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A B S T R A C T

Background:Metabolic syndrome (MetS) is a cluster of multiple cardiometabolic risk factors that increase the
risk of type 2 diabetes and cardiovascular diseases. Identifying novel biomarkers of MetS and their genetic
associations could provide insights into the mechanisms of cardiometabolic diseases.
Methods: Potential MetS-associated metabolites were screened and internally validated by untargeted
metabolomics analyses among 693 patients with MetS and 705 controls. External validation was conducted
using two well-established targeted metabolomic methods among 149 patients with MetS and 253 controls.
The genetic associations of metabolites were determined by linear regression using our previous genome-
wide SNP data. Causal relationships were assessed using a one-sample Mendelian Randomization (MR)
approach.
Findings: Nine metabolites were ultimately found to be associated with MetS or its components. Five metabo-
lites, including LysoPC(14:0), LysoPC(15:0), propionyl carnitine, phenylalanine, and docosapentaenoic acid
(DPA) were selected to construct a metabolite risk score (MRS), which was found to have a dose-response
relationship with MetS and metabolic abnormalities. Moreover, MRS displayed a good ability to differentiate
MetS and metabolic abnormalities. Three SNPs (rs11635491, rs7067822, and rs1952458) were associated
with LysoPC(15:0). Two SNPs, rs1952458 and rs11635491 were found to be marginally correlated with sev-
eral MetS components. MR analyses showed that a higher LysoPC(15:0) level was causally associated with
the risk of overweight/obesity, dyslipidaemia, high uric acid, high insulin and high HOMA-IR.
Interpretation: We identified five metabolite biomarkers of MetS and three SNPs associated with LysoPC
(15:0). MR analyses revealed that abnormal LysoPC metabolism may be causally linked the metabolic risk.
Funding: This work was supported by grants from the National Key Research and Development Program of
China (2017YFC0907004).
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Metabolic syndrome (MetS) is a cluster of multiple cardiometa-
bolic factors, including central obesity, hypertension, dyslipidaemia,
and hyperglycaemia [1]. MetS increases the risk of type 2 diabetes,
stroke, coronary heart diseases (CHD) and other disabilities [1].
Despite previous studies, the pathogenesis of MetS has not been fully
elucidated. Identifying the altered metabolites in MetS is particularly
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Research in context

Evidence before this study

Abnormal plasma metabolite levels have been reported to be
associated with metabolic syndrome in previous human metab-
olomics studies. However, most of them lack of external repli-
cation, especially in the Chinese population. Furthermore, the
genetic determinants for these metabolites remain to be uncov-
ered. It has been demonstrated that identifying the genetic
determinants of metabolites could improve our understanding
of their role in diseases.

Added value of this study

Nine metabolites were ultimately found to be associated with
metabolic syndrome or its components by multi-stage metabo-
lomic analyses. Five metabolites, namely: LysoPC(14:0), LysoPC
(15:0), propionyl carnitine, phenylalanine, and docosapentae-
noic acid (DPA) were used to develop a metabolic risk score for
MetS, and showed a good discriminating ability for MetS and
metabolic abnormalities. Three SNPs including rs11635491,
rs7067822, and rs1952458 were identified in association with
the LysoPC(15:0) levels. Additionally, LysoPC(15:0) was found
causally linked to multiple metabolic abnormalities.

Implications of all the available evidence

Our findings highlight that a higher leve of lysophosphatidyl-
choline is a marker of metabolic syndrome and metabolic
abnormalities. Disturbed lysophosphatidylcholine metabolism
may be a potential therapeutic target for metabolic syndrome.
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important for the prevention and intervention of MetS and its associ-
ated complications.

MetS is a syndrome in which multiple metabolic abnormalities are
simultaneously present within an organism. A systematic view is
necessary for its mechanistic understanding [2]. As a part of system
biology, advanced metabolomics could assist us in gaining compre-
hensive knowledge of the biological processes of MetS [3]. Consider-
able human metabolomics studies have identified multiple
metabolites and lipids in relation to obesity, type 2 diabetes, dyslipi-
daemia, and cardiometabolic diseases [4�7]. However, relevant
research on MetS is scarce, and the sample size and the coverage of
metabolites are relatively small [8�12]. In addition, the identified
associations of metabolites often lacked replication, which prevented
us from a systemic understanding of the pathogenesis of MetS [9,12].

