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Abstract

Introduction: Bosutinib, a dual Abelson/Src inhibitor, was investigated in individuals

with dementia with Lewy bodies (DLB).

Methods: A single site, randomized, double-blind, placebo-controlled study of the

effects of oral bosutinib, 100 mg once daily for 12 weeks on primary safety and phar-

macokinetics and secondary biomarker outcomes.

Results:Twenty-six participantswere randomized and includedmale and female (12:1)

in the bosutinib arm and all male (13) in the placebo arm. The average age was 72.9 ±

8.1 (year± standarddeviation). Therewereno serious adverse events andnodropouts.

Bosutinib was measured in the cerebrospinal fluid (CSF) and inhibited Abelson. Bosu-

tinib reduced CSF alpha-synuclein and dopamine catabolism.

Discussion:Bosutinib is safe andwell tolerated andpenetrates the blood–brain barrier

to inhibit Abelson and reduce CSF alpha-synuclein and dopamine catabolism, suggest-

ing that bosutinib (100 mg) may be at or near the lowest effective dose in DLB. These

resultswill guide adequately powered studies to determine the efficacy of a dose range

of bosutinib and longer treatment in DLB.
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Highlights

∙ Bosutinib is a dual Abl/Src inhibitor that penetrates the blood brain barrier

∙ Bosutinib is safe and tolerated in individuals with dementia with Lewy bodies

∙ Bosutinib engages its target via inhibition of Abl and Src

∙ Bosutinib reduces CSF alpha-synuclein and attenuates breakdown of dopamine

∙ Bosutinib improves activities of daily living in dementia with Lewy bodies
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1 INTRODUCTION

Bosutinib monohydrate (Bosulif@, Pfizer, SKI-606) is a dual inhibitor of

the tyrosine kinases (TKs) Abelson (Abl)/Src and is approved to treat

Philadelphia chromosome-positive chronic myelogenous leukemia

(CML) in a chronic phase at 500 mg/kg orally once daily.1–4 Abl is ele-

vated in Alzheimer’s disease (AD)5,6 and nigrostriatum of Parkinson’s

disease (PD).7 TKs are activated via phosphorylation5,8–10 and hip-

pocampal injection of amyloid beta (Aβ) fibrils increases Abl levels11

but Abl inhibition prevents Aβ fibril- and hydrogen peroxide (H2O2)-

induced cell death.12 Abl knockout protects dopaminergic neurons

against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxic-

ity in PD models.9 In animal models Abl/Src inhibition is an opti-

mal strategy to reduce misfolded proteins and protect dopaminergic

neurons.7,13

Dementia with Lewy bodies (DLB) is characterized by loss of

dopaminergic neurons and accumulation of misfolded alpha-synuclein

in Lewy bodies (LBs). Alpha-synuclein, hyper-phosphorylated tau

(p-tau), and Aβ aggregates are present in neurodegenerative

diseases.14–16 We previously demonstrated that bosutinib enters

the brain and inhibits Abl at lower daily doses (5 mg/kg) than the

CML daily dose (80 mg/kg) in animals.17 We also demonstrated that

bosutinib clears misfolded proteins, including alpha-synuclein, p-tau,

and Abeta and via autophagy17–24 reduces inflammation17–25 and

improves motor and cognitive behavior.17–24 Therefore, bosutinib

provides a potential therapeutic strategy that promotes autophagy

to clear neurotoxic protein aggregates.17–24,26 Based on supportive

preclinical evidence, we investigated the effects of a lower oral daily

dose of bosutinib, 100mg, on safety, tolerability, and pharmacokinetics

(PK) as a primary objective and biomarkers as secondary outcomes in

patients withmild tomoderate DLB.

2 RESULTS

2.1 Enrollment and demographics

Of 120 subjects approached, 39 were screened, 13 did not meet inclu-

sion/exclusion criteria, and 26 were randomized (Figure 1 and Table 1)

and included male and female participants (12:1) in the bosutinib arm

and all male participants (13) in the placebo arm with an average age

72.9 ± 8.1 (year ± standard deviation [SD]). All 26 participants com-

pleted all study procedures per protocol. Montreal Cognitive Assess-

ment (MoCA) scores were 24.85 ± 3.5 (mean ± SD) in bosutinib and

23.92 ± 3.7 (mean ± SD) in placebo. The levodopa equivalent daily

dose (LEDD) at enrollment to 12 weeks was 248.15 ± 296.33 mg

(mean ± SD) in bosutinib and 417.35 ± 344.66 mg (mean ± SD) in

placebo. Acetylcholinesterase inhibitors (AChEI), including therapeu-

tic doses of transdermal rivastigamine (Exelon® patch) and donepezil

and monoamine oxidase-B (MAO-B) inhibitor, rasagiline (Azilect) were

used.

