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The arrangement of plant cortical microtubules can reflect the physiological state of cells. However, little attention has been paid to
the image quantitative analysis of plant cortical microtubules so far. In this paper, Bidimensional Empirical Mode Decomposition
(BEMD) algorithm was applied in the image preprocessing of the original microtubule image. And then Intrinsic Mode Function
1 (IMF1) image obtained by decomposition was selected to do the texture analysis based on Grey-Level Cooccurrence Matrix
(GLCM) algorithm. Meanwhile, in order to further verify its reliability, the proposed texture analysis method was utilized to
distinguish different images of Arabidopsis microtubules.The results showed that the effect of BEMD algorithm on edge preserving
accompanied with noise reduction was positive, and the geometrical characteristic of the texture was obvious. Four texture
parameters extracted by GLCM perfectly reflected the different arrangements between the two images of cortical microtubules.
In summary, the results indicate that this method is feasible and effective for the image quantitative analysis of plant cortical
microtubules. It not only provides a new quantitative approach for the comprehensive study of the role played by microtubules
in cell life activities but also supplies references for other similar studies.

1. Introduction

Microtubules exist in all eukaryotic cells. They are long
tubular organelles assembled with 𝛼𝛽-tubulin dimers.Micro-
tubules are involved in almost all basic biological processes,
such as cell division [1], cell morphogenesis [2], and signal
transmission and transduction [3]. In plant cell, the arrange-
ment of the cortical microtubules is closely related to cell
growth, by which the deposition direction of cell microfibrils
is controlled [4]. For the reason that the polymerization
and depolymerization of microtubules are a highly dynamic
process, small changes in the external environment (such
as mechanical stimuli [5, 6], hormone [5], and light [7])
may lead to alterations in the arrangement of microtubules.
Generally speaking, the fluorescence microscopy and filming
techniques are used to observe and describe the morphology
of microtubules. However, there are many drawbacks in the
traditional method which makes use of descriptive language
determination. Thus, in order to understand the function of

plant microtubules in response to the changes of environ-
ment, it is necessary to define the changes by precise and
efficient quantitative determination.

As a significant appearance characteristic, texture can
reflect the image properties of cytoskeleton, owing to
which texture analysis is frequently applied to describe the
microtubules. Texture analysis refers to texture parameters
extracted through some image processing techniques to
describe texture quantitatively [8]. Grey-Level Cooccurrence
Matrix (GLCM) algorithm, based on the second-order com-
bination of the conditional probability density of the image,
is more efficient in characterizing textures [9]. As for GLCM,
the complexity of texture can be reflected accurately by
the image’s direction, interval, and changes in amplitude
and speed information through calculating the correlation
between a certain distance and the direction of the image
grayscale.

However, during the image generation, transmission,
or transformation process, due to the influence of various
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objective factors, the reducing of image quality frequently
happens and leads to loss or less prominent of image texture
feature. Therefore, it is essential to firstly make the image
preprocessing before analyzing.

The Empirical Mode Deposition (EMD) approach was
introduced for the complex signals smooth processing by
Huang et al. in 1998 [10] and also known as Hilbert-Huang
transform. It is mainly applied in multiresolution analysis of
one-dimensional time sequence signal. This method decom-
poses the signal into a series of intrinsic mode functions
(IMF) and a residue. These intrinsic mode functions satisfy
the orthogonality and completeness, and when combined
with the residue they can achieve perfect reconstruction
of the original signal. In 2003, the EMD algorithm was
extended to the 2-dimensional scaling and then applied in
the image decomposition by Nunes et al. [11]. Called as
Bidimensional Empirical Mode Decomposition (BEMD), it
has been successfully used in geological exploration [12],
ocean exploration [13], biomedical [14], and other signal
denoising and fault diagnoses research areas [15].

Here we propose to combine BEMD with GLCM algo-
rithm to analyze the texture by means of the microscope
image of the Arabidopsis cortical microtubules. The method
can be used to show different status of microtubule arrange-
ments that have been observed by the microscope. These
findings provide a more effective and convenient method
for the quantitative analysis of plant microtubules and for
the better understanding of the underlying mechanisms of
microtubules in the biological process.