However, although prior studies have detected several metabo-
lites associated with MetS, their pathophysiological mechanisms
remain poorly understood. It has been proposed that identifying the
genetic determinants of metabolites would facilitate the mechanistic
understanding of metabolites and their clinical endpoints [13�15].
Previous large-scale genome-wide association studies have reported
a hundred gene loci regulating metabolite concentrations and found
that some of these metabolic loci were located at gene encoding
enzymes or transporters [14,16]. By integrating the genomic, metab-
olomics, and clinical trait data, Eugene Rhee et al. identified 31
genetic loci associated with 61 metabolites and demonstrated the
role of AGXT2 in lipid metabolism [14]. Likewise, Jaana Hartiala et al.
reported that two gene loci on 2q34 and 5q14.1 were associated with
plasma betaine levels, and suggested that rs715 on 2q24 may con-
tribute to a decreased risk of CAD in women, highlighting the poten-
tial of genome-wide association studies of metabolites in the
exploration of disease mechanisms [17].
In this study, using untargeted and targeted metabolomics, we
aimed to identify the novel metabolite biomarkers of MetS and its
components in a relatively large population. In addition, a two-stage
GWAS analysis was designed to determine the genetic associations
for the replicated MetS-associated metabolite biomarkers, and the
possible causal relationships between metabolites and MetS and its
components will also be assessed.

2. Methods

2.1. Study design and subjects

Figure S1 presents the study design. First, using untargeted
metabolomic analyses, we screened and internally validated the
MetS-associated metabolites among 120 MetS patients and 120 con-
trols matched by age and sex, and 575 MetS patients and 582 con-
trols, respectively. Both populations were randomly selected from
our previous cross-sectional survey on MetS in Hangzhou, Zhejiang,
China [18]. External replication was performed using a targeted
metabolomics approach in a sub-population of the Zhejiang Meta-
bolic Syndrome Cohort, namely Xiazhi sub-cohort (N=1420). Accord-
ing to the same MetS criterion adopted in the untargeted
metabolomics [19], 149 MetS patients and 253 controls were
included into the external replication dataset. The detailed sample
selection process has been described in the supplementary materials.
A total of 1062 individuals from the internal validation dataset and
227 individuals from the discovery dataset that had good-quality
genome-wide SNP data were included to discover and replicate the
associations between SNPs and metabolites.

According to the Chinese Diabetes Society’s criteria for MetS, the
subjects with three or more metabolic abnormalities were defined as
MetS [18], including body mass index (BMI)� 25¢0 kg/m2 (over-
weight/obesity), systolic blood pressure (SBP) �140 mmHg or dia-
stolic blood pressure (DBP) � 90 mmHg (high BP), fasting plasma
glucose (FPG) � 6¢1 mmol//L (high FPG), triglyceride (TG) � 1¢7
mmol//L or high-density lipoprotein cholesterol (HDL-C) <1¢0
mmol//L in women or <0¢9 mmol//L in men (dyslipidaemia). The
healthy controls were free of metabolic disorders. The individuals
who had metabolic-related interventions or had cancer or serious
chronic liver, lung, heart, or kidney disorders were excluded.

The study protocol was approved by the research ethics commit-
tee at the School of Medicine, Zhejiang University. All participants
provided informed consent.

2.2. Epidemiological investigation and clinical measurements

The epidemiological data was collected using a questionnaire-
based interview by trained investigators using a standardised proto-
col. The information on age, sex, smoking, alcohol drinking behavior,
drug use, and history of cardiovascular diseases, type 2 diabetes,
hypertension, cancer, liver diseases, and kidney diseases was investi-
gated.

The weight, height, SBP, and DBP were measured by experienced
nurses using a standardised protocol. BMI was calculated as the body
weight in kilogram divided by the square of the height in meters. The
blood pressure values were measured in a sitting position using a
mercury sphygmomanometer. The values of SBP and DBP were
reported as the average of the three repeat measurements at 30-s
intervals.

An overnight blood sample was collected for each subject and
immediately frozen at -80 Celsius degrees. The serum TG, total cho-
lesterol (TC), HDL-C, low-density lipoprotein cholesterol (LDL-C), uric
acid (UA), FPG, and fasting insulin levels were measured using clinical
methods. The homeostatic model assessment for insulin resistance
(HOMA-IR) was calculated as fasting insulin (mU/L) £ fasting glucose
(nmol/L)/22¢5.
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2.3. Untargeted metabolic profiling

Untargeted metabolic profiling was performed with an Agilent
1290 infinity with 6545 Q/TOF-MS system (Agilent Technologies)
under the positive and negative ion modes. The detailed methods for
sample preparation, UPLC-Q/TOF-MS analyses, and data pre-process-
ing have been published previously [20]. A total of 1793 ion features
were detected in the discovery dataset. A total of 2238 ion features
were detected in the internal validation dataset. The metabolites
were identified by searching public metabolomics databases (The
Human Metabolome Database and METLIN) and confirmed using
available in-house reference compounds.