RESEARCH INCONTEXT

1. Systematic Review: Dementia with Lewy bodies (DLB)

has no cure. Preclinical evidence demonstrated that a US

Food and Drug Administration-approved leukemia drug

Abl/Src inhibitor calledbosutinib (500mg), alleviatesDLB

pathology. It is not known whether bosutinib enters the

brain or benefits DLB patients. Individuals withDLBwere

randomized (1:1) into placebo (n = 13) and low oral daily

dose (100mg) of bosutinib (n=13) for 12weeks to deter-

mine bosutinib effects on safety, cerebrospinal fluid (CSF)

concentration, and Abl inhibition.

2. Interpretation: This studymet its primary objectives that

bosutinib was safe and well tolerated and it entered

the central nervous system and inhibited Abl. Bosutinib

alleviated DLB pathology via reduction of CSF alpha-

synuclein and dopamine breakdown, and improved activ-

ities of daily living.

3. Future Direction: This study determined the lowest

effective dose of bosutinib in DLB and it will guide larger

multicenter studies using a dose range of bosutinib (100

to 400 mg) and longer treatment periods (> 6 months) to

determine its safety and efficacy in DLB.

2.2 Adverse events

Therewere no serious adverse events (SAEs) andnodropouts (Table 1).

There was no prolongation of QTc intervals in both groups (Table S1 in

supporting information). AEswere 11 in bosutinib and 9 in placebo (P=

0.68). The most common adverse event (AE) was fall, which was equal

between groups.Dizzinesswas reported in both bosutinib andplacebo.

Pain was reported in bosutinib. There was one event of transient bor-

derline liver enzyme elevation, including plasma alanine aminotrans-

ferase (ALT) and aspartate aminotransferase (AST), and one event of

post lumbar puncture (LP) headache in bosutinib. Urinary tract infec-

tion and incontinence were reported in bosutinib, and skin lesion,

impaction, flu, and upper respiratory tract infection in placebo.

2.3 Primary outcomes: pharmacokinetics and
pharmacodynamics

An open label physiologically based population pharmacokinetic

(popPK) study was performed and participants (n = 26) were random-

ized (1:1:1) into seamless random single dose (RSD) of bosutinib, 100

mg (n= 9), 200mg (n= 9), or placebo (n= 8). LP was performed at 1, 2,

3, and 4 hours after bosutinib/placebo dosing. All 26 participants were

then re-randomized1:1 into twogroups (n=13/per group) anddouble-

blind treatment of an oral daily dose of bosutinib, 100 mg, or matching
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F IGURE 1 Consolidated Standards of Reporting Trials (CONSORT) diagram of phase 2, randomized, double-blind, placebo-controlled study to
evaluate bosutinib effects on safety, tolerability, biomarkers, and clinical outcomes in dementia with Lewy bodies

placebo for 12weeks. Another LPwas performed at 1, 2, 3, and 4 hours

at week 12 and bosutinib concentration was measured in plasma and

cerebrospinal fluid (CSF). A dose-dependent increase of bosutinib, 100

mg (Cmax = 13.5± 15.1 ng/mL) and 200mg (Cmax = 19.6± 12.1 ng/mL)

was detected in the plasma after a single dose (Table 2); and a similar

dose-dependent increase of CSF bosutinib, 100mg (Cmax = 0.06±0.04

ng/mL) and200mg (Cmax =0.13±0.06ng/mL)was observed. Exposure

in the plasma was also dose dependent and the area under the curve

between0 and4hours (AUC0-4)was 25±11.8 and36.9±2.81 ng/mL x

hour with bosutinib 100 and 200mg, respectively. Exposure in the CSF

showed AUC0-4 was 0.14 ± 0.04 and 0.24 ± 0.03 ng/mL x hour with

bosutinib 100 and 200 mg, respectively. Calculation of the predicted

single dose of bosutinib based on detection of bosutinib, 500 mg (Cmax

= 87.9 ± 30.8 ng/mL) in normal individuals showed almost identical

plasma levels of 100 mg (Cmax = 17.6 ± 6.16 ng/mL) and the predicted

concentration of plasma bosutinib dose-dependently increased after a

single dose of 200, 300, and 400 mg (Table 2). Exposure showed that

AUC0-24 also proportionally increased and Tmax was around 6 hours

between 0 and 24 hours in previous studies27,28 and was reduced to

3 to 4 hours between 0 and 4 hours in the current study.