2. Materials and Methods

2.1. Plant Material and Growth Conditions. Transgenic Ara-
bidopsis thaliana GFP-TUA6 (Columbia ecotype) was used
throughout the experiments. The Arabidopsis seeds were
sterilized with 75% alcohol for 30 s and 10% NaOCl solution
for 10mins, and then they were washed 5-6 times with double
distil H

2
O. Surface-sterilized seeds were sown on the 0.5x

MS medium (1%w/v sucrose, 0.8%w/v agar, pH 5.8) in a
line and grown in the illumination incubator (the intensity
of illumination was 120𝜇mol/m2/s and the photoperiod was
16 h light/8 h dark) at 25∘Cuntil theywere able to be observed.

2.2. Image Acquisition. The 4-day-old Arabidopsis seedlings
were removed from culture medium quickly. We put the
seedlings on glass slide, immersed them in distil water,
and covered them with a coverslip (24 × 60mm) carefully.
Living image acquisition was performed on Leica confocal
microscope by Leica ×63 N.A. = 1.4 oil immersion objective.
GFP was excited at 488 nm and detected at 500–530 nm.The
pixel of the acquired image was 1024×1024. All of the images
were saved in TIFF format.

2.3.The Bidimensional Empirical Mode Decomposition Analy-
sis. BEMDalgorithmwhich referred to themethod proposed
byNunes et al.waswritten and performed throughMatlab 7.0
software. Conceptually similar to the one-dimensional EMD
screening process except for the curve fitting of the maxima

andminima envelope, the arithmetic of the BEMD algorithm
is shown in Figure 1.

The original signal is 𝑥(𝑚, 𝑛), and the two-dimensional
sifting process is illustrated in Figure 1. The first index 𝑙 =
1, . . . , 𝐿 means the IMF number, the second index 𝑘 =
1, . . . , 𝐾 means the iteration number, and 𝑚 and 𝑛 represent
the two spatial dimensions. After the sifting process, IMFs of
the signal are put into 𝑐(𝑚, 𝑛) and the residual into 𝑟(𝑚, 𝑛).
ℎ
𝑙𝑘

are intermediate variables. The original signal can be
expressed as
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2.4. GLCM Analysis. GLCM algorithm was proposed by
Haralick et al. in early 70s [16]. It is built in the conditions
probability density function of the image. By calculating
the probability of the two pixels in a specific direction
and distance, the comprehensive information on the direc-
tion, distance, and the magnitude of image changes can be
reflected.

In this paper, image texture analysis based on GLCM
was performed through Matlab 7.0 software. Here, based on
Haralick et al. [16] and the results of a preliminary study
by our group [17], we set 𝑑 = 4, and then extracted five
texture parameters: angular secondmoment, entropy, inverse
different moment, variance, and contrast. Thereinto, the first
4 parameters were selected to quantitatively distinguish the
different morphology of cortical microtubules. The contrast
value was used as a criterion in the effect of BEMDprocessing
evaluation.

(1) Angular second moment (ASM):

ASM =
𝐺−1

∑

𝑖=0

𝐺−1
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(2) Entropy:

Entropy =
𝐺−1

∑

𝑖=0

𝐺−1

∑

𝑗=0

𝑃 (𝑖, 𝑗) × log (𝑃 (𝑖, 𝑗)) . (3)

(3) Inverse different moment (IDM):
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(4) Variance:
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(5) Contrast:
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Figure 1: Sifting process of BEMD.

2.5. Statistical Analysis. GraphPad Prism 5.0 softwarewas
used to do 𝑡-test analysis and to draw line charts and bar
charts. All experiments were independently repeated at least
three times. Results were reported as mean ± standard devia-
tion (SD). 𝑃 value <0.05 was taken as statistical significance.

3. Results

3.1. Image Enhancement Based on BEMD. The BEMD algo-
rithm was applied in this paper to improve the image quality
of Arabidopsis microtubules. It can be seen from Figure 2
that the grayscale original image is decomposed gradually to
four IMFs (Intrinsic Mode Functions) images and a residue
image depending on different frequencies of signals.The IMF
images reflect the details of the original image from different
scales and the residue image reflects the trend information.
The order of clarity of these images is IMF1 > IMF2 > IMF3 >
IMF4 > residue image.