2.4. Targeted metabolomics analysis

A targeted metabolomics profiling was conducted at Shanghai
Applied Protein Technology Co., Ltd, using high-performance liquid
chromatography-tandem mass spectrometry (UPLC-MS/MS). The
reagents and internal standards (IS) are described in Table S1.
Dichloromethane was used to extract the serum metabolites. The
detailed chromatographic conditions and MS parameters are pro-
vided in the supplementary materials and Table S2. The validation
data for this method are shown in Table S3.

2.5. Genotyping, imputation, and quality control (QC)

Genotyping was conducted using Illumina Human-OmniExpress
760k chips (Illumina, San Diego, CA, USA) with standard quality-con-
trol procedures. The University of Michigan imputation server
(http://imputationserver.sph.umich.edu/index.html) was used to
conduct genotype imputation. Before imputation, all alleles were
aligned to the forward strand of build 37 and converted to VCF files.
The genotype was phased with EAGLE with 1000 Genomes Project
Phase 3 Version 5 of EAS as the reference panel [21]. A detailed qual-
ity control procedure is provided in the supplementary materials.
Consequently, 40,001,312 SNPs remained.

2.6. Statistical analysis

Normal distribution was visually checked by the Q-Q plots for all
continuous variables. Variables with normal distribution were
described as mean (standard deviation) and were compared using
the Student’s t-test, unless were described as median (interquartile
range) and were compared using the Mann-Whitney U test. The cate-
gorical variables were described as numbers (percentages) and were
compared using the chi�square test.

In untargeted metabolomics analyses, the Mann-Whitney U test
and orthogonal partial least-squared discriminant analysis (OPLS-DA)
were used to select the differential features of MetS. The spearmen’s
correlation was used to analyse the correlations between the metab-
olites and MetS components. External validation was conducted on
scaled data using logistic regression analysis after adjusting for age
and sex. A detailed statistical analysis is shown in the supplementary
materials.

Among the metabolites that were successfully replicated to be
associated with MetS or its components, a stepwise logistic regres-
sion was utilised to select the metabolites to construct an additive
metabolite risk score (MRS) weighted by the effect size of each
metabolite. The associations between MRS and MetS and its compo-
nents were analysed using a logistic regression analysis. The diagnos-
tic value was evaluated using the receiver operating characteristic
curve (ROC).

A GWAS analysis was performed with linear regression (for con-
tinuous variables) or logistic regression (for dichotomous variables)
under an additive genetic model in PLINK2. A detailed data analysis is
provided in the supplementary materials section. A meta-analysis
was performed using inverse variance model implemented in the
METAL software. Q-Q and Manhattan plots were drawn using the R
package “qqmen”. Significant regions were visualised using the
online tool Locustrack based on the EAS population.

Causal relationships were assessed using a one-sample MR
approach with the additive weighted genetic risk score (wGRS) as
the instrumental variable (IV). In addition, a two-sample MR analysis
was conducted using summary statistics from Japan Biobank to repli-
cate the causal associations between the metabolites and TG, HDL-C,
SBP, DBP and BMI. The inverse variance weighted (IVW) method was
used as the main analysis. The weighted median and MR-Egger meth-
ods were supplemented as sensitivity analyses. The MR approach
must meet the following assumptions: 1) the IV is robustly associated
with the interest exposure; 2) the IV is not associated with any
potential confounders of the exposure-outcome relationship; and 3)
the IV only affects the outcome through the exposure (no horizontal
pleiotropy). The detailed study design is shown in the supplementary
text and Figure S2. The power calculation for MR analyses was pre-
formed using an online tool (https://shiny.cnsgenomics.com/mRnd/).

A two-tailed test was used for all statistical analyses in this study.
All statistical analyses were conducted using R software 4.0.3.

2.7. Role of funding source

The funding sources had no role in the study design, data collec-
tion, data analyses, interpretation, or writing of the report of this
manuscript.