The plasma level of multiple doses of bosutinib, 100 mg, increased

more than 2-fold in the plasma (Cmax = 29.93 ± 10.97 ng/mL) and 9-

fold in the CSF (Cmax = 0.5 ± 0.17 /mL) compared to a single dose

(Table 2). Exposure after multiple doses increased almost 3-fold in the

plasma (AUC0-4 = 73.1 ± 6.63 ng/mL x hour) and 10-fold in the CSF

(AUC0-4 = 1.15 ± 0.16 ng/mL x hour) compared to a single dose. Mul-

tiple doses resulted in Tmax increases from 3 to 4 hours in the plasma

and 2 to 3 hours in the CSF compared to a single dose. Estimation of

CSF concentration of bosutinib based on observed exposure levels of

multiple doses of bosutinib, 100 mg (AUC0-4 = 2.16 ± 0.21 nM x hour)

in individuals with DLB is predicted to increase (Table 2) in a dose pro-

portional manner in 200 mg (AUC0-4 = 4.32 ± 0.59 nM x hour) 300

mg (AUC0-4 = 6.48 ± 0.89 nM x hour) and 400 mg (AUC0-4 = 8.64

± 1.18 nM x hour), achieving adequate concentrations > the maximal

inhibitory coefficient of 50% (IC50 1.2 nM) of Abl/SRC 1–4.

Pan-tyrosine (Tyr) phosphorylated Abl (activated) as measured by

mean differences between baseline and 12 weeks was significantly

reduced inplasma (Figure2A) andCSF (Figure2B) in bosutinib, 100mg,

compared to placebo. Active Src, which is phosphorylated at Tyr416,

was also significantly reduced in plasma (Figure 2C). We could not

demonstrate differences in p-Src in CSF (Figure 2D), likely because

CNS exposure was below that required to see an effect.

2.4 Secondary biomarker objectives

There was no statistically significant difference in dopamine metabo-

lite levels, including 3,4-dihydroxyphenylacetic acid (DOPAC;

Figure 2E, Table S2 in supporting information) and homovanillic

acid (HVA) in the CSF (Figure 2F). However, plasma levels of DOPAC

(Figure 2G) and HVA (Figure 2H) were significantly reduced in

bosutinib, 100 mg, compared to placebo. Furthermore, the levels

of alpha-synuclein was significantly reduced in the CSF (Figure 2I)

but not in plasma (Figure 2J), and the CSF:plasma of alpha-synuclein
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TABLE 1 Demographics and summary of all reported adverse events in bosutinib and placebo groups

Demographics

Bosutinib (100mg) Placebo P-value

Total enrolled N= 13 N= 13 NA

Total finished end of treatment 13 (100%) 13 (100%) 1

Total dropped out 0 (0%) 0 (0%) 1

Average age (years)±SD 71.43± 7.94 74.45± 8.22 0.35

Weight (kg)±SD 78.22± 7.63 82.61± 19.12 0.45

Height (cm)±SD 174.28± 8.29 174.15± 4.34 0.96

Bodymass index (BMI)± SD 25.82± 2.75 27.06± 5.39 0.47

Male 12 (92.3%) 13 (100%) 1

Female 1 (7.7%) 0 (0%)

Race 12White (92.3%) 12White (92.3%) 1

1 Black (7.7%) 1 Asian (7.7%)

Montreal Cognitive Assessment

(MoCA) at screeningmean± SD

24.85± 3.5 23.92± 3.7 0.52

Levodopa equivalent daily dose

(LEDD) at baseline

248.15mg± 296.33 417.35mg± 344.66 0.19

LEDD at 12weeks 248.15mg± 296.33 417.35mg± 344.66 0.19

Acetylcholinesterase inhibitors No change No change

Adverse events (AEs)

System organ class

Preferred term Number of events (%) Number of events (%)

Gastrointestinal disorders

Impaction 0 (0%) 1 (7.7%)

General disorders

Falls 3 (23.1%) 3 (23.1%)

Pain 3 (23.1%) 1 (7.7%)

Flu 0 (0%) 1 (7.7%)

Hepatic disorders

Liver transaminases 1 (7.7%) 0 (0%)

Nervous system disorders

Post-lumbar puncture headache 1 (7.7%) 0 (0%)

Dizziness 1 (7.7%) 1 (7.7%)

Renal and urinary disorders

Urinary incontinence 1 (7.7%) 0 (0%)

Urinary tract infection 1 (7.7%) 0 (0%)

Respiratory, thoracic, and

mediastinal disorders Upper respiratory infection 0 (0%) 1 (7.7%)

Skin and subcutaneous disorder

Lesion 0 0%) 1 (7.7%)

Abbreviations: AST, aspartate aminotransferase; ALT, alanine aminotransferase; SD, standard deviation

(Figure 2K) was reduced in bosutinib, 100 mg, compared to placebo.