Texture contrast extracted by GLCM reflects the sharp-
ness of the image. It is recognized that the greater the value
of contrast is, the clearer the image texture is, and vice versa.
By comparing the original image with the four IMF images
and the residue image, (Figure 3), we found that the order of
the contrast value of these images is IMF1 > IMF2 > IMF3 >
IMF4 > residue image. The contrast values of the original
image and IMF3 image are relatively close, which indicates
an insignificant difference of the clarity of these two images
(Figure 3).

3.2. Image Texture Analysis of Microtubules Based on GLCM.
After image enhancement, the IMF1 image (Figure 2(b)) was
used to make texture analysis and extract the texture features
in four directions by GLCM. We found that the range of
angular secondmoment, entropy, inverse differencemoment,
and variance values in four directions are relatively stable
(Table 1). The results indicate that the four texture features
have good rotation invariance, which can effectively reflect
some features of the original image.
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(a) original (b) IMF1

(c) IMF2 (d) IMF3

(e) IMF4 (f) Residue

Figure 2: The image of plant microtubules decomposed by the BEMD algorithm.
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Figure 3: Contrast comparison of IMFs, residue and original
images.

3.3. Application Verification of the Texture Analysis Method.
To further verify the application of the texture analysis
method in this paper, two different kinds of fluorescence
images of Arabidopsis cortical microtubules were selected to
make comparison (Figure 4). Statistical analysis (Figure 5)
shows that, compared with the control group, there are
significant differences in the four image texture features
(angular second moment, entropy, inverse different moment
and variance) of the experimental group (treated by sim-
ulated microgravity), which is consistent with the reflected
information of fluorescence images.

Angular second moment reflects the uniformity or
smoothness of the image. The more detail is shown in the
image, the higher value of angular second moment is calcu-
lated. On the contrary, when the image intensity distribution
is greatly uneven showing rough surface characteristics, the
value of angular second moment will be small. Entropy
indicates texture complexity. The higher the complexity
of the image is, the greater the entropy value is. Inverse
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Table 1: The texture features extraction based on GLCM algorithm.

Direction Angular second moment Entropy Inverse difference moment Variance
0∘ 0.002 6.5 0.065 691.534
45∘ 0.002 6.509 0.059 681.668
90∘ 0.002 6.523 0.058 690.952
135∘ 0.002 6.55 0.056 702.012

(a) Control group (b) Experimental group

Figure 4: Two different arrangement images of plant microtubules.
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Figure 5: 𝑡-test analysis of four texture features of plant microtubules between different images. (a) 𝑡-test analysis of angular secondmoment;
(b) 𝑡-test analysis of entropy; (c) 𝑡 -test analysis of inverse difference moment; (d) 𝑡-test analysis of variance. C: control group; E: experimental
group. ∗∗𝑃 < 0.01.
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difference moment reflects the degree of texture regularity.
The smaller the value of inverse difference moment is, the
more difficult the description of texture is, because the texture
is disorganized. Conversely, the higher the value of inverse
difference moment is, the easier the description of texture is,
because the texture is regular. Variance is another important
feature which reflects the texture periodicity. The greater the
variance value is, the faster the changing frequency of texture
periodicity is, and vice versa. In summary, it can be seen
that these four parameters perfectly represent the most of the
image information, indicating that the texture analysis used
here can reflect visual messages and can distinguish different
textures.

4. Discussion

Texture analysis, an important research area in digital image
processing, has a very broad application prospects. Cur-
rently, the texture analysis method can be divided into
four categories: statistics, structure method, modelling, and
transformation method based on spectrum analysis. The
method based on GLCM is one of the most classic and
famous statistical methods. It plays an important role in
the texture analysis area. Since last century, the GLCM
algorithm have been widely used in texture classification and
texture segmentation fields as well as remote sensing and
biomedical image analysis and many other application fields.
Weszka et al. [18] have compared the texture analysismethods
of Fourier spectrum, autocorrelation function, and GLCM
and have recognized that the classification performance of
GLCM is better than that of the Fourier spectrum and
spatial frequency analysis method.The similar conclusions of
performance comparison studies were made by Conners and
Harlow [19].