3. Results

3.1. Subject characteristics

The demographic characteristics of the participants are summar-
ised in Table 1. A total of 240, 1157, and 402 eligible subjects were
recruited for the discovery, internal validation, and external valida-
tion datasets, respectively. Among them, 50%, 49¢7% and 37¢1% had
MetS, respectively. A total of 60¢8%, 50¢5%, and 40¢5% were men,
respectively. The average age was 62¢4, 56¢8, and 58¢6 years, respec-
tively. The distributions of individual MetS components in the three
datasets are displayed in Figure S3.

3.2. Associations of metabolites with MetS in the discovery and internal
validation datasets

In the discovery dataset, nine amino acids, nine fatty acids or fatty
acyls, six organic compounds and 10 glycerophospholipids were
identified to be positively associated with MetS. It was observed that
one amino acid and one glycerophospholipid were negatively associ-
ated with MetS (Table S4). In the internal validation dataset, three
amino acids, four fatty acids or fatty acyls, four organic compounds
and nine glycerophospholipids were ultimately confirmed as poten-
tial metabolite biomarkers of MetS (Table 2). Most of these metabo-
lites had significant and modest correlations with MetS components,
except for low HDL-C (Figure 1a). Two amino acids (L-isoleucine and
L-phenylalanine) and two organic compounds (2-phenylacetamide
and cis-p-coumaric acid) were found to be highly correlated with
each other; additionally, LysoPCs and LysoPEs were also highly asso-
ciated with each other (Figure 1b).

3.3. Associations of metabolites with MetS in the external validation
dataset

A total of 15 metabolites with the available standard chemicals
were quantified. After adjusting for age and sex, five metabolites
were found to be positively associated with MetS, namely: DPA,
LysoPC(14:0), LysoPC(15:0), propionyl carnitine and 2-
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Table 1
Baseline characteristics of the subjects

Discovery (n=240) Internal validation (n=1157) External validation (n=402) P

MetS/Control (n) 120/120 575/582 149/253 <0.001
Men (%) 60.8 50.5 40.5 <0.001
Age, years y 62.4 (0.8) 56.8 (0.3) 58.6 (0.6) <0.001
BMI (kg/m2) y 23.92 (0.21) 24.32 (0.11) 23.19 (0.17) <0.001
WC (cm) y 85.92 (0.69) 82.2 (0.31) 78.42 (0.54) <0.001
SBP (mmHg) y 141.68 (1.64) 139.5 (0.69) 127.77 (1.14) <0.001
DBP (mmHg) y 82.97 (0.88) 82.94 (0.38) 77.89 (0.56) <0.001
TG (mmol/L) * 1.64 (1.15) 1.61 (1.26) 1.03 (0.84) <0.001
HDL-C (mmol/L) y 1.51 (0.02) 1.51 (0.01) 1.28 (0.02) <0.001
FPG (mmol/L) * 5.16 (1.14) 5.12 (1.08) 6.01 (0.13) <0.001
Insulin * 3.6 (3.2) 3.8 (3.3) - 0.23
HOMA-IR * 0.86 (0.98) 0.90 (0.94) - 0.38

Data was presented as means (standard deviation) or median (interquartile range) or numbers (percentages). * denotes
that data was presented as median (interquartile range). y denotes that data was presented as means (standard devia-
tion). MetS, metabolic syndrome; BMI, body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP,
diastolic blood pressure; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; FPG, fasting plasma glucose;
HOMA-IR, homeostasis model assessment of insulin resistance.

Table 2
20 potential metabolite biomarkers of MetS in the internal validation dataset (N=1157)