Therewere no differences inCSF or plasma oligomeric alpha-synuclein

(Figure S1A-D in supporting information), Aβ40 and Aβ42 (Figure

S2E-J in supporting information) as well as total tau and p-tau181

(Figure S2A-H) between bosutinib and placebo.

2.5 Exploratory clinical outcomes

There was no statistically significant difference in Alzheimer’s Dis-

ease Assessment Scale–Cognitive subscale (ADAS-Cog) and no change

in MoCA scores between patients on bosutinib and placebo at
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F IGURE 2 The effects of bosutinib on biomarkers. Histograms represent (A) plasma and (B) cerebrospinal fluid (CSF) levels of pan-tyrosine
phosphorylated Abl, (C) plasma and (D) CSF levels of phosphorylated Src at tyrosine (Y) 416, (E) CSF levels of 3,4-dihydroxyphenylacetic acid
(DOPAC) and (F) homovanillic acid (HVA), (G) plasma levels of DOPAC and (H) HVA, (I) CSF levels of alpha-synuclein, (J) plasma levels of
alpha-synuclein, (K) the ratio of CSF/plasma alpha-synuclein levels. n= 11 to 13 per group

baseline to 12 weeks (Table 3). The mean difference in ADAS-Cog

scores decreased at 12 to 16 weeks (–4.67 points) between groups,

suggesting an increase (albeit non-significant) in cognitive dysfunc-

tion in the wash-out period. There was a trend showing that partici-

pants in the bosutinib group completed the Trail Making Test (TMT)-

Part B faster (–43 seconds) than the placebo group at 12 weeks, and

they declined (–25 seconds) at 16 weeks. There was no difference in

motor performance in the Timed Up and Go (TUG) test and the Uni-

fiedParkinson’sDiseaseRating Scale (UPDRS) Part I, II, and III (Table 3).

There was no difference in behavioral outcomes, using Neuropsychi-

atric Inventory (NPI), Problem Behaviours Assessment (PBA), and Irri-

tability/Apathy Scale (IAS) for both patients and caregivers (Table 3).

Remarkably, there was a significant improvement (–5 points) in the

mean difference scores in Alzheimer’s Disease Cooperative Study-

Activities of Daily Living (ADCS-ADL) between baseline and 12 weeks

(Table 3), and this difference was not observed at week 16. There was

no difference in Clinician Assessment of Fluctuation (CAF) between

groups.

3 DISCUSSION

The study met 80% (26/30) of the enrollment target despite the

COVID-19 pandemic, which resulted in major disruptions in recruit-

ment. Participants were male (25) and female (1) with an average age

72.9 ± 8.1 (year ± SD). This study enrolled 5 participants (19.2%) who

ethnically self-identified as Spanish (n = 3), Black (n = 1), and Asian

(n= 1), therefore enrolling (19.2%) underrepresentedminorities; how-

ever, there was an obvious lack of female representation. No dropouts

or SAEswere reported, indicating that patients tolerated bosutinib. All

patients complied with study procedures, including LPs. The placebo

group received a higher level of LEDD (60%) than the bosutinib group,

but all patients were stable on standard of care, including AChEI,

rasagiline, and selective serotonin re-uptake inhibitors (SSRIs). There

were no SAEs and no dropouts. This study showed no cardiovascu-

lar and no significant AEs between groups, including 11 AEs in bosu-

tinib and 9 AEs in placebo. The most common reported AE among

the groups was fall, which was equal between groups, but one fall

occurred between screening and baseline visits (prior to study drug) in

bosutinib and two falls in placebo. All other AEs were < 10%, includ-

ing one event of transient borderline liver transaminases elevation,

ALT and AST, which resolved without medical intervention. Bosutinib

was FDA approved in 2012 for CML and several clinical trials showed

that oral bosutinib (>400 mg daily) is well tolerated with generally

transient and self-limited toxicity profile.29 The prescribing informa-

tion warnings and precautions include diarrhea and elevation of liver

transaminases, cardiovascular and renal toxicity, fluid retention, and

nasopharyngitis.30–34 This study used a lower dose of bosutinib, 100

mg, compared to the CML approved dose and therefore we found only

limited toxicity.