In the biomedical field, researchers mainly apply image
analysis to assist the doctor for diagnosis [20]. For example,
by analysing the image texture features of MRI, micro-CT,
X-rays, and pathological sections, researchers can distinguish
the cancerous cells from the normal cells, and the abnormal
tissues from the normal tissues, thereby helping doctors to
diagnose whether a patient has a disease. In recent years,
with the continuous development of the microscopic imag-
ing technology, more andmore researchers introduce texture
analysis method to cell biology research. Shamir et al.
[21] have proposed to use the image texture entropy as
an objective measurement which can reflect the structural
deterioration of the C. elegans muscle tissues during aging.
Lichtenstein et al. [22] have applied the FiberScroe algorithm
in quantitative analysis of the cytoskeleton of Swiss 3T3
fibroblasts, which marks the beginning of the cytoskeleton
analysis from qualitative to quantitative. Subsequently, on
this basis, Shah et al. [23] have optimized and improved
the speed of operation providing with view interface; Qian
et al. [24] have used the fractal dimension to measure the
arrangement of actin cytoskeleton in MC3T3-E1 cells to
reveal the influence of simulated microgravity on the cells.

All of these studies have focused on animal cell research,
and, compared with animal’s microtubule, the plant micro-
tubule has its own characteristics. Therefore, the texture
analysis based on GLCM was used for quantitative analysis
of plant cortical microtubule in this paper. However, in the
biological experiments, because of the influence of many
objective factors, the quality of the acquired image or signal
to noise ratio (SNR) is low, which will also affect the results of
analysis and calculation and reduce the accuracy of the image
classification. It is necessary to make image enhancement.
Image enhancement is a kind of processing method which
caters to specific needs such as highlighting some of the
information and weakening or removing some undesirable
information in an image. Its main purpose is to improve
the image which should be processed and to improve the
appearance of the original image, so that the image is more
suitable for human’s visual judgment or analysis by machine.

In this paper, the BEMD algorithm is applied in the
original image enhancement, and the effect is remarkable.
The number of the IMF image is smaller; the image is
clearer, which is suitable for the subsequent analysis. This is
because the decomposition process of BEMD is a continuous
extraction process of high frequency component. Compared
with Fourier, wavelet transform, and other image analysis
methods, BEMD is completely data-driven with excellent
local analysis capabilities. It is demonstrated that BEMD
is an adaptive, completely unsupervised method which is
more efficient in nonlinear and nonstationary signal analysis
and processing. The comparison between the two different
arrangements of microtubule image demonstrates that the
use of four parameters can perfectly represent the alteration
of cortical microtubule array and may reveal the functional
changes. It also indicates that the application of this texture
analysis method is feasible and effective. However, there
is no absolutely perfect method and everyone has its own
drawbacks and application scope. The application of the
proposed method has its limitations. Firstly, the principle
of the BEMD algorithm shows that the obtained image was
decomposed according to the frequency of signal. If the noise
signal of the image which needs to be processed is the highest
frequency, the image information of IMF1 is complete noise.
Thus, whether or not IMF1 image is used depending on
the main frequency band of the target information exists
in original image. In this paper, IMF1 is adopted to analyze
because the useful information signal of analyzed image is
in the highest frequency, and this is true in most biological
experiment. If the information of collected object image is
almostmasked by noises, which indicates that the experiment
itself is failure and untrusted, and it is not necessary to make
quantitative analysis. Therefore, the purpose of this noise
reduction method proposed in this paper is to highlight the
target information,minimize noise interference, and improve
the accuracy of subsequent GLCM analysis. Moreover, the
calculation of GLCM algorithm is massive, and therefore
it should determine the appropriate 𝑑 value and screen
texture parameters before texture analysis by using GLCM
in accordance with the actual situation in image processing,
which can reduce the redundant information and workload.
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5. Conclusion

In summary, a feasible and effective texture analysis method
is established based on BEMDandGLCMalgorithm for plant
cortical microtubule quantitative analysis. By this method,
the artificial subjective factors can be avoided, so that the
evaluation is objective and quantitative, and the accuracy of
analysis is improved. Furthermore, it provides references to
other related research areas.
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TUA: 𝛼-TUBULIN
SNR: Signal to noise ratio
TIFF: Tagged image file format.
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