RT (min) Mass to charge ratio FC VIP P Ion Mode category

L-Isoleucine* 1.028 132.102 0.87 2.99 3.16E-47 + Amino acids
L-Phenylalanine* 1.381 166.0864 0.90 2.11 3.67E-22 + Amino acids
L-Tryptophan* 2.152 205.0971 0.93 1.19 2.81E-08 + Amino acids
5,8,11-Eicosatrienoic acid* 10.408 305.2492 0.80 1.94 3.79E-16 - Fatty acids
Docosapentaenoic acid* 10.387 329.2487 0.78 2.01 2.01E-16 - Fatty acids
Linolenic acid* 8.863 279.2317 0.67 2.99 4.44E-42 + Fatty acids
Propionyl carnitine 1.031 218.1382 0.86 1.22 3.75E-10 + Fatty Acyls
LPA(16:0) 10.189 409.2359 0.91 1.02 1.68E-06 - Glycerophospholipids
LysoPC(14:0) * 7.373 468.3088 0.69 2.85 9.92E-43 + Glycerophospholipids
LysoPC(15:0) * 8.448 482.3243 0.72 3.03 9.67E-43 + Glycerophospholipids
LysoPC(16:1) 7.588 494.3247 0.82 1.72 2.10E-15 + Glycerophospholipids
LysoPC(18:3) 7.937 518.3227 0.91 2.19 1.77E-29 + Glycerophospholipids
LysoPC(20:3) 8.006 546.3542 0.81 2.26 2.92E-27 + Glycerophospholipids
LysoPE(16:0) * 7.905 454.293 0.76 2.40 4.82E-28 + Glycerophospholipids
LysoPE(22:6) 7.796 526.293 0.79 2.51 8.78E-27 + Glycerophospholipids
PE(18:2/P-18:0) 11.27 728.5665 1.35 2.49 2.42E-31 + Glycerophospholipids
Indole-3-acetic acid 4.839 174.054 0.78 1.54 1.90E-14 - Organic compounds
2-Phenylacetamide* 0.877 136.0757 0.87 2.65 1.57E-33 + Organic compounds
cis-p-Coumaric acid* 0.878 165.0548 0.87 2.54 1.75E-32 + Organic compounds
L-glutamyl-leucine* 2.694 261.1441 0.71 2.61 4.44E-42 + Organic compounds

RT, retention time; FC, fold change (control/MetS). FC<1 means that the metabolite is upregulated in MetS; VIP, variable importance in
the projection, which is calculated by orthogonal partial least-squared discriminant analysis and reveals the contribution of each variable
for the discrimination between the MetS patients and controls. P values are corrected by the false discovery rate. The primary metabolite
identification is based on its RT and mass to charge ratio. * means that metabolites were confirmed with available reference compounds.
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phenylacetamide (Figure 1c). Three metabolites, namely: L-trypto-
phan, L-isoleucine, and LysoPE(16:0), were found marginally and
positively associated with MetS (Figure 1c). Nine metabolites were
associated with at least one MetS component, including eight metab-
olites associated with MetS and L-phenylalanine (Figure 1c).

DPA and LysoPC(14:0) were significantly associated with MetS in
both sexes. LysoPC(15:0), propionyl carnitine, and tryptophan were
significantly associated with MetS in women, but not in men. In addi-
tion, a positive relationship between indole-3-acetic acid and MetS
was found in women. Only men displayed a positive association
between L-isoleucine and MetS (Table S5). The sensitivity analyses
showed similar association results (Table S6).

3.4. Associations of metabolite risk score (MRS) with MetS and its
components

A panel of five metabolites was selected to construct a MRS,
including DPA, LysoPC(14:0), LysoPC(15:0), propionyl carnitine, and
L-phenylalanine. Figure 2 and Table S7 describe that with increasing
quartiles of MRS, a higher presence of MetS and metabolic
abnormalities was observed. Furthermore, the MRS displayed a good
ability to differentiate MetS from the control, with an AUC of 0¢750
(95%CI: 0¢698�0¢802) and 0¢792 (95%CI: 0¢766�0¢819) in the model
construction and validation datasets, respectively (Figure 3a). Similar
results were observed for each MetS component (Figure 3b-e).
3.5. Two-stage GWAS analyses for the five metabolite biomarkers of
MetS

The characteristics of the subjects in the GWAS analyses are
showed in Table S8. The genetic inflation factors for the five metabo-
lites ranged from 0¢997 to 1¢006, suggesting little evidence of popula-
tion stratification (Table S9). The Q-Q and Manhattan plots are drawn
at Figure S4-S5. In the discovery stage, only two SNPs located in gene
LIPC were identified in association with LysoPC(15:0); additionally,
131 suggestive SNPs were associated with at least one metabolite
(Table S10). In the validation stage, three SNPs, rs11635491,
rs1952458, and rs7067822 were reported to be associated with
LysoPC(15:0), with P values <0¢05 and consistent effect directions



Figure 1. Associations between metabolites and between metabolites and MetS and its components. a: The associations between 20 MetS-associated metabolites and MetS compo-
nents in the internal validation dataset (N=1157). The cells in blank signify that the correlation was non-significant (P>0.05); b: The associations between the 20 MetS-associated
metabolites in the internal validation dataset (N=1157). The cells in blank signify that the correlation was non-significant (P>0.05); c: The associations of metabolites with MetS
and its components in the external validation dataset (N=402). The OR was adjusted for age and sex. MetS, metabolic syndrome; BMI, body mass index; SBP, systolic blood pressure;
DBP, diastolic blood pressure; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; FPG, fasting plasma glucose; HOMA-IR, homeostasis model assessment of insulin resis-
tance; OR, odds ratio; CI, confidence interval.
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(Table 3, Table S11, Figure S6). The regional plots for the three SNPs
are presented in Figure S7.