Bosutinib was measured in the CSF at low (< 2% of plasma

levels) but adequate concentrations (dose-dependent) to engage its



PAGAN ET AL. 7 of 11

TABLE 3 Clinical outcomes at baseline, end of treatment (12weeks), and wash-out period (16weeks) comparing bosutinib and placebo

Changes Clinical endpoints Bosutinib vs. placebo

P-value
Wilcoxon

12week- baseline Montreal Cognitive Assessment (MoCA) 0 (−1, 2) 0.773

Trail Making Test (TMT)-Part B −43 (−113, 22) 0.151

TimedUp andGo 0 (−3, 2) 0.725

Unified Parkinson’s Disease Rating Scale (UPDRS-Cognition)-Part I 0 (−2, 1) 0.795

Unified Parkinson’s Disease Rating Scale (Activities of Daily Living)-Part II −1 (−3, 2) 0.622

Unified Parkinson’s Disease Rating Scale (Motor)-Part III 0 (−4, 4) 0.938

Unified Parkinson’s Disease Rating Scale (SUMPart II+III) −1 (−6, 5) 0.738

Unified Parkinson’s Disease Rating Scale (total Part I+III) −2 (−7, 6) 0.777

Alzheimer’s Disease Assessment Scale–Cognitive subscale (ADAS-Cog) −0.66 (−4.67, 3.33) 0.817

Irritability and Apathy Scale (IAS)-_Partner_APATHY −1 (−4, 2) 0.571

Irritability and Apathy Scale (IAS)-_Participant_APATHY 0 (−3, 4) 0.836

Irritability and Apathy Scale (IAS)-_Partner_IRRITABILITY 1 (−1, 4) 0.255

Irritability and Apathy Scale (IAS)-_Participant_IRRITABILITY 0 (−2, 3) 0.777

Alzheimer’s Disease Cooperative Study-Activities of Daily Living (ADCS-ADL) −5 (−8, 0) 0.037

Neuropsychiatric Inventory (NPI) frequency x severity 0 (−8, 9) 0.939

Neuropsychiatric Inventory (NPI)_Caregiver Distress 2 (−1, 6) 0.127

ProblemBehaviours Assessment (PBA) 1 (−14, 10) 0.898

Clinician Assessment of Fluctuation (CAF) 1 (−2,3) 0.378

16week- baseline Montreal Cognitive Assessment (MoCA) 1 (−1, 3) 0.234

Trail Making Test (TMT)-Part B −25 (−74, 20) 0.27

TimedUp andGo 0 (−2, 1) 1

Unified Parkinson’s Disease Rating Scale (UPDRS-Cognition)-Part I −1 (−2, 1) 0.328

Unified Parkinson’s Disease Rating Scale (Activities of Daily Living)-Part II 0 (−2, 2) 0.815

Unified Parkinson’s Disease Rating Scale (Motor)-Part III −3 (−9, 2) 0.193

Unified Parkinson’s Disease Rating Scale (SUMPart II+III) −3 (−9, 3) 0.271

Unified Parkinson’s Disease Rating Scale (total Part I+III) −4 (−10, 2) 0.165

Alzheimer’s Disease Assessment Scale–Cognitive subscale (ADAS-Cog) −4.67 (−10.34, 1) 0.111

Irritability/Apathy Scale (IAS)-_Partner_APATHY 0 (−4, 4) 0.836

Irritability/Apathy Scale (IAS)-_Participant_APATHY 0 (−4, 3) 0.918

Irritability/Apathy Scale (IAS)-_Partner_IRRITABILITY 1 (−3, 5) 0.553

Irritability/Apathy Scale (IAS)-_Participant_IRRITABILITY −2 (−4, 0) 0.07

Alzheimer’s Disease Cooperative Study-Activities of Daily Living (ADCS-ADL) −2 (−8, 5) 0.837

Neuropsychiatric Inventory (NPI) frequency x severity 2 (−6, 10) 0.608

Neuropsychiatric Inventory (NPI)_Caregiver Distress 3 (−2, 8) 0.142

ProblemBehaviours Assessment (PBA) 2 (−7, 11) 0.589

Clinician Assessment of Fluctuation (CAF) 1 (−1, 3) 0.288

target Abl. A single dose of bosutinib, 100 and 200 mg, resulted in

a dose-dependent increase in plasma and CSF bosutinib levels, but

there was a significant difference with multiple doses (12 weeks) of

bosutinib, 100 mg, which resulted in more than 2-fold elevation in the

plasma and 9-fold elevation in the CSF. Exposure was also increased

almost3-fold in theplasmaand10-fold in theCSFandTmax increased in

the plasma and CSF after multiple doses. Prior studies of a single dose

of bosutinib, 500 mg, with food in healthy subjects showed that bosu-

tinib absorption was slow, with a median time-to-peak (Tmax) concen-

tration of 6 hours, and although bosutinib exhibited dose-proportional

increases in AUC0-24,
27 the volume of distribution was large, suggest-

ing that bosutinib is distributed extensively into the tissues with low

bioavailability.27,35 Bosutinib also exhibits high plasma protein bind-

ing (94%).35 These studies are consistent with our results suggesting
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that multiple doses may have affected the bioavailability, which subse-

