Anchorage-independent neuroblastoma has a
different protein expression profile when compared with
anchorage-dependent tumors and thus exhibits a higher degree
of malignant phenotype and much more resistance to
radiotherapy (92). CDC2 played a crucial role in regulating the
transition of cells from G2 phase to mitotic M phase, targeting
CDC2 lead to cell cycle arrest at the G2 phase (93). Additionally,
PARP1 was a common nuclear protein and played an essential role
in the stabilization of DNA replication forks; suppressing PARP1
was a complementary to conventional therapy by broken DNA
repair mechanisms (94). Overall, these results suggested that
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inhibition of these altered proteins and their related signaling
pathways has the potential to improve radiosensitivity of
extracranial tumors.
4 CHALLENGES OF PROTEOMICS

Although proteomics focusing on the expression altered proteins
and their activities in cells and organisms, this technology was
still in its initial stage. There were many problems to be solved:
firstly, sample preparing process, there was no uniform
experimental conditions yet secondly, although a large number
of proteins related to radiosensitivity have been discovered using
proteomics techniques, more effective methods were required to
identify the most specific targets (95). Moreover, the current
proteomics analysis was expensive, which limits the possibility of
further expanding the sample size; the detailed molecular
mechanisms of screened biomarkers have not been well
clarified; lastly, there are a great amount of work need to do
for the application of radiosensitivity biomarkers that developed
from proteomics to clinical (Figure 3). It was believed that with
Frontiers in Oncology | www.frontiersin.org 8
the application of new technologies, large-scale proteomics
analysis will become possible.

5 SUMMARY AND PERSPECTIVE

The use of proteomics to analyze radiation sensitivity biomarkers in
tissues and plasma of cancer patients treated with radiotherapy has
shown great promise and could clear some of the obstacles in
precision tumor therapy. With the development of high-precision
mass spectrometer, comprehensive analysis software and multi-
model database, it was possible to comprehensively analysis the
mechanismsunderlying radiation resistance.Thiswashelpful in the
screening of patients appropriate for receiving radiotherapy in
clinical practice, and to design novel targeted agents based on the
discovered biomarkers, thus guiding the implementation of
precision radiotherapy.
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