Table S12 presented that out of the three SNPs, rs1952458 was
also nominally associated with BMI, TG, uric acid, HOMA-IR, insulin,
and MetS. rs11635491 was nominally associated with fasting insulin
levels and HOMA-IR.

3.6. Causal relationships of LysoPC(15:0) with MetS and its components

Three SNPs associated with LysoPC(15:0) were used to construct a
gene risk score. This gene risk score then was used as the IV of
LysoPC(15:0). The F statistic for the IV was 69¢58. After adjusting for
age and sex, observational associations revealed that higher LysoPC
(15:0) levels were significantly associated with a higher risk of MetS
and all listed metabolic abnormalities. For the causal estimates, the
one-sample MR analysis showed that higher genetic predicted levels
of LysoPC(15:0) were positively associated with the risk of over-
weight/obesity, dyslipidaemia (particularly due to the increased
serum TG levels), high UA, high insulin, and high HOMA-IR, but not
with MetS and high BP (P>0¢05, Figure 4, Table S13-S14). In the two-
sample MR analysis, the standard IVW analysis showed that geneti-
cally estimated higher LysoPC(15:0) levels were significantly associ-
ated with increased serum TG and HDL-C levels and no pleiotropy
effect was indicated. No significant causal relationships between
LysoPC(15:0) and BMI, SBP, DBP were found, and the power calcula-
tion indicates that there is limited statistical powers (<6%) to detect
this moderate effect estimate (Table S15).

4. Discussion

Our study has two main findings. First, we screened and repli-
cated nine metabolites associated with MetS or its components. An
MRS based on five replicated metabolites showed a satisfactory dis-
criminating ability for MetS and metabolic abnormalities, including
DPA, LysoPC(14:0), LysoPC(15:0), propionyl carnitine, and L-phenyl-
alanine. Second, we identified three SNPs associated with the LysoPC



Figure 2. Associations of quartiles of metabolite risk score (MRS) with MetS and its components in the external validation dataset (N=402). The OR was adjusted for age and sex. BP,
blood pressure; FPG, fasting plasma glucose; OR, odds ratio; CI, confidence interval.

Figure 3. ROCs of the metabolite risk score on MetS and its components in the model construction dataset (N=402) and model validation dataset (N=1157). a: ROC for metabolic
syndrome; b: ROC for overweight/obesity; c: ROC for dyslipidaemia; d: ROC for high FPG; e: ROC for high HP. Data were shown as AUC (95%CI). BP, blood pressure; FPG, fasting
plasma glucose; ROC, receiver operating characteristic curve; AUC, area under curve; CI, confidence interval.
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(15:0) levels. Two SNPs were found to be nominally correlated with
MetS or its components. Moreover, genetically predicted higher
LysoPC(15:0) was causally linked to a higher metabolic risk. Overall,
our findings revealed the metabolic signature of MetS and suggested
that disturbed lysophosphatidylcholine metabolism may be involved
in the pathology of MetS.
Lysoglycerophospholipids (LPLs) is a class of bioactive phospholi-
pids that are involved in multiple cellular activities, such as inflam-
matory response, cell proliferation, and cellular signal transductions
[22,23]. Lysophosphatidylcholine (LysoPC) is the most abundant LPL
in human plasma and can be generated by cleaving phosphatidylcho-
line (PC) via phospholipase A2 (PLA2) or by the transfer of fatty acids



Table 3
The SNP-metabolite associations identified in the two-stage GWAS

SNP CHR POS REF ALT MAF Gene hit Discovery Stage Validation Stage P combined

BETA SE P BETA SE P

LysoPC(15:0) rs11635491 15 58719741 G A 0.37 LIPC 0.19 0.04 2.93E-09 0.25 0.1 0.015 1.47E-10
rs7067822 10 110453691 A G 0.61 - -0.19 0.04 5.46E-06 -0.19 0.09 0.031 4.89E-07
rs1952458 6 51496168 T C 0.54 PKHD1 0.21 0.05 1.28E-05 0.29 0.11 0.044 1.53E-06

SNP, single nucleotide polymorphism; CHR, chromosome; POS, position; REF. reference allele; ALT, alternative allele; MAF: minor allele frequency; SE, standard error.