quently resulted in enhanced detection of plasma and CSF bosutinib

after 12 weeks compared to a single dose. Furthermore, this study

evaluated the exposure of bosutinib over 4 hours (AUC0-4), therefore

plasma and CSF bosutinib PK parameters (Cmax, Tmax, and AUC) may

have been underestimated whereas AUC0-∞ values were not calcu-

lable. Administration of oral bosutinib, 100 mg, once daily resulted

in direct target engagement via inhibition of plasma Abl and Src and

CSF Abl in DLB patients, suggesting that this may be at or near the

lowest effective therapeutic dose. The CSF concentration after mul-

tiple ascending doses of bosutinib (200, 300, 400 mg) is predicted to

increase in a dose-proportional manner and achieve drug exposure

and greater concentrations than the IC50 (1.2 nM) required to inhibit

Abl/Src.1–4 Therefore, a dose range of bosutinib 100 to 400 mg daily,

which has an established and acceptable safety profile, will guide the

design of future studies to determine a safe and effective dose in DLB.

Plasma but not CSF levels of DOPAC and HVA were significantly

reduced in bosutinib, 100 mg, compared to placebo. Both HVA and

DOPAC are primary metabolites of dopamine and plasma HVA and

DOPAC provide excellent controls for changes of CNS dopamine

metabolism in this study. The brain contributes a small percentage

(15%) of circulating plasma HVA,36 which is mostly due to intestinal

dopamine metabolism. CSF HVA peaks in PD patients around 1.5 to

2 hours after levodopa (200 mg) administration and it remains con-

stant up to 4 hours,37 suggesting that the absence of change of CSF

HVA may be due to levodopa treatment in DLB patients. Conversely,

DOPAC is almost exclusively derived from CNS metabolism of several

monoamines, including dopamine, and it is secreted into the circulation

and discarded via urination. Therefore, the decrease in plasmaDOPAC

may indicate that plasma DOPAC was secreted from the CNS. Taken

together, these data may reflect changes in both CNS and peripheral

dopamine levels.

This effect on dopamine metabolism is concurrent with a decrease

of CSF alpha-synuclein and CSF:plasma levels of alpha-synuclein sug-

gesting that less alpha-synuclein may be produced peripherally or

transported from the brain to plasma. Alpha-synuclein may be trans-

ported into the plasma via brain-derived exosomes,38 which consti-

tute a possible waste disposal mechanism. The level of CSF alpha-

synuclein is decreased in PD, but no data suggest the same in DLB.

Additionally, it is still not understood whether a clinically effective

drug should lead to an increase or further decrease of CSF alpha-

synuclein either in PD or DLB. Therefore, within the specific context of

this longitudinal (3months) measurement, our data indicate significant

reduction of CSF alpha-synuclein in response to bosutinib treatment

in DLB. In animal models, accumulation of alpha-synuclein aggregates

impairs dopamine transmission but elimination of these aggregates

enhances dopamine release and use.39 Loss of dopaminergic neurons

and aggregation of alpha-synuclein are the main pathological charac-

teristics ofDLB40 and these featuresmaybepresentwith p-tau andAβ.
No effects were observed on p-tau, Aβ, or oligomeric alpha-synuclein

between study groups.We documented extensive preclinical evidence

that Abl/Src inhibition via bosutinib clears misfolded proteins, includ-

ing alpha-synuclein via autophagy and improves motor and cognitive

behavior inmodels of neurodegeneration.17–24 Bosutinib, 100mg,may

have resulted inminimal significant effects compared to placebo due to

either the low dose or the short duration of the trial.

This study was underpowered (by design) for clinical measures,

which were only exploratory to guide future trial designs of bosutinib

in DLB. Remarkably, there was a significant improvement (–5 points)

in activities of daily living (ADL) in the bosutinib group and this effect

was not detected in the wash-out period, suggesting possible effect of

bosutinib on ADL. During the treatment period, a trending improve-

ment in TMT-B, which assesses executive functioning among multi-

ple domains,41 was observed and it attenuated in the washout period.

Furthermore, the severity in cognitive dysfunction as measured by

ADAS-Cog was not different during the 12-week treatment period,

but strongly trended toward a decline (–4.75) between groups dur-

ing wash-out. An open label study (12 months) suggested that bosu-

tinib was associated with less decline in Repeatable Battery for the

Assessment of Neuropsychological Status (RBANS) but withdrawal of

bosutinib worsened cognitive performance.42 There was no difference

in motor symptoms as measured by UPDRS, and no behavioral differ-

ences were observed between groups.

In conclusion, this was a single site study with 13 DLB patients per

group who were treated with a low dose of bosutinib, 100 mg, for 12

weeks. One limitation of this study is lack of female participants. This

phase 2 study met its primary objectives and determined bosutinib

PK, evidence of direct target engagement of Abl/Src, and effects on

key DLB-associated biomarkers, including dopamine metabolism and

alpha-synuclein. This study determined the effects of the lowest avail-

able dose of bosutinib to engage Abl in DLB and provided data for PK

prediction of higher doses of bosutinib levels in the CSF. Larger mul-

ticenter studies using a dose range of bosutinib (100 to 400 mg) and

longer treatment periods (> 6 months) are needed to determine the

safe and effective dose in DLB.

4 METHODS

4.1 Standard protocol approvals and registrations

This is a single site study that was conducted by the Translational

Neurotherapeutics Program (TNP) at Georgetown University Medical

Center (GUMC). This study was approved by the Institutional Review

Board (IRB# 000017) at GUMC. The study was conducted under FDA

Investigational New Drug (IND) # 142061 and clinical trial number

NCT03888222.

4.2 Randomization and blinding

This studyusedablock randomizationusing theblockrand function inR

software (version 3.4) to randomize 26 participants into the two treat-

ment groups. The block size varies between baseline and 12weeks and

the randomization was done within blocks to ensure a balance in sam-

ple sizes across groups blocks. All site staff, investigators, raters, partic-

ipants, and caregivers were blinded to dose and treatment.
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4.3 Participants

Participants provided informed consent and complied with all study

procedures. Participants included males and females, multi-racial

groups, age of 25 to 90 years, medically stable, who had clinical

diagnosis of DLB according to McKeith et al.43 with both demen-

tia MoCA≥18 and Parkinsonian defined as bradykinesia in combina-

tion with rest tremor, rigidity or both UPDRS I-III (ON) is < 50 and

UPDRS-III between 20 and 40 and at least one other symptom such

as fluctuation, visual hallucinations, or REM sleep behavioral disor-

der (RBD) and abnormal DaTScan (historical). Participants were sta-

ble on levodopa no more than 800 mg daily and dopamine agonists

were allowed and participants were stabilized with 1 mg rasagiline

(Azilect) at least 4 weeks before enrollment. Participants had sta-

ble concomitant medical and/or psychiatric illnesses and QTc interval

350 to 470 ms, inclusive, and they consented to LP at baseline and

12weeks.

4.4 Study design and objectives

To primarily evaluate the effects of 100 mg bosutinib on safety, toler-

ability, and biomarkers in individuals with mild to moderate DLB. The

primary objective included measurement of bosutinib in the CSF. Par-

ticipants (n=26)were randomized (1:1:1) into seamlessRSDof100mg

bosutinib (n = 9), 200 mg bosutinib (n = 9), or placebo (n = 8). LP was

performed at 1, 2, 3, and 4 hours after dosing. Participants were then

re-randomized (1:1) into placebo and bosutinib, 100 mg, for 12 weeks

followed by 4 weeks wash-out. Another mandatory LP was performed

at 1, 2, 3, and hours at 12weeks. Safety wasmeasured using the occur-

rence of AEs and SAEs deemed to be possibly, probably, or definitely

related to the study drug.

4.5 Data analysis

Baseline characteristics were descriptively summarized using mean

± SD for continuous variables such as age and drug dose and fre-

quencies and percentages for categorical variables by the two treat-

ment groups. All measurements were longitudinal at baseline and

3 months at end of treatment. For comparisons between the two

groups, either two-sample t-tests for continuous variables or Pear-

son’s Chi-squared test for the binary variables were used. AEs were

summarized using frequencies and percentages by the two treatment

groups. Exploratory biomarkers are presented as mean± SD in charts

and graphed as mean± standard error of the mean. The changes in

biomarkerswithin each groupwere comparedusing a one-tailed paired

Wilcoxonmatched-pairs signed rank testwhile the changes inbiomark-

ers across each group were compared using a one-tailed unpaired t-

test with Welch’s corrections. Asterisks denote actual P-value signif-

icances (*P < 0.05, ** P < 0.01, *** P < 0.001, and **** P < 0.0001)

between groups or within groups and are noted in the individual

figures. Biomarker statistical analysis was performed using GraphPad

Prism, version 9.1.2 (GraphPad Software Inc.).