Figure 4. MR analysis between LysoPC(15:0) and MetS and metabolic abnormalities. The OR was adjusted for age and sex. MetS, metabolic syndrome; BP, blood pressure; UA, uric
acid; FBG, fasting blood glucose; HOMA-IR, homeostasis model assessment of insulin resistance; MR, mendelian randomization. The cutoff value for high UA, high HOMA-IR, and
high insulin was based on their respective 75th percentile.

Q. Wu et al. / EBioMedicine 74 (2021) 103707 7
to free cholesterol via lecithin-cholesterol acyltransferase (LCAT) [23].
Previous studies have found that LysoPC participates in insulin resis-
tance by disrupting hepatic fatty acid oxidation and insulin signal
transduction [22,24-26]. LysoPC is also a component of ox-LDL, which
can induce the formation of atherosclerotic plaques by stimulating
the expression of inflammatory cytokines [22,27]. However, contro-
versial results have been reported in epidemiological studies
[24,28,29]. In line with this study, Kim et al. reported increased levels
of 12 LysoPC species in metabolically unhealthy obese subjects, and
found that the LysoPC levels were positively associated with several
oxidative stress markers, including ox-LDL, 8-epi-PGF2a, and Lp-
PLA2, suggesting that the altered LysoPC levels may be related to
increased oxidative stress [24]. Additionally, Li et al. demonstrated
that a high-fat diet induced an increased abundance of serum LysoPC
(15:0) in NAFLD mice [30]. However, a recent lipidomic study on
MetS identified converse relationships between LysoPCs and meta-
bolic risk [28]. Although several population studies found that several
LysoPCs (18:2, 18:1, 18:0) were associated with a reduced risk of T2D
[31,32], no relevant studies have investigated the effect of LysoPCs
(14:0, 15:0). Given that our one-sample MR analysis showed consis-
tent causal relationships between LysoPC(15:0) and the cardiometa-
bolic risk, such as obesity, dyslipideamia, insulin resistance, we
speculated that this LysoPC species may be a promising target for
metabolic diseases. Future functional studies are required to eluci-
date these mechanisms. Notably, in the two-sample MR analysis,
only the causal association between LysoPC(15:0) and serum TG was
well-replicated. A possible explanation was the relatively low statisti-
cal power and the variance explained by the IV of LysoPC(15:0).
Genomic researches with larger sample size are required to discover
more SNPs that associated with this metabolite.

Isoleucine has been demonstrated to be associated with obesity,
MetS, and type 2 diabetes [25,33]. Newgard et al. found that a high-
fat and branched-chain amino acid (BCAA)-rich diet induced insulin
resistance and increased plasma C3 acylcarnitine levels, indicating
that C3 acylcarnitine may be a direct product of BCAA metabolism
[33]. Consistently, both previous studies and our study confirmed
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that higher C3 acylcarnitine levels were a risk factor for MetS
[34�36]. Acylcarnitine plays a critical role in carbohydrate and lipid
metabolism balance. Elevated acylcarnitine levels represent a disrup-
tion in fatty acid oxidation and mitochondrial function [37]. Altered
plasma acylcarnitine levels have been previously indicated as prom-
ising biomarkers of obesity, insulin resistance, and type 2 diabetes,
especially C3 carnitine. Plasma C3 acylcarnitine levels could reflect its
levels in tissues in a better manner, whereas other species could not
[36,38-40].

Previous studies on the relationship between DPA and MetS have
been inconclusive. Only one study in children found that the levels of
DPA in adipose tissue were positively associated with the MetS score
[41]. In several Chinese epidemiological studies, DPA were found to
be negatively associated with MetS [42�44]. A small number of inter-
ventional studies in rodents found that DPA lowered the serum tri-
glyceride levels and pro-inflammatory cytokines and improved the
insulin resistance [45]. However, genetic studies have reported that
the C allele of rs174547 located at FADS1 and the T allele of rs780094
located at GCKR were linked to higher DPA levels [46]. Meanwhile,
these risk alleles were also associated with a higher risk of MetS, indi-
rectly supporting our study [47,48]. Therefore, whether DPA is bene-
ficial to MetS needs to be further investigated.