Exploratory clinical endpoints by the groups at baseline, 12 weeks,

and 16 weeks were summarized using sample mean ± SDs along with

trajectory plots of changes over visits. For each treatment group, a

pairedWilcoxon signed-rank test was used to test whether there were

changes in each clinical endpoint betweenbaseline and12weeks, base-

line and 16 weeks. Changes from the baseline between the two treat-

ment groups were evaluated using analysis of covariance (ANCOVA)

where the baseline value was the fixed covariate. For biomarker end-

point comparisons, one-sided type I error of 5% and 90% confidence

interval (CI) was used, and two-sided type I error of 5% and 95% CI

for clinical endpoint comparisons was used. This exploratory endpoint

was designed for proof-of-concept and no multiplicity correction was

applied. This is a small proof of concept study to primarily determine

PK/PD of bosutinib, so no formal power analysis was done. Biomarkers

were secondary and behavioral; cognitive and motor outcomes were

exploratory to guide future larger studies. Due to the small number of

patients and the large exploratory clinical measures no correction for

multiple statistical analyses could bemeaningfully done.

4.6 Data sharing

The final data, studyprotocol, andall interpretationswill be available to

the scientific andnon-scientific community andclinicians. Investigators

adhered to thePrivacyRule under theHealth InsurancePortability and

Accountability Act (HIPAA).

4.7 Plasma and CSF collection

Blood draw (10mL) and LP≈15mLCSFwere performed≈2hours after

the last levodopa dose and at 1, 2, 3, or 4 hours after administration of

bosutinib as we previously described.44

4.8 Total alpha-synuclein ELISA

Solid phase sandwich enzyme-linked immunosorbent assay (ELISA)

was used to measure CSF and plasma alpha-synuclein according to

manufacturer’s protocol (Cat#844101, BioLegend) and as we previ-

ously described.44

4.9 Oligomeric alpha-synuclein ELISA

Quantitative ELISAwas performedonCSF andplasma samples tomea-

sure alpha-synuclein oligomer according to manufacturer’s protocol

(Cat# DEIA-BJ882, Creative Diagnostics).

4.10 Phospho-Abl (panTyr) ELISA

PathScan® phospho-Abl solid phase sandwich ELISA was performed

on CSF and plasma samples (100 μL), according to manufacturer’s

protocol (Cat# 7903, Cell Signaling Technologies) as we previously

described.45
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4.11 Phospho-Src (Y416) ELISA

PathScan phospho-Src (CAT#7953, Cell Signaling Technologies). CSF

or plasma samples were added to phospho-Src polyclonal rabbit

coated micro-wells that capture Src proteins when phosphorylated at

Tyr 416 according to PathScan phospho-Src manufacturer’s protocol

(CAT#7953, Cell Signaling Technologies).

4.12 Aβ40, Aβ42, total tau, and p-tau 181 ELISA

CSF and plasma samples were analyzed in parallel using the same

reagents using Milliplex ELISA (Cat. #HNABTMAG-68 K, Millipore)

according to protocol as we previously described.45

4.13 Mass spectrometry to measure bosutinib

Plasma and CSF (100 μI) samples were mixed with 10 μI of opti-
mized internal standard followed by pipetting 400 μI of acetonitrile
(ACN) containing 0.625% (v/v) formic acid. The samples were dried

by use of a centrifugal evaporator miVac Duo (Genevac) and then

reconstituted in 20 μI of the mobile phase A and analyzed by ultra-

high-performance liquid chromatography tandem mass spectrometry

with electrospray ionization (UHPLC-ESI-MS/MS) operating in optimal

conditions.

4.14 Quantification of dopamine metabolites
DOPAC and HVA

Concentrations ofDOPACandHVA in theCSF samplesweremeasured

by UHPLC-MS/MS after derivatization with benzoyl chloride were

measured by Pronexus Analytical AB, as we previously described.46

4.15 Clinical assessments

All participants were tested in the “ON” state < 2 hours since the last

dose of levodopa. A single rater conducted all clinical exams in all par-

ticipants across all study visits and ON state was also verified with the

participant and the objective report of study partner and study investi-

gator/rater. All clinical assessmentswere performed at baseline and 12

weeks via, TUG,MoCAandMDS-UPDRS, ADAS-Cog, ADCS-ADL, CAF,

IAS, PBA, and NPI.
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