Phenylalanine and tryptophan are aromatic amino acids (AAA)
and have been frequently reported to be associated with multiple
metabolic abnormalities [10,25,49,50]. Some researchers have pro-
posed that an elevated phenylalanine level may be attributed to the
competition of BCAA for the transportation of AAA [33,51]. Trypto-
phan is composed of a b carbon connected to an indole group, which
can produce multiple signalling substances via the kynurenine,
indole, and serotonin pathways [52]. Supporting our results, Ji Sun
Oh et al. found that patients with MetS showed increased levels of
tryptophan and its two downstream products (kynurenine and xan-
thurenic acid) and a higher tryptophan-to-kynurenine ratio [53]. The
tryptophan-to-kynurenine ratio is an indicator of kynurenine path-
way, and its upregulation was related to the low-grade inflammation
state, oxidative stress, and immune response, which suggests that
abnormal tryptophan levels may impact MetS by impairing the
kynurenine pathway [54,55].

By using metabolites as the outcome measures of GWAS, Met-QTL
has been a powerful tool in explaining the biological relevance of
SNPs to a certain disease. In this study, three met-QTLs were identi-
fied to be associated with LysoPC(15:0). One of them, rs1163549, is
located at the LIPC locus and displays strong eQTL signals of LIPC.
Moreover, previous studies have reported that polymorphisms in
LIPC are significantly associated with serum lipid profiles, MetS, T2D,
and CAD risk [56�58], indicating that the disturbed serum LysoPC
(15:0) levels may result from abnormal LIPC metabolic activity and
LysoPC(15:0) may be a potential therapeutic target for MetS.
rs1952458 is located at 6p12.3 of PKHD1. This gene mainly expressed
in the kidney cortex and pancreas. The mutations in this gene cause
autosomal recessive polycystic kidney disease. Patients with polycys-
tic kidney disease have been reported to exhibit defective glucose
metabolism and fatty acid oxidation [59]. In a previous GWAS,
rs1952458 was found to be marginally associated with the preva-
lence of T2D [60]. Notably, our study showed nominal associations
between rs1952458 and multiple metabolic abnormalities. Func-
tional studies are required to determine whether this gene locus reg-
ulates metabolic processes.

Our study has several strengths. First, to the best of our knowl-
edge, this study is the largest metabolomics study on MetS. Second,
the use of untargeted metabolomics approach, targeted metabolomic
approach, and the external validation provided precise and robust
association results between metabolites and MetS. Third, by integrat-
ing with genomic data, we identified the genetic variants that associ-
ated with MetS-associated metabolites and MetS, providing insights
into the mechanistic investigation of MetS.
This study has a few limitations. First, the biomarkers of MetS
were screened among cross-sectional populations, precluding the
causal relationship estimations. However, using previous SNP data,
we assessed the possible causal relationships between metabolites
and MetS. Second, the population of this study was from eastern
China, thus all results of this study may not be generalised to other
populations. A wider multi-center replication still required to verify
the findings of this study in the future. Third, although our study was
the largest metabolomics study on MetS, the sample size in the tar-
geted metabolomics was relatively small, and the sample size in the
GWAS analyses was also small, which may have contributed to some
associations not being detected. Fourth, although we have applied
optimal conditions to establish the quantitative methods in targeted
metabolomics, some of the metabolites still could not achieve a good
recovery rate. Fifth, information on dietary habits, nutrition, and
physical activity was not collected in untargeted metabolomics,
which hampered the investigation of its associations with metabo-
lites, additionally, although using a standardised protocol and inves-
tigation techniques to reduce the possible self-reporting bias, we still
cannot completely rule out the existence of self-reporting bias in the
epidemiological data collection. Sixth, two instrumental SNPs used to
construct the IV for LysoPC(15:0) did not arrive at the GWAS signifi-
cance threshold, which may introduce a weak instrumental bias.
However, the F statistic of the IV was larger than 10, indicating that
the IV was sufficient for the MR analysis. Seventh, the gene pleiotropy
cannot be completely avoided. Further functional genomic studies
are required. Eighth, the statistical powers for the two-sample MR
analysis for BMI, SBP, DBP were insufficient to detect these causal
effects. Genetic association studies for this metabolite with larger
sample size are urged.
5. Conclusions

We identified five metabolites that could be used as biomarkers of
MetS. A metabolite risk score was constructed to assess the risk of
MetS. Three SNPs were associated with LysoPC(15:0) level, addition-
ally, LysoPC(15:0) was causally linked to the metabolic risk. In brief,
MetS is associated with an altered metabolite profile, which may
causally contribute to metabolic disorders.
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